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We live in an age where the most complex or repetitive tasks are automated. Smart robots have the 
potential to revolutionize how we perform all kinds of tasks with high accuracy and effi  ciency. With 
this second edition of Learn Robotics Programming, you'll see how a combination of the Raspberry Pi 
and Python can be a great starting point for robot programming.

The book starts by introducing you to the basic structure of a robot and shows you how to design, 
build, and program it. As you make your way through the book, you'll add diff erent outputs and 
sensors, learn robot building skills, and write code to add autonomous behavior using sensors 
and a camera. You'll also be able to upgrade your robot with Wi-Fi connectivity to control it using a 
smartphone. Finally, you'll understand how you can apply the skills that you've learned to visualize, 
lay out, build, and code your future robot building projects.

By the end of this book, you'll have built an interesting robot that can perform basic artifi cial 
intelligence operations and be well versed in programming robots and creating complex 
robotics projects using what you've learned.

Second Edition
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Things you will learn: 

• Leverage the features of the Raspberry 
Pi OS

• Discover how to confi gure a Raspberry 
Pi to build an AI-enabled robot

• Interface motors and sensors with a 
Raspberry Pi

• Code your robot to develop engaging 
and intelligent robot behavior

• Explore AI behavior such as speech 
recognition and visual processing

• Find out how you can control AI robots 
with a mobile phone over Wi-Fi

• Understand how to choose the right 
parts and assemble your robot
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Preface
Learn Robotics Programming is about building and programming a robot with smart 
behavior. It covers the skills required to make and build a gadget from parts, including 
how to choose them. These parts include sensors, motors, cameras, microphones, 
speakers, lights, and a Raspberry Pi.

This book continues with how to write code to make those parts do something interesting. 
The book uses Python, together with a little bit of HTML/CSS and JavaScript. 

The technology used is intended to include things that are available and affordable and the 
code is shown to demonstrate concepts, so they can be used and combined to create even 
more interesting code and robots. 

The topics combine aspects of being a programmer with aspects of being a robot maker, 
with a number of specialist topics such as computer vision and voice assistants thrown in. 

Who this book is for
This book is intended for someone with a little programming experience, or someone 
more experienced but looking to apply their skills to a hardware project. You do not need 
to be an expert-level programmer, but do have to have written some lines of code and be 
comfortable with looping, conditionals, and functions. Knowledge of object-oriented- 
(class- and object-) based programming isn't necessary but is introduced in the book.

The book does not require a specialist workshop, although there will be a little soldering 
and bolting things together. This will be introduced later in the book. 

You do not need to have any experience at all with electronics or making things, but 
hopefully, you'll have a healthy interest in learning more, since some very basic concepts 
are introduced throughout the book. Being keen to build a robot, get it to do stuff, and 
find out what to do with it next is probably the most important aspect of the book.



xiv     Preface

What this book covers
Chapter 1, Introduction to Robotics, introduces what robots are, and finds examples in the 
home and industry, along with the kinds of robots beginners build.

Chapter 2, Exploring Robot Building Blocks – Code and Electronics, looks at the 
components of a robot. We will start making choices about the robot's parts and  
see block diagrams for both systems and code. 

Chapter 3, Exploring the Raspberry Pi, introduces the Raspberry Pi and its connections 
and the Raspbian Linux operating system we'll use on it, and also covers the preparation 
of an SD card for use in a robot.

Chapter 4, Preparing a Headless Raspberry Pi for a Robot, shows you how to set up an 
untethered Raspberry Pi and communicate with it wirelessly.

Chapter 5, Backing Up the Code with Git and SD Card Copies, shows how code can be lost 
or broken, then ways to protect your work and keep a history of it.

Chapter 6, Building Robot Basics – Wheels, Power, and Wiring, introduces the trade-offs  
for buying and test fitting a robot base, then assembling it.

Chapter 7, Drive and Turn – Moving Motors with Python, shows you how to write code  
to move a robot, laying down the foundations for the code in subsequent chapters.

Chapter 8, Programming Distance Sensors with Python, adds sensors and code to make  
a robot that autonomously avoids walls and obstacles.

Chapter 9, Programming RGB Strips in Python, adds multicolored lights to your robot. 
Explore this additional output to use for debugging or fun on the robot.

Chapter 10, Using Python to Control Servo Motors, shows how to use these motors to 
position a sensor head, and where they could be used in arms or legs on other robots.

Chapter 11, Programming Encoders with Python, demonstrates how odometry/tacho wheels 
can be read in your code, letting your robot drive in a straight line, make an accurate turn, 
or record how far it's driven. This chapter also introduces the PID controller.

Chapter 12, IMU Programming with Python, introduces the Inertial Measurement 
Unit (IMU), a set of sensors to measure temperature, acceleration, turning speeds, and 
magnetic fields. This chapter also gives you an introduction to soldering and VPython.
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Chapter 13, Robot Vision – Using a Pi Camera and OpenCV, shows how to get data from  
a camera and use computer vision to make movements based on what the robot sees.  
This chapter also streams processed video to a browser.

Chapter 14, Line-Following with a Camera in Python, demonstrates how to make line-
following behavior with the Raspberry Pi camera.

Chapter 15, Voice Communication with a Robot Using Mycroft, builds a voice control agent 
to link with your robot, letting you talk to control it and receive voice feedback.

Chapter 16, Diving Deeper with the IMU, takes the sensors we learned about in Chapter 12, 
IMU Programming with Python, and combines them to provide data about the orientation 
of the robot, building behavior that responds to the compass direction.

Chapter 17, Controlling the Robot with a Phone and Python, builds a menu system and a 
gaming-style control pad for your robot from your smartphone, letting you drive while 
seeing what the robot sees.

Chapter 18, Taking Your Robot Programming Skills Further, looks at the wider world of 
robotics, what communities there are, how to get in touch with other robot builders and 
makers, potential development areas, and where to compete with a robot. 

Chapter 19, Planning Your Next Robot Project – Putting It All Together, is the final chapter, 
where we summarize what you have seen in the book, while encouraging you to plan the 
construction of your next robot.

To get the most out of this book
Before you begin with this book, you need to have programmed a little in a text 
programming language. I am assuming some familiarity with variables, conditional 
statements, looping, and functions. 

You will need a computer, running macOS, Linux, or Windows, an internet connection, 
and Wi-Fi.

In terms of manual skills, I assume that you can use a screwdriver, that you can deal with 
occasional fiddly operations, and that you won't be too scared off by the possibility of 
soldering things.
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Code examples have been tested on Python 3 with Raspbian Buster and Picroft Buster 
Keaton. The book will show you how to install these when needed. The book will show 
you how to choose and find robot parts when needed too.

Please read the appropriate chapters with trade-offs and recommendations before buying 
robot hardware. 

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

After reading the book, please come and join the #piwars community on Twitter for lots of 
robot discussion. 

Download the example code files
You can download the example code files for this book from your account at www.packt.
com. If you purchased this book elsewhere, you can visit www.packtpub.com/support 
and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using 
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packt.com
http://www.packtpub.com/support
http://www.packt.com
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The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition. In case 
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at http://bit.ly/3bu5wHp.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this 
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781839218804_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "This sets one LED at led_number to the specified color."

A block of code is set as follows:

cyan_rgb = [int(c * 255) for c in cyan]

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

right_distance = self.robot.right_distance_sensor.distance

  # Display this

            self.display_state(left_distance, right_distance) 

Any command-line input or output is written as follows:

>>> r.leds.show()

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781839218804_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781839218804_ColorImages.pdf
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Bold: Indicates a new term, an important word, or words that you see onscreen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an example: 
"Select 4 for Other USB Microphone and try the sound test."

Tips or important notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.
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Section 1:  
The Basics – Preparing 

for Robotics

In this section, we will learn what a robot is with examples, get an idea of what is in a 
robot, and get a Raspberry Pi ready for robot experiments.

This part of the book comprises the following chapters:

• Chapter 1, Introduction to Robotics 

• Chapter 2, Exploring Robot Building Blocks – Code and Electronics 

• Chapter 3, Exploring the Raspberry Pi 

• Chapter 4, Preparing a Headless Raspberry Pi for a Robot 

• Chapter 5, Backing Up the Code with Git and SD Card Copies 
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Introduction to 

Robotics
Throughout this book, we will build a robot and create programs for it that give the  
robot behaviors that make it appear intelligent and able to make decisions. We will write  
code to use sensors to observe the robot's surroundings and build real-world examples  
of advanced topics, including vision, speech recognition, and talking.

You will see how the simple build techniques, when combined with a little bit of code, will 
result in a machine that feels like some kind of pet. You will also see how to debug it when 
things go wrong, which they will. You'll find out how to give the robot ways to indicate 
problems back to you, along with selecting the behavior you would like to demonstrate. 
We will connect a joypad to it, give it voice control, and finally show you how to plan a 
further robot build.

Before we start building a robot, it's worth spending a little time on what a robot is.  
We can explore some types of robots, along with basic principles that distinguish robots 
from other machines. You'll think a little about where the line between robot and 
non-robot machines is located, and then perhaps muddy that line a little bit with the 
somewhat fuzzy truth. We will then look at a number of robots built in the hobbyist  
and amateur robotics scenes.
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In this chapter, we will be covering the following topics:

• What does robot mean? 

• Exploring advanced and impressive robots 

• Discovering robots in the home

• Exploring robots in industry

• Competitive, educational, and hobby robots 

What does robot mean?
A robot is a machine that makes autonomous decisions based on input from sensors. 
A software agent is a program that automatically processes input and produces output. 
Perhaps a robot is best described as an autonomous software agent with sensors and 
moving outputs, or it could be described as an electromechanical platform with software 
running on it. Either way, a robot requires electronics, mechanical parts, and code.

The word robot conjures up images of fantastic sci-fi creations, devices with legendary 
strength and intelligence. These often follow the human body plan, making them an 
android, a human-like robot. They're often given a personality and behave like a person 
who is, in some simple way, naïve: 

Figure 1.1 – Science fiction and real-world robots. Images used are  
from the public domain OpenClipArt library

The word robot comes from science fiction (also known as sci-fi). The word is derived 
from the Czech word for slave and was first used in the 1921 Karel Capek play, Rossum's 
Universal Robots. The science fiction author Isaac Asimov coined the word robotics as he 
explored intelligent robot behavior. 
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Most real robots in our homes and industries are not cutting-edge and eye-catching. Most 
do not stand on two legs, or indeed any legs at all. Some are on wheels, and some are not 
mobile but still have moving parts and sensors.

Robots such as modern washing machines, autonomous vacuum cleaners, fully  
self-regulating boilers, and air sampling fans have infiltrated our homes and are part of 
everyday life. They aren't threatening and have become just another machine around us. 
The 3D printer, robot arm, and learning toys are a bit more exciting, though:

Figure 1.2 – The robot, simplified and deconstructed

At their core, robots can all be simplified down to outputs such as a motor, inputs such 
as a sensor, and a controller for processing or running code. So, a basic robot would look 
something like this:

• It has inputs and sensors to measure and sample properties of its environment.

• It has outputs such as motors, lights, sounds, valves, or heaters to alter its 
environment.

• It uses data from its inputs to make autonomous decisions about how it controls  
its outputs.

Now, we will go ahead and look at some advanced robots in the next section.
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Exploring advanced and impressive robots
Now that you have an overview of robots in general, I'll introduce some specific examples 
that represent the most remarkable robots around, and what they are capable of. Except 
for the Mars robots, human and animal forms have been favored by these robot makers 
for their adaptability, contrasting with robots designed for industrial use and intended  
for single repeated use.

Figure 1.3 shows the similarities between these robots and humans/animals:

Figure 1.3 – A selection of human and animal-like robots. [Image credits: Image 1: This image can be 
found at https://commons.wikimedia.org/wiki/File:Cog,_1993-2004,_view_2_-_MIT_Museum_-_
DSC03737.JPG, and is in the public domain; Image 2: This image can be found at https://commons.

wikimedia.org/wiki/File:Honda_ASIMO_(ver._2011)_2011_Tokyo_Motor_Show.jpg, by Morio, under 
CC BY-SA 3.0, at https://creativecommons.org/licenses/by-sa/3.0/deed.

en; Image 3: This image can be found at https://commons.wikimedia.org/wiki/File:Nao_Robot_
(Robocup_2016).jpg and is in the public domain; Image 4: This image can be found at https://commons.

wikimedia.org/wiki/File:Atlas_from_boston_dynamics.jpg, by https://www.kansascity.com/news/
business/technology/917xpi/picture62197987/ALTERNATES/FREE_640/atlas%20from%20boston%20

dynamics, under CC BY-SA 4.0, at https://creativecommons.org/licenses/
by-sa/4.0/deed.en; Image 5: This image can be found at https://commons.wikimedia.org/wiki/

Commons:Licensing#Material_in_the_public_domain and is in the public domain

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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What these robots have in common is that they try to emulate humans and animals in the 
following ways:

1. Robot 1 is Cog from the Massachusetts Institute of Technology. Cog was an attempt 
to be human-like in its movements and sensors.

2. Robot 2 is the Honda ASIMO, which walks and talks a little like a human. ASIMO's 
two cameras perform object avoidance, as well as gestures and face recognition, and 
have a laser distance sensor to sense the floor. It follows marks on the floor with 
infrared sensors. ASIMO accepts voice commands in English and Japanese.

3. Robot 3 is the Nao robot from Softbank Robotics. This cute 58 cm tall robot was 
designed as a learning and play robot for users to program. It has sensors to detect 
its motion, including if it is falling, and ultrasonic distance sensors to avoid bumps. 
Nao uses speakers and a microphone for voice processing. It has multiple cameras 
to perform similar feats to the ASIMO.

4. Robot 4 is Atlas from Boston Dynamics. This robot is fast on two legs and has 
natural-looking movement. It has a laser radar (LIDAR) array, which it uses to 
sense what is around it so as to plan its movement and avoid collisions.

5. Robot 5 is the Boston Dynamics BigDog, a four-legged robot, or quadruped. It can 
walk and run. It's one of the most stable four-legged robots, staying upright when 
being pushed, shoved, and walking in icy conditions.

You'll add some features like these in the robot you'll build. We'll use distance sensors to 
avoid obstacles, using ultrasonic sensors in the same way as Nao, and discussing laser 
distance sensors like ASIMO. We'll explore a camera for visual processing, line sensors 
to follow marks on the floor, and voice processing to work with spoken commands. We'll 
build a pan and tilt mechanism for a camera like the head of Cog. 
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The Mars rovers
The Mars rover robots are designed to work on a different planet, where there is no 
chance of human intervention if it breaks. They are robust by design. Updated software 
can only be sent to a Mars rover via a remote link as it is not practical to send up a person 
with a screen and keyboard. The Mars rover is headless by design:

Figure 1.4 – NASA's Curiosity rover at Glen Etive, Mars (Image Credit: NASA/JPL-Caltech/MSSS; 
https://mars.nasa.gov/resources/24670/curiosity-at-glen-etive/?site=msl)

Mars rovers depend on wheels instead of legs, since stabilizing a robot on wheels is far 
simpler than doing it for one that uses legs, and there is less that can go wrong. Each wheel 
on the Mars rovers has its own motor. The wheels are arranged to provide maximum grip 
and stability to tackle Mars's rocky terrain and lower gravity. 

The Curiosity rover was deposited on Mars with its sensitive camera folded up. After 
landing, the camera was unfolded and positioned with servo motors. The camera 
is pointed using a pan and tilt mechanism. It needs to take in as much of the Mars 
landscape as it can, sending back footage and pictures to NASA for analysis. 

Like the Mars robots, the robot you'll build in this book uses motor-driven wheels. Our 
robot is also designed to run without a keyboard and mouse, being headless by design.  
As we expand the capabilities of our robot, we'll also use servo motors to drive a pan and 
tilt mechanism. 
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Discovering robots in the home
Many robots have already infiltrated our homes. They are overlooked as robots because, 
at first glance, they appear ordinary and mundane. However, they are more sophisticated 
than they appear. 

The washing machine
Let's start with the washing machine. It is used every day in some homes, with a constant 
stream of clothes to wash, spin, and dry. But how is this a robot?

Figure 1.5 – Components of a washing machine

Figure 1.5 shows a washing machine as a block diagram. There's a central controller 
connected to the display with controls to select a program. The lines going out of the 
controller are outputs. The connections coming into the controller are data from sensors. 
The dashed lines from outputs to the sensors show a closed loop of output actions in the 
real world, causing sensor changes. This is feedback, an essential concept in robotics.

The washing machine uses the display and buttons to let the user choose the settings 
and see the status. After the start button is pressed, the controller checks the door sensor 
and will sensibly refuse to start if the door is open. Once the door is closed, and the start 
button is pressed, it will output to lock the door. After this, it uses heaters, valves, and 
pumps to fill the drum with heated water, using sensor feedback to regulate the water  
level and temperature.
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Each process could be represented by a set of statements like these, which simultaneously 
fill the drum and keep it heated:

start water pump
turn on the water heater
while water is not filled and water is not hot enough:
  if water filled then
    stop water pump
  if the water is hot enough then
    turn off heater
  else
    turn on the water heater

Note the else there, which is in case the water temperature drops below the correct 
temperature slightly. The washing machine then starts the drum spinning sequence – slow 
turns, fast spins, sensing the speed to meet the criteria. It will drain the drum, spin the 
clothes dry, release the door lock, and stop.

This washing machine is, in every respect, a robot. A washing machine has sensors and 
outputs to affect its environment. Processing allows it to follow a program and use sensors 
with feedback to reach and maintain conditions. A washing machine repair person may be 
more of a roboticist than I.

Other household robots
A gas central heating boiler has sensors, pumps, and valves. The boiler uses feedback 
mechanisms to maintain the temperature of the house, water flow through heating, gas 
flow, and ensuring that the pilot light stays lit. The boiler is automatic and has many robot-
like features, but it is stationary and could not readily be adapted to other purposes. The 
same could be said for other home appliances such as smart fans and printers.

Smart fans use sensors to detect room temperature, humidity, and air quality, and then 
output through the fan speed and heating elements. 

Other machines in the home, like a microwave, for example, have only timer-based 
operation, they do not make decisions, and are too simple to be regarded as robots.
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Perhaps the most obvious home robot is a robot vacuum cleaner, as shown in Figure 1.6:

Figure 1.6 – A robotic vacuum cleaner – PicaBot (Image credit: Handitec [Public Domain - https://
commons.wikimedia.org/wiki/File:PicaBot.jpg])

This wheeled mobile robot is like the one we will build here, but prettier. They are packed 
with sensors to detect walls, bag levels, and barrier zones, and avoid collisions. They most 
represent the type of robot we are looking at. This robot is autonomous, mobile, and could 
be reprogrammed to different behaviors.

As we build our robot, we will explore how to use its sensors to detect things and react to 
them, forming the same feedback loops we saw in the washing machine.

Exploring robots in industry
Another place where robots are commonly seen is in industry. The first useful robots were 
used in factories, and have been there for a long time.
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Robot arms
Robot arms range from tiny delicate robots for turning eggs, to colossal monsters moving 
shipping containers. Robot arms tend to use stepper and servo motors. We will look at 
servo motors in the pan and tilt mechanism used in this book. Most industrial robot 
arms (for example, ABB welding robots) follow a predetermined pattern of moves, and 
do not possess any decision making. However, for a more sensor-based and smart system, 
take a look at the impressive Baxter from Rethink Robotics in Figure 1.7. Baxter is a 
collaborative robot designed to work alongside humans:

Figure 1.7 – The Rethink Robotics Baxter Robot (Image credit: Baxter at Innorobo by © Xavier Caré / 
Wikimedia Commons [CC-BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)])

Many robot arms are unsafe to work next to and could result in accidents, requiring cages 
or warning markings around them. Not so with Baxter; it can sense a human and work 
around or pause for safety. In the preceding image, these sensors are seen around the head. 
The arm sensors and soft joints also allow Baxter to sense and react to collisions.
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Baxter has a training and repeat mechanism for workers to adapt it to a task. It uses 
sensors to detect joint positions when being trained or playing back motions. Our robot 
will use encoder sensors to precisely control wheel movements.

Warehouse robots
Another common type of robot used in industry is those that move items around a factory 
floor or warehouse:

Figure 1.8 – Warehouse robot systems: Stingray system by TGWmechanics [CC BY-SA 3.0 (https://
creativecommons.org/licenses/by-sa/3.0)], and Intellicart by Mukeshhrs [public domain]

Figure 1.8 picture 1 shows robotic crane systems for shifting pallets in storage complexes. 
They receive instructions to move goods within shelving systems.

Smaller item-moving robots, like Intellicart in Figure 1.8 picture 2, employ line sensors, 
by following lines on the floor, magnetically sensing wires underneath the floor, or by 
following marker beacons like ASIMO. Our robot will follow lines such as these. These 
line-following carts frequently use wheels because these are simple to maintain and can 
form stable platforms.

Competitive, educational, and hobby robots
The most fun robots are those created by amateur robot builders. This is an extremely 
innovative space.
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Robotics always had a home in education, with academic builders using them for learning 
and experimentation platforms. Many commercial ventures have started in this setting. 
University robots are often group efforts, with access to hi-tech equipment to create them:

 

Figure 1.9 – Kismet [Jared C Benedict CC BY-SA 2.5 https://creativecommons.org/licenses/by-sa/2.5] 
and OhBot [AndroidFountain [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]]

Kismet (Figure 1.9 picture 1) was created at MIT in the late 90s. Several hobbyist robots 
are derived from it. It was groundbreaking at the time, using motors to drive face 
movements mimicking human expressions. OhBot, a low-priced hobbyist kit using servo 
motors, is based on Kismet. OhBot (Figure 1.9 picture 2) links with a Raspberry Pi, using 
voice recognition and camera processing to make a convincing face.

Hobby robotics is strongly linked with the open source software/hardware community, 
making use of sites such as GitHub (https://github.com) for sharing designs, and 
code, leading to further ideas. Hobbyist robots can be created from kits available on the 
internet, with modifications and additions. The kits cover a wide range of complexity, 
from simple three-wheeled bases to drone kits and hexapods. They come with or without 
the electronics included. An investigation of kits will be covered in Chapter 6, Building 
Robot Basics – Wheels, Power, and Wiring. I used a hexapod kit to build SpiderBot (Figure 
1.10) to explore the walking motion: 

https://github.com
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Figure 1.10 – Spiderbot, made by me, based on a kit. The controller is an esp8266 + Adafruit 16 Servo 
Controller

Skittlebot was my Pi Wars 2018 entry, built using toy hacking, repurposing a remote 
control excavator toy into a robot platform. Pi Wars is an autonomous robotics challenge 
for Raspberry Pi-based robots, with both manual and autonomous challenges. There were 
entries with decorative cases and resourceful engineering. Skittlebot (Figure 1.11) uses 
three distance sensors to avoid walls, and we will investigate this kind of sensor in Chapter 
8, Programming Distance Sensors with Python. Skittlebot uses a camera to find colored 
objects, as we will see in Chapter 13, Robot Vision – Using a Pi Camera and OpenCV:

Figure 1.11 – Skittlebot – My PiWars 2018 Robot, based on a toy
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Some hobbyist robots are built from scratch, using 3D printing, laser cutting, vacuum 
forming, woodwork, CNC, and other techniques to construct the chassis and parts:

Figure 1.12 – Building ArmBot

I built the robot in Figure 1.12 from scratch, for the London robotics group The Aurorans, 
in 2009. The robot was known as EeeBot in 2009 since it was intended to be driven by an 
Eee PC laptop. The Aurorans were a community that met to discuss robotics. The robot 
was later given a Raspberry Pi, and a robot arm kit (the uArm) seemed to fit, earning it 
the name ArmBot.

In the current market, there are many chassis kits, and a beginner will not need to 
measure and cut materials in this way to make a functioning robot. These are built to 
experiment on, and to inspire other robot builders and kids to code. Toward the end of 
the book, we will cover some of the communities where robots are being built and shared, 
along with starting points on using construction techniques to make them from scratch.

The television series Robot Wars is a well-known competitive robot event with impressive 
construction and engineering skills. There is no autonomous behavior in Robot Wars, 
though; they are manually driven like remote control cars. Washing machines, although 
less exciting, are smarter, so they could be more strictly considered robots.

Summary
In this chapter, we have looked at what the word robot means, and the facts and fiction 
associated with robots. We have defined what a real robot is. You have seen what a 
machine needs to do in order to be considered a robot.
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We've investigated the robots seen in the home and in industry. You've been shown some 
designed to amaze or travel to other planets. We've also looked at hobbyist and education 
robots, and how some of these are just built for fun. You've seen some block diagrams of 
real-world devices that may not have been considered robots. You've also spotted how our 
homes may already have several robots present.

I hope this chapter has you thinking about what earns the title of robot. A washing 
machine can be fully automatic, starting at some time later, following a program, with 
some advanced machines saving water by detecting the quality of the water coming out 
from the clothes as a metric for how clean they are. A machine called a robot, however, 
could be simply a remote-controlled device, such as telepresence robots or Robot Wars 
robots. Undoubtedly, all have sophisticated engineering, requiring many similar skills to 
make them. 

While some robots are clearly robots, such as the Honda ASIMO and Baxter, some others 
are far harder to draw the line at. If the broad concept of a decision-making, electro-
mechanical machine fits these cases, it would exclude the remote-controlled type. If the 
concept of machines that are mobile is applied, then a toy RC car would be included, while 
a fully autonomous smart machine that is stationary is excluded. A machine could be 
made to look robot-like with anthropic (human-like) characteristics, but simply being 
mechanical, moving an arm up and down – is this a robot? It isn't running a program or 
reacting to an environment. 

Now that we have explored what robots are, let's move on to the next chapter, in which 
we'll look at how to plan a robot so we can build it.

Assessment
Look around your home. There will be other automatic machines with many of the 
features of robots in them. Take a common household machine (other than a washing 
machine), and look at its inputs and outputs. Use these to make a diagram showing them 
going in or out of a controller. Think about how they move if they move around the house. 

Consider further what feedback loops may be present in this system. What is it 
monitoring? How is it responding to that information?



18     Introduction to Robotics

Further reading
Refer to the following links:

• Honda ASIMO: http://asimo.honda.com/.

• Baxter at Rethink Robotics: https://www.rethinkrobotics.com/
baxter/.

• Kismet at MIT: http://www.ai.mit.edu/projects/humanoid-
robotics-group/kismet/kismet.html.

• The OhBot: http://www.ohbot.co.uk/.

• The Mars Science Laboratory at NASA: https://mars.nasa.gov/msl/.

• For building a robot arm like the one used in ArmBot, take a look at MeArm: 
https://github.com/mimeindustries/MeArm.

• For more information about my ArmBot design, visit https://www.youtube.
com/watch?v=xY6Oc4_jdmU.

http://asimo.honda.com/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ohbot.co.uk/
https://mars.nasa.gov/msl/
https://github.com/mimeindustries/MeArm
https://www.youtube.com/watch?v=xY6Oc4_jdmU
https://www.youtube.com/watch?v=xY6Oc4_jdmU


2
Exploring Robot 

Building Blocks – 
Code and Electronics

In this chapter, we'll take a robot apart to see its parts and systems. We'll explore the 
components of a robot, both the software (code, commands, and libraries) and the 
hardware, and how they go together. When starting to make a robot, it's valuable to think 
about the parts you want and how they relate to one another. I recommend sketching a 
plan of your robot—a block diagram as a guide to the connected code and parts, which  
we will explore in this chapter as well.

In this chapter, we will be covering the following topics:

• Looking at what's inside a robot

• Exploring types of robot components

• Exploring controllers and I/O 

• Planning components and code structure

• Planning the physical robot
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Technical requirements
For this chapter, you will require the following:

• Simple drawing materials, such as a pen and paper

• Optional – diagram software such as Draw.io (free at https://app.diagrams.
net) or Inkscape (free at https://inkscape.org)

Looking at what's inside a robot
We can start by looking at a robot as a physical system. In Figure 2.1, we can see a simple 
hobby robot:

Figure 2.1 – An assembled hobby robot

https://app.diagrams.net
https://app.diagrams.net
https://inkscape.org
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Figure 2.2 shows it in its disassembled form:

Figure 2.2 – A hobby robot's components laid out

The component groups in Figure 2.2 include nine types of components:

1. The chassis or body forms the main structure of the robot; other parts are  
attached here.

2. A castor wheel balances this robot.

3. Two drive wheels. Other robots may use more wheels or legs here.

4. Motors are essential for the robot to move. 

5. A motor controller bridges between a controller and connected motors. 
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6. A controller, here a Raspberry Pi, runs instructions, takes information from the 
sensors, and processes this information to drive outputs, such as motors, through 
the motor controller. 

7. All robots must have power, usually one or more sets of batteries. 

8. Sensors provide information about the robot's environment or the state of its 
physical systems.

9. Finally, debug devices are outputs that allow the robot to communicate with 
humans about what its code is doing, and are also useful for looking good.

We will examine these components in more detail later in this chapter.

We can visualize a robot as a block diagram (Figure 2.3) of connected parts. Block 
diagrams use simple shapes to show a rough idea of how things may be connected:

Figure 2.3 – A robot block diagram

The block diagram in Figure 2.3 does not use a formal notation. The key I've created is off 
the top of my head, but it should identify sensors, outputs, and controllers. It could be as 
simple as a sketch on some scrap paper. The critical factor is that you can see blocks of 
functionality in the hardware, with the high-level flow of data between them. 
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It is from this diagram that you can develop more detailed plans, plans containing details 
in terms of electrical connections, power requirements, the hardware, and how much 
space is needed. Sketching a block diagram about a robot you'd like to create is the first 
step toward making it.

Important note
A block diagram is not a schematic, nor a scale drawing of a finished robot. It 
doesn't even try to show the actual electronic connections. The picture ignores 
small details, such as how to signal an ultrasonic distance sensor before it 
responds. The connection lines give a general idea of the data flow. A block 
diagram is the right place to show the type and number of motors and sensors, 
along with additional controllers they may need. 

This was a very brief overview of robot components, seeing a robot similar to the one you 
will build, along with it disassembled into parts. We took a look at a simple robot block 
diagram and its intent. In the next section, we will take a closer look at each of the robot's 
components, starting with motors.

Exploring types of robot components
Before we look at the types of motors and sensors, let's get a brief understanding of what 
each of them is. 

A motor is an output device that rotates when power is applied. Motors are a subset 
of a type of machinery called an actuator. It is an output device that creates motion 
from electrical power. This power can be modulated with signals to control movement. 
Examples of actuators are solenoids, valves, and pneumatic rams. 

A sensor is a device that provides input to a robot, allowing it to sense its environment. 
There are more sensor types than a single book can list, so we'll keep to the commonly 
available and fun-to-use ones. Displays and indicators are debug output devices, for giving 
feedback on the robot's operation to a human user/programmer. A few of these will be 
covered in this section.

Now, let's look at them in detail.
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Types of motors 
There are a number of different kinds of motors that robots commonly use. Let's take a 
look at what each one does and how we might use them for different types of motion:

Important note
Torque is a rotating/twisting force, for example, the force a motor will need in 
order to turn a wheel. If the torque increases, a motor will require more power 
(as current), and will slow down while trying to cope. A motor has a limit, the 
stall torque, at which point it will stop moving. 

Figure 2.4 – Different motor types – a DC motor, DC gear motor, servo motor, and stepper motor

To identify what each of these motors do, let's look at them in detail:

1. DC motor: This is the most simple type of motor in robotics and forms the basis 
of gear motors. It uses Direct Current (DC) voltage, which means it can be driven 
simply by voltage running one way through it. The motor speed is in proportion 
to the voltage running through it versus the torque required to move. A bare DC 
motor like the one in Figure 2.4 can spin too fast to be useful. It will not have much 
torque and stall easily.

2. DC gear motor: This is a DC motor fitted with a gearbox. This gearbox provides a 
reduction in speed and increases the torque it can handle. This mechanical advantage 
increases the motor's ability to move a load. Note that this gear motor is missing 
soldered leads! I recommend these motor types for robot wheels. We will use gear 
motors such as this on our robot in Chapter 6, Building Robot Basics – Wheels, Power, 
and Wiring, and Chapter 7, Drive and Turn – Moving Motors with Python.
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3. Servo motor (or servomechanism): This type of motor combines a gear motor with 
a sensor and a built-in controller as shown in Figure 2.5. A signal to a controller 
states a motor position, and the controller uses feedback from the sensor to try to 
reach this position. Servo motors are used in pan and tilt mechanisms, along with 
robot arms and limbs. We will look more closely at, and program, servo motors in 
Chapter 10, Using Python to Control Servo Motors:

Figure 2.5 – Pictorial diagram of a servo motor mechanism

4. Stepper motor: These have coils powered in a sequence to let the motor step a 
certain number of degrees. Where exact motions are needed, engineers use steppers. 
Stepper motors tend to be slower and generate a lot of heat compared with DC 
motors or servo motors. You will find these in fine-control applications, such as  
3D printers and high-end robot arms. They are heavier and more expensive than 
other motors.

5. Brushless motor: These are not shown in the diagram. They are driven with 
specialized controllers, and can be capable of high speed and torque. They run 
quieter and are popular in drones. There are no gear motor equivalents, so creation 
of a gearbox may be necessary.
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Important note
All but servo motors require hardware for a controller such as the Raspberry 
Pi to drive them. This hardware allows the Pi to control power-hungry devices 
without destroying them. Never connect DC motors, stepper motors, or 
solenoids directly to a Raspberry Pi!

Let's look at some other types of actuators next.

Other types of actuators
Linear actuators, like those shown in Figure 2.6, are devices that convert electrical signals 
into motion along a single axis. These can be a stepper motor driving a screw in a fixed 
enclosure, or use arrays of coils and magnets:

Figure 2.6 – Linear actuators: By Rollon91, [Image credit: https://commons.wikimedia.org/wiki/
File:Uniline.jpg?uselang=fr [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

A solenoid is a simple linear actuator using an electromagnetic coil with a metal core  
that is pulled or pushed away when powered. A common use of this type is in hydraulic  
or pneumatic valves. Hydraulic and pneumatic systems generate powerful motions like 
those seen in excavators. 

Status indicators – displays, lights, and sounds
Another helpful output device is a display. A single LED (a small electronic light) 
can indicate the status of some part of the robot. An array of LEDs could show more 
information and add color. A graphical display can show some text or pictures, like those 
found on a mobile phone. We will be connecting a multicolor LED strip to the robot as  
a display in Chapter 9, Programming RGB Strips in Python.
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Speakers and beepers can be used for a robot to communicate with humans by making 
sounds. The sound output from these can range from simple noises through to speech  
or playing music.

Many robots don't have any displays and rely on a connected phone or laptop to display 
their status for them. We will use a phone to control and see the status of our robot in 
Chapter 17, Controlling the Robot with a Phone and Python.

Types of sensors
Figure 2.7 shows a collection of sensor types used in robotics. They are similar to those 
that we will explore and use in this book. Let's examine some of them and their uses. Note 
that these may look different from the same sensor types seen previously – there is a wide 
variation in sensors that do the same job. When we add them to the robot, we will cover 
their variants in more detail:

Figure 2.7 – A selection of sensors from my robots: 1 - A Raspberry Pi camera, 2 - an optical  
distance sensor, 3 - an ultrasonic distance sensor, 4 - line sensors, 5 - microphones,  

and 6 - an optical interrupt sensor
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Let's understand each sensor from Figure 2.7 in detail:

1. Raspberry Pi camera module: This module connects to a Raspberry Pi to provide it 
with imaging capabilities. We'll use it for visual processing programming in Chapter 
13, Robot Vision – Using a Pi Camera and OpenCV. This module captures images or 
video sequences. It can generate a lot of data quickly, which is one of the problems 
associated with robot vision. It is sensitive to lighting conditions.

2. Optical distance sensor: The VL53L0X Time of Flight laser ranging sensor in 
Figure 2.7 is a distance sensor. It uses an infrared laser to bounce off objects and 
detect how far away they are. It can be affected by lighting conditions. 

The VL53L0X sensors use I2C to send a detected range to the Raspberry Pi and can 
share their two communication pins with many other devices. I2C is useful when 
you have many sensors and outputs and are starting to run out of places to connect 
things. I2C sensors can be a more expensive option.

3. Ultrasonic distance sensor: The HC-SR04 is another distance/ranging sensor 
that bounces sound pulses off objects to detect distance. It is affected by the types 
of material an object is made from and will fail to detect certain surfaces, but is 
impervious to lighting conditions. Some surfaces, for example, fabrics, absorb the 
sound too much and never send it back, while other surfaces, such as grids or meshes, 
do not interact much with sound waves and will be transparent to the sensor. 

The HC-SR04 requires precise timing in the controller to time the echo, which we 
will have to manage in code. It has a longer range than the VL53L0X laser sensor, 
and is cheaper, but is also less sensitive at close distances. We will be programming 
sound-based range sensors in Chapter 8, Programming Distance Sensors with Python.

4. Line sensors: These are a set of three line-sensors that use light to detect transitions 
from light to dark. They can be adjusted to sense in different conditions. There are 
a few variations of these modules. These provide an on or off signal, depending on 
light or dark areas beneath it. They are the simplest of the sensors.

5. Microphone: The fifth sensor is a pair of microphones. These can connect  
directly to the PCM pins on a Pi. Some other microphones need to be connected to 
electronics to process their signal into something the Raspberry Pi uses. We will  
use microphones for voice processing in Chapter 15, Voice Communication with  
a Robot Using Mycroft.
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6. Optical interrupt sensor: This detects infrared light passing through a gap between 
two posts, sensing whether something between the posts is interrupting the beam. 
These are used with notched wheels to detect rotation and speed by counting 
notches. When used with wheels, they are also known as encoders. We use encoders 
in Chapter 11, Programming Encoders with Python.

There are many more sensors, including ones to detect positions of limbs, light, smoke, 
heat sources, and magnetic fields. These can be used to make more advanced robots and 
add more exciting behavior.

We have covered motors, displays, indicators, and sensors, together with examples and 
some details regarding their types. These are the parts that allow our robot to interact with 
the world. Now we will move on to the controllers, the parts of a robot that run code and 
connect sensors and motors together.

Exploring controllers and I/O
At the center of the robot block diagram, as in Figure 2.3, are controllers. Robots usually 
have a primary controller, a computer of some kind. They may also have some secondary 
controllers, and some more unusual robots have many controllers. This book keeps things 
simple, with your code running on a conventional central controller. The controller 
connects all the other parts together and forms the basis of their interactions.

Before we look at controllers, we need to get a better understanding of an important 
component that connects controllers to other components, I/O pins.

I/O pins
I/O pins are used for input and output from the controller. They give the controller its 
ability to connect to real-world sensors and motors. 

The number of I/O pins on the controller is a limiting factor in what you can connect to 
a robot without using secondary controllers. You may also see the term General Purpose 
Input Output (GPIO). Controller I/O pins have different capabilities.
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The simplest I/O pins are only able to output or read an on/off signal, as shown in 
Figure 2.8. These are known as digital I/O pins. They can be programmed to perform 
complicated tasks through signal timing. This is the principle used in the HC-SR04 
distance sensor. In Figure 2.8, this graph represents a voltage level over time. So, as we 
move along the x axis, the voltage is on the y axis. The upper level represents a digital logic 
high (1, True, On). The lower level represents a digital logic low (0, False, Off). The 
controller will attempt to interpret any value as high or low:

Figure 2.8 – A digital signal

Analog input pins can read varying levels, like the signal in Figure 2.9, which is another 
voltage-over-time graph. If a sensor produces a changing resistance or continuous scale  
of values, then an analog pin is suitable. There is a resolution limit to this, for example,  
an 8 bit analog input will read 256 possible values:

 Figure 2.9 – An analog signal

Pulse Width Modulation (PWM) pins output a cycling digital waveform shown in 
Figure 2.10. This diagram also shows voltage over time, although the timing of the pulses 
represents a continuous level, so the dashed line shows the continuous level produced 
by the timing. PWM outputs allow the code to select the frequency and how much time 
they are on for. The length of on-time versus off-time in a cycle changes to vary an output 
signal. This is often used to control the speed of motors:

Figure 2.10 – A PWM signal in blue, with the dashed line showing its approximate value
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We will spend more time on PWM pins in Chapter 6, Building Robot Basics – Wheels, 
Power, and Wiring, and Chapter 7, Drive and Turn – Moving Motors with Python.

Some I/O pins can be used to form data transmission lines, such as serial, I2S, I2C, and 
SPI buses. They are known as data buses. Data buses are used to send data to or from 
other controllers and intelligent sensors. We'll use an SPI data bus for the RGB LEDs  
in Chapter 9, Programming RGB Strips in Python. 

Microcontroller pins can be used for digital or analog input and output, or part of a data 
bus. Many controllers allow the usage mode of pins to be configured in the software you 
run on them, but some capabilities are restricted to specific pins.

Controllers
Although it's possible to use bare microcontroller chips with the right skills to create 
surrounding electronics and your own PCBs, we'll keep things simple in this book by 
using controller modules. These tend to come in packaged and easy-to-use systems:

Figure 2.11 – A selection of controller modules: a Raspberry Pi, NodeMCU, Arduino, and micro:bit

Figure 2.11 shows some of my favorite controllers. They can all be powered via a USB 
connection. All but the Raspberry Pi can also be programmed over a USB. They all have 
connectors for easy access to their I/O pins. For each of the controllers, let's see what they 
are, along with their pros and cons:

1. Raspberry Pi: This is powerful enough for visual processing. It tends to consume 
a little more power and is more expensive, but is similar to a mobile phone in 
capability. It has the most flexible environment for programming. There are several 
models to consider. They have many I/O pins, but none are analog input pins.

2. NodeMCU: This is based on the ESP8266 controller. This controller has built-in 
Wi-Fi and can be programmed with Arduino C++, MicroPython, or Lua. It has 
plenty of I/O pins, but only one can read analog signals. It supports many data bus 
types. It is somewhat faster and can hold larger programs than the Arduino. It is  
the cheapest controller in this lineup.
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3. Arduino Leonardo: This is based on the Atmega 328 chip. Arduino controller 
modules formed the basis of most of my robots around 2010-2012. The Arduino 
was important for the ease with which it could be connected to a PC via a USB  
and programmed to immediately interact with devices attached to its I/O pins. 

The Arduino is mostly programmed in the C++ language. It has the most flexible 
built-in I/O pins – seven analog pins, many digital pins, PWM output pins, and can 
be set up to handle most data buses. The Arduino's processor is very simple; it is 
not capable of visual or speech processing tasks. The Arduino has the lowest power 
consumption of all the options shown here.

4. micro:bit: This was released in 2015 for use in education, and is ideal for children. 
Its use in robotics requires an additional adapter if you need more than the 3 I/O 
pins that it ships with, but it is still a pretty capable robot controller and comes 
with a handy built-in LED matrix. This can be programmed in MicroPython, C, 
JavaScript, and several other languages.

An honorable mention should go to the PIC microcontroller, not pictured here. These were 
used for hobby robotics long before any of the others, and have a thriving community.

Here is a comparison of controllers based on the pros and cons:
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Where the other controllers may run a simple interpreter or compiled code, the Raspberry 
Pi runs a complete operating system. Current models have Wi-Fi and Bluetooth capabilities, 
which we will use to make a robot headless and connect with game controllers. 

Choosing a Raspberry Pi
Figure 2.12 shows a few current Raspberry Pi models. As new Raspberry Pis are released,  
a robot builder may have to adapt this to the latest version. All these models have Wi-Fi 
and Bluetooth capabilities. The Raspberry Pi I/O pins support many of the data bus  
types and digital I/O. External controllers are needed for analog reading and some other 
I/O functions: 

Figure 2.12 – Raspberry Pi models – 4B, 3A+, and Zero W

Let's look at each of these models in a little detail:

1. Raspberry Pi 4B: This is the latest in the Raspberry Pi line at the time of writing. 
As the latest model, it is the fastest and most potent in the lineup. It takes up more 
space, is the most expensive in this group, and uses the most power.

2. Raspberry Pi 3A+: This is the controller we will use for our robot. It provides an 
excellent compromise on size and power. It is fully capable of visual processing 
through a camera. It's not quite as fast as the 4B+, but definitely quick enough  
for our purposes.
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3. Raspberry Pi Zero W: This is an inexpensive, lighter alternative to the other 
Raspberry Pi models. Cameras and speakers are still supported. The Zero WH 
model includes headers for I/O too. It performs speech and visual recognition 
slower than on a Raspberry Pi 3 and 4. Their small size makes them an interesting 
option for a remote-control pad too.

Now that we know each of the models, let's compare their pros and cons:

The Raspberry Pi 4B may be the most powerful, but the 3A+ is powerful enough to be 
responsive to all the activities here. 

Planning components and code structure
You've now briefly seen some components you might use in a robot, and you've 
encountered a block diagram to put them together. This is where you may start taking the 
next step and thinking further about how to connect things, and how the code you write 
for them will be structured. 

Code is easier to reason about when taken as logical blocks instead of one large lump. 
Arranging code in ways that are similar to a hardware functionality diagram will help 
navigate your way around as it becomes more complicated.
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So, let's return to the robot block diagram in Figure 2.3 to think about what we'll need 
to handle in our code for it. That diagram has three sensors and two outputs. Each 
component (sensor, output, and controller board) may need some code to deal with it,  
and then you need some code for the behavior of combined modules.

Motor controllers come in many flavors. They have different ways to output to motors, and 
they may have monitoring for battery levels. Some smart motor controllers interface with 
wheel encoders directly to ensure the wheels have traveled a specified amount. When we 
write behavior for a robot, we may not want to rewrite it if we change the motor controller. 
Mixing the direct motor controller code with the behavior code also makes it harder to 
reason about. For this, I recommend creating an interface layer, an abstraction between 
the real motor controller code and a standard interface, which will make swapping 
components possible. We will see this in practice in Chapter 7, Drive and Turn – Moving 
Motors with Python.

This is similar for each sensor. They will have some code to manage how they get signals 
and turn them into usable data. All these devices may have setup and teardown code that 
needs to run when starting or stopping behavior that connects to them. The camera is a 
sophisticated example of this, requiring processing to get the data values we can use to 
perform a task:

Figure 2.13 – A quick software block diagram, in pen on an envelope,  
and the same diagram using a computer

Just like the hardware, a simple diagram can represent the software. This can be made 
in a drawing program or sketched on any paper you have to hand. In Figure 2.13, I've 
deliberately chosen a hand-drawn one so you don't feel that you need a drawing tool to 
do this. This won't be tidy, but it's quickly redrawn, and can even be done on the back of 
receipt paper if an idea comes to you while out dining. What is relevant here is the fact 
that if you use a pencil, go back over it in a pen or fine liner so that it doesn't fade. To 
make it clearer to the reader, I have made a computer drawing too, but don't feel you  
need to do this.
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Tip
Scan your hand-drawn documents. If you have a scanner, or just a phone, I 
recommend scanning or getting a photo of your sketches, for later reference. 
Putting them into software such as Evernote or OneNote as images/PDFs with 
useful tags lets you look them up quickly later.

After making a hand-drawn sketch, you can use a software tool. This will take longer than 
a hand-drawn version, and try not to be distracted by the quirks and styling of a tool. 

In terms of the design itself, this is still a very simplistic view. The Wheels box will be a 
block of code, dealing with asking the wheel motor controller to do things. This may sit  
on top of code written by the motor controller company, or use I/O pins connected to  
the controller. 

Distance sensors are blocks of code to read distances from the sensors, triggering them 
when necessary. We will look at two different kinds of sensors and compare them. By 
having a block of code like this, changing the sensors at this level means the other code 
won't have to change.

There is also a block of code for the Camera, doing fiddly stuff like setting it up, 
resolution, white balancing, and other parts that we will cover. On top of this is a layer that 
will use the camera images. That layer could get the position of a colored object, returning 
this position to the layer above.

Across the motors and distance sensors is a behavior layer that allows the robot to avoid 
collisions, perhaps when it is below a threshold on one side. This will override other 
behavior to turn away from that obstacle and drive off a bit.

The top layer is another behavior that takes positional data from the Get Object Position 
code. Use this position to choose a direction, and then instruct the motors to drive to 
the object. If this behavior goes through the Avoid Collisions behavior, there could be 
a complicated interaction that leads the robot to seek the correct object, while avoiding 
obstacles and going around things. It will also not come close enough to the detected 
object to collide with it.

Each module is relatively simple, perhaps with the lower layers that are closer to the 
hardware being more complex, especially in the case of the camera.
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Breaking the code down into blocks like these means that you can approach a single block 
at a time, test, and tweak its behavior, and then focus on another one. When you have 
written blocks like this, you can reuse them. You will likely need the motor code multiple 
times and now will not need to write it multiple times.

Using blocks to describe our software lets us implement the blocks and their interactions 
in different ways. We can consider whether we will use functions, classes, or services for 
these blocks. I will spend more time on this as we start writing the code for this and show 
the different approaches.

Planning the physical robot
Let's now put all of this to use and plan the layout of the physical parts of robot that we are 
making in this book. While we go through chapters, we will be adding new components 
each time, and keeping an overall map in our minds as we go helps us to see where we are. 
It is quite exciting to start to picture all the things a robot will do. Let's start with a list of 
what our robot will do and be:

• It will have wheels and be able to drive around the floor.

• It will have a Raspberry Pi 3A+ controller.

• It will have a motor controller for the wheels.

• It will be able to indicate its status with a set of multicolored LEDs.

• The robot will use a pair of servo motors for a pan and tilt mechanism.

• It will be able to avoid walls and navigate around obstacles with either ultrasonic or 
laser distance sensors.

• It will have an encoder per wheel to know how far it has moved.

• The robot will use a camera to sense colored objects or faces.

• It will be able to follow lines with the camera.

• The robot will have a microphone and speaker to work with voice commands.

• It will have a gamepad as a remote control.

• It will need power for all of these things.
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Phew! That is a lot of functionality. Now, we need to draw the hardware blocks. Figure 2.14 
shows our block diagram. While done with Draw.io, a simple back-of-an-envelope sketch 
of a block diagram is an excellent start to robot planning. Most of my robots start off  
that way:

Figure 2.14 – Block diagram of the robot we will build, created using the draw.io web app

Although this looks like a daunting amount of robot, we will be focusing on an area of 
functionality in each chapter and building it before moving to other areas. The annotation 
here is not any formal notation, it is just a way of merely visualizing all the parts that will 
need to be connected. Along with this, I usually sketch roughly where I would physically 
place sensors and parts with one another: 
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Figure 2.15 – An overview of how the robot could be physically laid out, created with Draw.io

The sketch in Figure 2.15 is not exhaustive, accurate, or to scale, but just an idea of where I 
want the parts to end up. Note the following things in this diagram:

• Sensors have a clear field of view, and the distance sensors are pointing out to the 
sides. I'll go into more detail in the relevant sensor chapters on why this is important.

• Encoders are placed over the wheels where they will be used.

• Heavy items, specifically batteries, should be kept low (below the center of gravity) 
to avoid a robot tipping over.

• Batteries need to be changed, so think about access to them.

• Try to keep components that are directly connected quite close to one another.

• This is a rough plan. It need not be this detailed, and this is not the test fit. Real 
dimensions, design compromises, and hitches will mean that this will change.  
This is just a starting point.

As we work through the book, we will look at the details in these diagrams, and start to 
flesh out the real robot, making some of this less fuzzy. Any diagram like this, at the start 
of a project, should be taken as a bit rough. It is not to scale and should not be followed 
blindly. It is a guide, or a quick map from which to start working.
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Summary
In this chapter, you've been able to see a number of the different component parts that go 
into a robot, and through a block diagram as a plan, start to visualize how you'd combine 
those blocks to make a whole robot. You've seen how you can quickly sketch your robot 
ideas on an envelope, and that drawing tools on a computer can be used for a neater 
version of the same diagram. You've had a quick tour of motors, sensors, and controllers, 
along with a few ways, including analog, digital, PWM, and data buses, for controllers to 
communicate with the other devices connected to them. Following on from this, you've 
seen a plan of the robot we will build in this book. 

In the next chapter, we will look at Raspbian, the operating system used on the Raspberry 
Pi in our robot, and start configuring it.

Exercise
1. Try creating a block diagram for a different robot, thinking about inputs, outputs, 

and controllers.

2. Are the Raspberry Pi 4B and 3A+ still the most recent versions? Would you use 
another model, and what would be the trade-offs? 

3. What are the drawbacks of the laser ranging sensor versus the ultrasonic  
distance sensor?

4. Try drawing an approximate physical layout diagram for a different type of robot 
with a different controller.

Further reading
• Raspberry Pi Sensors, Rushi Gajjar, Packt Publishing: Learn to integrate sensors into 

your Raspberry Pi projects and let your powerful microcomputer interact with the 
physical world.

• Make Sensors: A Hands-On Primer for Monitoring the Real World with Arduino  
and Raspberry Pi, Tero Karvinen, Kimmo Karvinen, Ville Valtokari, Maker Media, 
Inc.: Learn to use sensors to connect a Raspberry Pi or Arduino controller with  
the real world.

• Make: Electronics: Learning Through Discovery, Charles Platt, Make Community, 
LLC: This is a useful resource if you want to find out more about electronic 
components and dive deeper into the individual components.
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Exploring the 
Raspberry Pi

In the previous chapter, we saw the Raspberry Pi in the deconstruction of a robot. It's no 
surprise, then, that we'll build a robot using the Raspberry Pi.

In this chapter, we will be using the Raspberry Pi 3A+ as a controller. We'll look at 
various options when examining this choice, and look at features such as the connections 
on the Raspberry Pi and how we will use them to understand our decision. We'll move 
on to exploring Raspberry Pi OS, and will finish by preparing the OS for use on the 
Raspberry Pi.

The following topics will be covered in this chapter:

• Exploring the Raspberry Pi's capabilities

• Choosing the connections

• What is Raspberry Pi OS?

• Preparing an SD card with Raspberry Pi OS
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Technical requirements
For this chapter, you will need the following:

• A Micro SD card storing 16 GB or more

• A Raspberry Pi 3A+

• A Windows, Linux, or macOS computer or laptop connected to the internet and 
able to read/write to SD cards

Check out the following video to see the code in action: https://bit.ly/3bBJQt9.

Exploring the Raspberry Pi's capabilities
As we saw in Chapter 2, Exploring Robot Building Blocks – Code and Electronics, the 
controllers used for a robot can be one of the most critical choices you make. This will 
determine what kinds of inputs and outputs you have, what the power requirements of 
your electronics will be, what types of sensors you will be able to use, and what code you 
will run. Changing a controller could mean rewriting the code, redesigning where the 
controller would fit, and changing the power requirements.

The Raspberry Pi is a range of small computers designed for use in education. Having I/O 
pins for connecting it to custom hardware, while being a complete computer, makes it a 
favorite of makers (a term for people who like to make things for a hobby, like robots and 
gadgets). This is helped by the relatively cheap cost and small size of a microcontroller 
compared to standard computing devices. All Raspberry Pi models have abilities 
including attaching a camera, display, and keyboard, as well as some kind of networking.

Speed and power
The Raspberry Pi is powerful enough to handle some visual processing tasks, such as 
facial recognition and tracking objects, with later models being able to perform this faster. 
The same can be said for voice recognition tasks too. It is for this reason that the faster 4B, 
3B+, and 3A+ models are recommended. The Zero and Zero W models are much slower, 
and although the system will still work, the speed may be frustrating.

The Raspberry Pi is a Single-Board Computer (SBC) that is powerful enough to run a 
complete computer OS, specifically versions of Linux. We will explore this in the What is 
Raspberry Pi OS? section, but this allows us to use Python to perform visual processing 
and voice processing using libraries and tools that are well maintained by others. 
Microcontrollers, such as the Arduino, Esp8266, and micro:bit, simply do not have  
the capabilities to perform these tasks.

https://bit.ly/3bBJQt9
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Some alternative SBCs that are usable as controllers run Linux, such as the BeagleBone, 
CHIP, OnionIoT, and Gumstix Linux computers, but these are either more costly than 
the Raspberry Pi or less capable. Only some come with camera integration. Although 
the BeagleBone has superior analog IO connectivity, the Raspberry Pi 3A+ is more of an 
all-rounder and has many options to extend it.

Connectivity and networking
The Raspberry Pi 3A+ comes with USB ports and HDMI ports too. We don't plan on 
using them in this book, although they are handy for debugging if things go wrong 
and you lose contact with a robot. With that in mind, having an additional screen and 
keyboard available is recommended.

The Raspberry Pi 4, 3, and Zero W series all have Wi-Fi and Bluetooth onboard. 
Throughout this book, we will be using Wi-Fi to connect to the robot, so we recommend 
a model that has this. Wi-Fi can be used to program the robot, drive it, and start code 
running on it.

The Raspberry Pi has I/O pins to allow you to connect it to the sensors. In the Raspberry 
Pi 3A+, the General Purpose Input/Output (GPIO) connections are ready to use, due to 
having the pins (known as headers) already soldered in place. The Raspberry Pi Zero and 
Zero W models come without the headers attached. The first Raspberry Pi boards also had 
different I/O connectors. These reasons make the 3 and 4 series Raspberry Pi the best choice.

Picking the Raspberry Pi 3A+
Putting all this together, the Raspberry Pi 3A+ is a complete computer. The following list 
of features meets all our needs:

• I/O

• A connector for a camera

• Capable of visual and speech processing

• Onboard Wi-Fi and Bluetooth

• Runs Python code

• Pre-soldered headers ready for connecting to robot devices

• Small and relatively cheap

In addition to this, the 3A+ has a quad-core ARM-based CPU running at 1.4 GHz, which 
will be enough for our use case. Later Raspberry Pi versions may supersede this model 
with faster processing and additional capabilities.
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Choosing the connections
When building the robot, we will use a subset of the connections the Raspberry Pi has 
to offer. Let's take a look at what those connections are and how we will use them. As we 
connect sensors and parts to the Raspberry Pi, we will cover the connections in detail, so 
do not feel like you need to memorize these now. However, the following pin diagram can 
serve as a reference for these connections.

In Figure 3.1, the highlighted areas show the connections in use:

Figure 3.1 – Raspberry Pi connections

First, we will be using the power connector, labeled Power In and located at the bottom 
left of the diagram. This plugs in via a micro-USB connector similar to that on many 
phones. We will use this while learning to go headless, and this is one of the options for 
powering a robot. We can plug USB battery packs into this port if they can provide the 
correct amount of power. Raspberry Pi recommends 2.5 A power supplies, although 
anything over 2 A will usually suffice.

The lower-middle highlighted port is the camera (Camera Serial Interface (CSI)) port; 
this is for the Pi camera, which we will attach when preparing to do visual processing.
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We will be using the Micro SD card slot under the Raspberry Pi to run our code. We will 
not be using Ethernet or HDMI, as we will be talking to the Raspberry Pi via Wi-Fi. The 
large connector across the top of Figure 3.1 is the GPIO port:

Figure 3.2 – The Raspberry Pi GPIO port (B+, 2, 3, 3B+, Zero, and Zero W)

Figure 3.2 shows a close-up of the GPIO port with the names and uses of some of the pins. 
This is where we will connect most of our sensors and motors. External devices can be 
attached to SPI, I2C, Serial, and I2S data buses, or to digital I/O pins.

Power pins
The 5 V and 3.3 V pins are used for power, along with the pins marked GND. GND is an 
abbreviation of ground, which is the equivalent of a minus terminal on a battery or power 
supply. The 5 V pin can be used to supply the Pi with power from batteries. 5 V and 3.3 V 
can be used to supply small electronics or sensors.

Data buses
SPI, I2C, and Serial are used to send control and sensor data between a controller and 
smart devices. I2S is used to carry encoded digital audio signals (PCM) to and from the 
Raspberry Pi. The ports for these data buses can be enabled through configuration, or the 
pins can be used as general digital pins when the data buses are turned off.

The pins marked SDA and SCL are an I2C data bus. We use this for sensors and motor 
control boards. Instructions are sent over this port.

Pins 9, 10, and 11 form the SPI port, which we use to drive RGB LEDs.
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Although there is an audio port on the Raspberry Pi, this is not really suitable for driving 
a speaker, so we will be using the I2S pins on the GPIO port for this. The I2S pins are 18, 
19, 20, and 21. As they also have pins for audio input, we use this for voice processing.

General IO
The other pins that are numbered, without a specific word or shading type, are  
general-purpose I/O pins. General I/O pins are used for digital inputs and outputs with 
servo motors, encoders, and ultrasonic sensors.

Important note
Why are the numbers mixed up? The numbers used in most Raspberry Pi 
documentation are BCM numbers, which correspond to pins on the main 
Broadcom chip. Use Figure 3.2 for reference.

Raspberry Pi HATs
Raspberry Pi HATs (also named Bonnets) are circuit boards designed to plug into the GPIO 
header and conveniently connect the Raspberry Pi to devices such as motors or sensors.

Some boards carry through GPIO pins for further boards/connections to use them, and 
others will need extender boards to gain access to the pins.

HATs use GPIO pins for different purposes; for example, audio HATs will use the I2S 
pins for audio interfacing, but some motor controller HATs use the same pins to control 
motors instead. Using these HATs together can be problematic, so be aware of this when 
using multiple HATs or specific buses. We will explore this more in Chapter 6, Building 
Robot Basics – Wheels, Power, and Wiring, when we choose a motor controller.

What is Raspberry Pi OS?
Raspberry Pi OS is the choice of software we use to drive the Raspberry Pi, an OS that our 
code will run in. It is the Raspberry Pi Foundation's official OS and comes with software 
prepared to make working with the Raspberry Pi easier. Raspberry Pi OS can support a 
full desktop or a minimal command line and network-only system.

Raspberry Pi OS is based on the Debian Linux distribution. Debian is a collection of 
software set up to run together, giving lots of functionality and many possibilities. Linux 
distributions like this are the basis of many internet servers, mobile phones, and other 
devices. The OS's software is optimized for the Raspberry Pi hardware, namely the kernel 
and drivers, which are made specifically for it. It also has some neat ways to configure the 
specialized features that Raspberry Pi users might need.
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We will use it in a more minimal way than a desktop, forgoing the keyboard, mouse, and 
monitor support. This minimal version is known as Raspberry Pi OS Lite because it is 
a much smaller download when desktop software is not required, and it uses less space 
on the micro SD card. Not running a window manager frees up memory and uses less 
of the processing power of the Raspberry Pi, keeping it free for activities such as visual 
processing. We will extend Raspberry Pi OS Lite with the software and tools we will use to 
program our robot.

As you work through the book, you will mostly interact with the robot through code and 
the command line. Linux and Raspberry Pi OS are written with command-line usage over 
a network in mind, which is a good fit for the headless nature of programming a robot.

We use Linux's strong support for the Python programming language and the network 
tools that Linux provides. Raspberry Pi OS is widely used in the Raspberry Pi community 
and is among the easiest to find answers for when help is needed. It is not the only OS for 
the Pi, but it is the most useful choice for someone starting on the Raspberry Pi.

Preparing an SD card with Raspberry Pi OS
To use Raspberry Pi OS on a Raspberry Pi, you need to put the software onto a micro SD 
card in a way that means the Raspberry Pi can load it.

Raspberry Pi has created the Raspberry Pi Imager to put software onto an SD card. Let's 
download it and get the right image on our card:

1. Visit the Raspberry Pi software downloads page at raspberrypi.org/software, 
and select the Download for button for your computer, as shown in the following 
screenshot: 

Figure 3.3 – Downloading the Raspberry Pi Imager

http://raspberrypi.org/software
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Figure 3.3 shows what this will look like; it should highlight the correct download 
button for your computer.

2. Install this using the instructions from Raspberry Pi.

3. Insert your micro SD card into the correct port on your laptop. You may need  
an adaptor.

4. Launch the Imager. We'll start here by choosing the OS. Select the CHOOSE  
OS button:

Figure 3.4 – The CHOOSE OS button
Figure 3.4 shows the CHOOSE OS button, found in the lower right of the  
Imager screen.

5. When you select this button, it will bring up a list of OSes to flash on the card:

 

Figure 3.5 – The OS list
Figure 3.5 shows the list of OSes offered by the image. Choose Raspberry Pi  
OS (other).

6. Under the other menu, there is a further selection of Raspberry Pi OS flavors:

 

Figure 3.6 – The Raspberry Pi OS selection screen
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Because we are trying to keep things minimal, select Raspberry Pi OS Lite (32-bit) 
from this menu.

7. You should now click CHOOSE SD CARD:

 

Figure 3.7 – Choosing an SD card

8. This will pop up a list of SD cards, which should show the card you are using:

Figure 3.8 – The SD card selection
Select this to continue.

9. You are now ready to write this. Click the WRITE button:

Figure 3.9 – The WRITE button

10. It will ask you if you are sure here; click YES to continue. It will take some time to 
download and write the image.

You can load this onto a Raspberry Pi with a screen and keyboard, but before we can use 
this Raspberry Pi for a robot, we'll make changes to the SD card on your computer in the 
next chapter.
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Summary
In this chapter, you've seen more of what the Raspberry Pi is, and which connections on 
the Raspberry Pi we will use.

We've learned about the Raspberry Pi OS, which is derived from Linux, how to download 
it, and how to put this software onto a micro SD card for use in the Raspberry Pi.

In the next chapter, we will make this card headless so that we do not need a screen, 
keyboard, or mouse to use this Raspberry Pi and contact it from our computer.

Assessment
1. I've recommended a Raspberry Pi 3A+. There are likely to be new models of the 

Raspberry Pi not considered. What would be their trade-offs? Think about cost, 
size, power consumption, and computing speed.

2. Try other Raspberry Pi OS or Raspberry Pi distributions; some will need a  
keyboard and mouse. Be sure to return to Raspberry Pi OS Lite before carrying  
on in the book.

3. I've mentioned the camera (CSI) connector, power, and GPIO ports. Take a look at 
the other ports on the Raspberry Pi, and perhaps see what they can be used for.

Further reading
Refer to the following links:

• The Raspberry Pi Foundation guide to installing Raspberry Pi operating systems: 
https://www.raspberrypi.org/documentation/installation/
installing-images/README.md.

• Raspberry Pi By Example, Ashwin Pajankar and Arush Kakkar, Packt Publishing, 
which has a section on alternative OSes for a Raspberry Pi, along with many 
exciting Raspberry Pi projects.

• Raspberry Pi GPIO pinout (https://pinout.xyz/): This describes how 
different boards are connected to the Raspberry Pi in terms of the pins they actually 
use. It's useful to know that most boards only use a subset of these pins.

https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://pinout.xyz/
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Preparing a 

Headless Raspberry 
Pi for a Robot

In this chapter, you will learn why the Raspberry Pi controller on a robot should be 
wireless and headless, what headless means, and why it's useful in robotics. You will see 
how to set up a Raspberry Pi directly as a headless device, and how to connect to this 
Raspberry Pi once on the network, and then send your first instructions to it. By the end 
of the chapter, you will have your own ready-to-use Raspberry Pi without needing to 
connect a screen, keyboard, or wired network to it, so it can be mobile in a robot.

We'll cover the following topics in this chapter:

• What is a headless system and why is it useful in a robot?

• Setting up Wi-Fi on the Raspberry Pi and enabling SSH

• Finding your Raspberry Pi on the network

• Using PuTTY or SSH to connect to your Raspberry Pi

• Configuring Raspberry Pi OS
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Technical requirements
To complete the exercises in this chapter, you will require the following:

• A Raspberry Pi, preferably a 3A+ (but a Pi 3 or 4 will do)

• A USB power supply capable of 2.1 amps with a Micro-USB cable

• The MicroSD card you prepared in the previous chapter

• A Windows, Linux, or macOS computer connected to the internet and able to read/
write to SD cards

• A text editor on your computer – VS Code is a suitable multiplatform option

• PuTTY software on Windows (SSH software is already available on Mac and  
Linux desktops)

The GitHub link for the code is as follows:

https://github.com/PacktPublishing/Learn-Robotics-Programming-
Second-Edition/tree/master/chapter4

Check out the following video to see the Code in Action: https://bit.ly/3bErI1I

What is a headless system, and why is it useful 
in a robot?
A headless system is a computer designed to be operated from another computer via  
a network, at times or in places where keyboard, screen, and mouse access to a device  
is inconvenient. Headless access is used for server systems, for building robots and  
making gadgets:

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter4
https://bit.ly/3bErI1I
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Figure 4.1 – A Raspberry Pi tethered to a screen, keyboard, and mouse

Figure 4.1 shows a system with a head where a user can sit in front of the device. You need 
to attach a screen, keyboard, and mouse to your robot, and hence it is not very mobile. 
You may be able to attach/detach them as required, but this is also inconvenient. There are 
portable systems designed to dock with Raspberry Pis like this, but when a robot moves, 
you'll need to disconnect it or move with the robot.

At some events, I have seen robots with tiny onboard screens, controlled by a wireless 
keyboard and mouse. However, in this book, we use a robot as a headless device:

Figure 4.2 – A Raspberry Pi on a robot in a headless configuration
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The Raspberry Pi in Figure 4.2 is mounted on a robot as a headless device. This Raspberry 
Pi is not weighed down by a screen and keyboard; those are handled by another computer. 
Code, instructions, and information is sent to and from the Raspberry Pi via a wireless 
network from a laptop. Many code examples run autonomously, and the computer can 
start/stop these. We add indicator LEDs in Chapter 9, Programming RGB Strips in Python. 
We also show you how to use a mobile phone to drive the robot in Chapter 17, Controlling 
the Robot with a Phone and Python. The phone can start and stop autonomous behaviors, 
view the robot's status, or just drive it without needing to hook up the laptop at all. This 
Raspberry Pi is free from the screen and keyboard.

Tip
Although you won't usually need a screen and keyboard, it is worth having 
these around in case you lose contact with the Raspberry Pi, and it refuses to 
respond via the network. You can then use a screen and keyboard to connect to 
it and see what is going on.

For our headless access to the Raspberry Pi, we will be using a Secure Shell (SSH). SSH 
gives you a command line to send instructions to the Pi and a file transfer system to put 
files onto it.

Making a Pi headless makes it free to roam around. It keeps a robot light by not needing 
to carry or power a screen and keyboard. Being headless makes a robot smaller since 
a monitor and keyboard are bulky. It also encourages you, the maker, to think about 
autonomous behavior since you can't always type commands to the robot.

Setting up Wi-Fi on the Raspberry Pi and 
enabling SSH
Now you've seen what you get with a headless system, let's modify the SD card so the 
Raspberry Pi starts up ready to use as a headless device. We need to set up Wi-Fi first:

1. Remove and reinsert the MicroSD card we made earlier into your computer so that 
the computer can recognize the new state of the drive. 

2. Now you will see the card shows up as two disk drives. One of the drives is called 
boot; Windows will ask whether you want to format the other drive. Click Cancel 
when Windows asks you. This part of the SD card holds a Linux-specific filesystem 
that Windows cannot read. 
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3. Now, in boot, create two files as follows. I suggest using an editor such as VSCode 
for plain text files, seeing file extensions, and making empty files:

• ssh: An empty file with no extension.

• wpa_supplicant.conf: This file contains your Wi-Fi network configuration as 
shown here:

country=GB
update_config=1
ctrl_interface=/var/run/wpa_supplicant

network={
  ssid="<your network ssid>"
  psk="<your network password>"
}

Let's go over this file line by line:

The first line must specify an ISO/IEC alpha2 country code. You can find the 
appropriate country code for your location at https://datahub.io/core/
country-list. The Wi-Fi adapter will be disabled by Raspberry Pi OS if this is 
not present. In my case, I am in Great Britain, so my country code is GB.

The next two lines allow other tools to update the configuration.

The last 4 lines of the file define the Wi-Fi network your robot and Raspberry Pi  
will connect to. Use your own network details instead of the placeholders here.  
The Pre-Shared Key (PSK) is also known as the Wi-Fi password. These should be 
the same details you use to connect your laptop or phone to your Wi-Fi network.  
I recommend keeping a copy of the wpa_supplicant.conf file on your 
computer to use on other Raspberry Pi SD cards.

Important note
The ssh file must have no extension. It must not be ssh.txt or some  
other variation.

4. Eject the MicroSD card. Remember to use the menus to do so. This ensures that the 
files are entirely written before removing it.

5. Now, with these two files in place, you can use the MicroSD card to boot the 
Raspberry Pi. Plug the MicroSD card into the slot on the underside of the Raspberry 
Pi. It only fits into the slot in the correct orientation. 

https://datahub.io/core/country-list
https://datahub.io/core/country-list
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6. Finally, plug a Micro-USB cable into the side of the Raspberry Pi and connect it to a 
power supply. You should see lights blinking to show it is starting.

Important note
For a Raspberry Pi, you need a power supply providing at least 2.1 amps. 

Your Raspberry Pi headless system has now been set up. With this, we have taken a  
major step toward being mobile. Now we'll need to go find it on our network so we  
can connect to it.

Finding your Pi on the network
Assuming your SSID and PSK are correct, your Raspberry Pi is now registered on your 
Wi-Fi network. However, now you need to find it. The Raspberry Pi uses dynamic 
addresses (DHCP). Every time you connect it to your network, it may get a different 
address. Visiting the admin page on your Wi-Fi router and writing down the IP address 
works in the short term. Doing that every time the address changes is frustrating, and may 
not be available in some situations.

Luckily, the Raspberry Pi uses a technology known as mDNS (Multicast Domain 
Name System), so nearby computers can find it. A client computer will broadcast a local 
message to ask for devices with the name raspberrypi.local, and the Raspberry Pi 
will respond with the address to find it. This is also known by the names Zeroconf and 
Bonjour. So, the first thing you'll need to do is ensure your computer can do this. 

If you are using macOS, your computer will already be running the Bonjour software, 
which is already mDNS capable. Also, Ubuntu and Fedora desktop versions have had 
mDNS compatibility for a long time. On other Linux desktops, you will need to find their 
instructions for Zeroconf or Avahi. Many recent ones have this enabled by default.

But if you are using Windows, you will need the Bonjour software. So let's see how to set  
it up.

Setting up Bonjour for Microsoft Windows
If you have installed a recent version of Skype or iTunes, you will have this software. 
You can use this guide to check that it is already present and enable it: https://
smallbusiness.chron.com/enable-bonjour-65245.html.

https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
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You can check whether it is already working with the following command in  
Command Prompt:

C:\Users\danny>ping raspberrypi.local

If you see this, you have Bonjour installed already:

PING raspberrypi.local (192.168.0.53) 56(84) bytes of data.
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=1 ttl=64 
time=0.113 ms
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=2 ttl=64 
time=0.079 ms

If you see this, you'll need to install it:

Ping request could not find host raspberrypi.local. Please 
check the name and try again.

To do so, browse to the Apple Bonjour For Windows site at https://support.
apple.com/downloads/bonjour_for_windows and download it, then install 
Download Bonjour Print Services for Windows. Once this has run, Windows will be 
able to ask for mDNS devices by name.

Testing the setup
The Raspberry Pi's green light should have stopped blinking, and only a red power  
light should be visible. This indicates that the Pi has finished booting and has connected  
to the network.

In Windows, summon a command line by pressing the Windows key and type CMD in the 
windows search bar. In Linux or macOS, open Terminal. From Terminal, we will try to 
ping the Raspberry Pi, that is, find the Pi on the network and send a short message to get 
a response:

ping raspberrypi.local

If everything has gone right, the computer will show that it has connected to the Pi:

$ ping raspberrypi.local
PING raspberrypi.local (192.168.0.53) 56(84) bytes of data.
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=1 ttl=64 
time=0.113 ms

https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
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64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=2 ttl=64 
time=0.079 ms
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=3 ttl=64 
time=0.060 ms
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=4 ttl=64 
time=0.047 ms

What if you cannot reach the Raspberry Pi? In the next section, we'll try some 
troubleshooting steps.

Troubleshooting
If the Raspberry Pi does not appear to be responding to the ping operation, these are some 
steps you can take to try to diagnose and remedy the situation. Try the following:

1. Double-check your connections. You should have seen a few blinks of the green 
light and a persistent red light. If not, unplug the power, ensure that the SD card  
is seated firmly and that the power supply can give 2.1 amps, then try again.

2. Use your Wi-Fi access point settings with the Raspberry Pi booted and see if it has 
taken an IP address there.

3. If you find the Raspberry Pi on your Wi-Fi router, this may mean that mDNS is 
not running on your computer correctly. If you have not installed it, please go back 
and do so. On Windows, the different versions of Bonjour print services, Bonjour 
from Skype, and Bonjour from iTunes can conflict if installed together. Use the 
Windows add/remove functions to see whether there is more than one and remove 
all Bonjour instances, then install the official one again.

4. Next, turn the power off, take out the SD card, place this back into your computer, 
and double-check that the wpa_supplicant.conf file is present and has the 
correct Wi-Fi details and country code. The most common errors in this file are  
the following: 

a) Incorrect Wi-Fi details

b) Missing quotes or missing/incorrect punctuation

c) An incorrect or missing country code

d) Keywords being in the wrong case (keywords should be lowercase, country code 
in uppercase)
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5. The SSH file is removed when the Raspberry Pi starts. If you are sure it was there 
and has been removed, this means the Pi actually booted.

6. Finally, you may need to boot the Pi with a screen and keyboard connected, and 
attempt to diagnose the issue. The display will tell you whether there are other  
issues with wpa_supplicant.conf or other problems. Use the screen text and 
search the web for answers. I cannot reproduce all those here, as there are many 
kinds of problems that could occur here. I also recommend asking on Twitter using 
the tag #raspberrypi, on Stack Overflow, or in the Raspberry Pi Forums at 
https://www.raspberrypi.org/forums/.

We have now verified that our Pi is connected to the network, troubleshooting issues 
along the way. We've been able to find it with ping. Now we know it is there, let's  
connect to it.

Using PuTTY or SSH to connect to your 
Raspberry Pi
Earlier, we added a file to our Raspberry Pi boot named ssh. This activates the 
SSH service on the Pi. As mentioned before, SSH is an abbreviation for secure shell, 
intended for secure network access. In this case, we are not specifically targeting the 
secure encryption capabilities, but are using the remote networking capability to send 
instructions and files to and from the Raspberry Pi without having physical access to it.

Important note
If you already use an SSH client, note that not all of the Windows command-
line SSH clients support mDNS.

PuTTY is a handy tool for accessing SSH and is available for Windows, Linux, and Mac. 
Its installation information for these operating systems can be found at https://www.
ssh.com/ssh/putty/. 

https://www.raspberrypi.org/forums/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
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Once you have PuTTY installed from the preceding link, let's get it connected to your 
Raspberry Pi. Follow along:

1. Start PuTTY. You will see a screen like in Figure 4.3. In the Host Name (or IP 
address) box, type raspberrypi.local and click Open to log in to your Pi:

Figure 4.3 – Connecting to the Pi

2. The first time you do this, PuTTY displays a security warning asking you to add  
the Pi's key if you trust it. Click Yes; it only asks you this again if another device 
with the same hostname (for example, a fresh Raspberry Pi) shows up with a 
different key.
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3. When you see the Login as prompt, type pi, press Enter, and use the password 
raspberry. You'll now see something like Figure 4.4, showing that you have 
connected to the Pi:

Figure 4.4 – Successfully connected

In this section, you've used PuTTY or your preferred SSH client to connect to the 
Raspberry Pi, setting you up to configure it, send commands to it, and interact with it. 
Next, we'll see how to configure it.

Configuring Raspberry Pi OS
Now we are connected, let's do a few things to prepare the Raspberry Pi for use, such as 
changing the user password and changing the hostname to make the Pi more secure.

We can perform many of these tasks with the raspi-config tool, a menu system to 
perform configuration tasks on Raspberry Pi OS. We start it with another tool, sudo, 
which runs raspi-config as root, a master user. Refer to the following command:

sudo raspi-config
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The raspi-config interface will appear, as shown in Figure 4.5:

Figure 4.5 – The raspi-config tool

Now we've accessed raspi-config, we can use it to change some of the settings on the 
Raspberry Pi.

Renaming your Pi
Every fresh Raspberry Pi image is called raspberrypi. If there is more than one of those in 
a room, your computer will not be able to find yours. It's time to think of a name. For now, 
we'll use myrobot, but I am sure you can think of something better. You can change this 
later too. It can be letters, numbers, and dash characters only. Use the following steps:

1. In raspi-config, select Network Options, shown in Figure 4.6. Use the arrow 
keys on your keyboard to highlight and press Enter to select the entry:
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Figure 4.6 – Network options

2. Now select Hostname as shown in Figure 4.7:

Figure 4.7 – Change the hostname

3. You should be on a screen waiting for hostname input. Type in a name for your 
robot (I called mine myrobot), then press Enter to set it. Please be more inventive 
than my name.
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You have now named your robot, which will be more important if you have other 
Raspberry Pis but also gives the robot a little character. Let's also change the password  
to something a bit less generic.

Securing your Pi (a little bit)
Right now, your Raspberry Pi has the same password as every other Raspberry Pi fresh 
from an image. It's recommended you change it. Perform the following steps:

1. In the top menu of raspi-config, select Change User Password (Figure 4.8):

Figure 4.8 – Changing the password

2. Type a new password for your robot – something you will remember, more unique 
than raspberry. It should not be anything you've used for something sensitive 
such as email or banking.

Changing the password personalizes the Raspberry Pi on your robot, and also drastically 
reduces the likelihood of someone else connecting to your robot and ruining your hard 
work. Now we've made configuration changes, we need to restart the Raspberry Pi for 
them to take effect.
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Rebooting and reconnecting
It's time to finish the configuration and restart the Pi:

1. Use the Tab button to get to the Finish item (Figure 4.9) and press Enter:

Figure 4.9 – Select Finish

2. The next screen asks whether you want to reboot the Pi. Select Yes and press  
Enter (Figure 4.10):

Figure 4.10 – Say Yes to rebooting
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The Raspberry Pi will start to reset, and the PuTTY session will be disconnected as it 
does so (Figure 4.11). Wait for a few minutes; the green activity light on the Pi should 
blink a bit and then settle down. PuTTY will tell you it has lost connection to it. The 
Pi is now shut down. The red light will stay on until you remove the power:

Figure 4.11 – PuTTY telling you the Pi connection has gone

PuTTY only sends commands to and from the robot; it does not understand that 
this command has shut down the Pi. It does not expect the connection to close.  
You and I know better, as we told the Pi to reboot. Click OK to dismiss the error.

3. Connect to it again with PuTTY using the new hostname you gave your robot  
(in my case, myrobot), with the .local ending and the fresh password,  
as shown in Figure 4.12:

Figure 4.12 – Reconnect to the Raspberry Pi

4. Now, you should be able to log in and see your prompt as pi@myrobot, or whatever 
your robot's name is, as shown in Figure 4.13:
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Figure 4.13 – Reconnected to the Raspberry Pi

We are now reconnected to the Raspberry Pi. We can try a simple Linux command to see 
how much of the SD card we are using. Linux commands are often abbreviations of things 
you want to ask the computer to do.

The df command in Figure 4.13 shows the space used in the various storage locations 
connected to your Raspberry Pi. The additional -h makes df display this in human-
readable numbers. It uses G, M, and K suffixes for gigabytes, megabytes, and kilobytes.  
Type the df -h command, as shown in the preceding screenshot, and it will show that  
/dev/root is close to the full size of the SD card, with some other devices taking up  
the rest of the space.

Updating the software on your Raspberry Pi
One last thing to do here is to ensure your Raspberry Pi has up-to-date software on it. 
This is the kind of process you start off and leave going while getting a meal, as it will take 
a while. Type the sudo apt update -y && sudo apt upgrade -y command, 
and you should see something similar to the following: 

pi@myrobot:~ $ sudo apt update – y && sudo apt upgrade -y
Hit:1 http://raspbian.raspberrypi.org/raspbian buster InRelease
Hit:2 http://archive.raspberrypi.org/debian buster InRelease
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. 

.
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following packages will be upgraded:
  bluez-firmware curl libcurl3 libcurl3-gnutls libprocps6 
pi-bluetooth procps
  raspi-config wget
9 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 1,944 kB of archives.
After this operation, 16.4 kB of additional disk space will be 
used. Get:1 http://archive.raspberrypi.org/debian buster/main 
armhf bluez-firmware all 1.2-3+rpt6 [126 kB]
.
.
.

Please let the Pi continue until it is complete here, and do not interrupt or turn the power 
off until the pi@myrobot:~ $ prompt has reappeared.

Tip
You've probably seen a pattern with sudo in a few of the commands. This 
command tells the Raspberry Pi to run the following command (such as 
raspbi-config or apt) as a root user, the Linux administrator/superuser. 
You can read it as superuser do. This is needed for software that will make 
changes to the system or perform updates. It's usually not required for user 
programs, though.

It's worth doing this update/upgrade step monthly while actively working on a project. 
With the Raspberry Pi up to date, you will be able to install additional software for the 
robot code. When the software gets stale, apt-get installations may not work. An 
update will usually solve that.
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Shutting down your Raspberry Pi
When you are done with the Pi for the session, shut it down as shown: 

pi@myrobot:~ $ sudo poweroff 

Wait for the green light activity to stop; PuTTY will detect that it has disconnected. You 
can now safely disconnect the power.

Important note
Pulling power from the Raspberry Pi when it is not expected can cause the loss 
of files and SD card corruption. You may lose your work and damage the SD 
card. Always use the correct shutdown procedure.

Summary
In this chapter, you've seen how to free a Raspberry Pi from a screen and keyboard by 
making it headless. You set up an SD card to connect to your Wi-Fi and to enable SSH so 
you could connect to it. You've used raspi-config to personalize your Pi and secure it 
with your own password. You then made the first small steps in looking around the Linux 
system it has running on it. You also ensured the Raspberry Pi is up to date and running 
the most current software. Finally, we saw how to safely put the Pi into shutdown mode, 
so that filesystem damage does not occur when you unplug it.

You have now learned how to make a Raspberry Pi headless. You have seen how to keep 
it upgraded and connected to your network and the Pi is ready to start building with. You 
can use this to build Raspberry Pi-powered gadgets, including robots.

In the next chapter, we look at ensuring you don't lose valuable code or configuration 
when things go wrong. We will learn about what can go wrong and how to use Git, SFTP, 
and SD card backups to protect our hard work.

Assessment
1. What other gadgets or projects could you build with a headless Raspberry Pi?

2. Try giving your Raspberry Pi a different hostname and connecting to this locally 
with PuTTY and mDNS.

3. Try other Linux commands on the Raspberry Pi, such as cd, ls, cat, and man.

4. Shut down the Raspberry Pi correctly after trying these.
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Further reading
Please refer to the following to get more information:

• Internet of Things with Raspberry Pi 3, Maneesh Rao, Packt Publishing: This book 
uses a wired headless Raspberry Pi for the demonstrations and experiments in it.



5
Backing Up the  

Code with Git and  
SD Card Copies

As you create and customize the code for your robot, you will invest many hours in getting 
it to do awesome things that, unless you take precautions, could all suddenly disappear. 
The programs are not the whole story, as you've already started configuring Raspberry  
Pi OS for use on the robot. You want to keep your code and config in case of disaster, and 
to be able to go back if you make changes you regret.

This chapter will help you understand how exactly code or configuration can break and 
the disasters you might face while customizing code for your robot. We'll then take a look 
at three strategies for preventing this.

In this chapter, you will learn about the following:

• Understanding how code can be broken or lost

• Strategy 1 – Keeping the code on a PC and uploading it

• Strategy 2 – Using Git to go back in time

• Strategy 3 – Making SD card backups
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Technical requirements
For this chapter, you will require the following:

• The Raspberry Pi and the SD card you prepared in the previous chapter

• The USB power supply and cable you used with the Pi

• A Windows, Linux, or macOS computer or laptop, connected to the internet and 
able to read/write to SD cards

• Software: FileZilla and Git

• On Windows: Win32DiskImager

Here is the GitHub link for the code files of this chapter:

https://github.com/PacktPublishing/Learn-Robotics-
Fundamentals-of-Robotics-Programming/tree/master/chapter5

Check out the following video to see the Code in Action: https://bit.ly/3bAm94l

Understanding how code can be broken or lost
Code and its close cousin, configuration, take time and hard work. Code needs 
configuration to run, such as Raspberry Pi OS configuration, extra software, and 
necessary data files. Both need research and learning and to be designed, made, tested, 
and debugged.

Many bad situations can lead to the loss of code. These have happened to me a week 
before taking robots to a show after weeks of work, and I learned the hard way to take  
this quite seriously. So, what can happen to your code?

SD card data loss and corruption
SD card corruption is when the data on the SD card used to hold your code, Raspberry Pi 
OS, and anything you've prepared on it gets broken. Files become unreadable, or the card 
becomes unusable. The information on the SD card can be permanently lost.

If a Raspberry Pi unexpectedly loses power, the SD card can be damaged, causing data 
loss. A hot Pi can slowly bake an SD card, damaging it. Visual processing on a Pi is one 
way it can get hot. SD cards get damaged if something terrible happens electrically to the 
Pi via the GPIO pins or its power supply. MicroSD cards are also tiny and are quickly lost 
when not in the Pi. 

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://bit.ly/3bAm94l
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Changes to the code or configuration
We all make mistakes. Coding means trying things out. While some work out, some do 
not and things break. At those times, you'll want to go back and see what you've changed. 
You might be able to use differences to find the bug, or if your experiment looks like  
a dead end, you may want to go back to a known working version.

You can also render your robot useless with the wrong configuration, such as the Pi not 
being on the network or booting anymore. An upgrade to system packages may go wrong 
and lead to code not working or needing extensive changes to the code for it to work again.

These problems can combine to cause real nightmares. I've seen changes in the code  
lead a robot to misbehave and damage itself in a way that made the SD card corrupted. 
I've been updating packages on the operating system when I knocked the power cable out, 
corrupting the SD card and breaking Raspberry Pi OS 2 weeks before a significant robot 
event, and it was painful rebuilding it. This was a lesson learned the hard way.

Back up the code and back up the SD card configuration. Over the rest of this chapter, 
we'll look at some solutions to keep your robot's software safe from many kinds of 
disasters.

Strategy 1 – Keeping the code on a PC and 
uploading it
Secure File Transfer Protocol (SFTP) lets you transfer files from a computer to a Pi. This 
strategy enables you to write code on your computer, then upload it to the Raspberry Pi. 
You can choose your editor and have the safety of more than one copy. 

Important note
But wait – which editor? Editing code requires software designed for 
this purpose. Recommendations for Python are Mu, Microsoft VS Code, 
Notepad++, and PyCharm.

SFTP uses SSH to copy files to and from the Raspberry Pi over the network. So, let's see 
how to do it:

1. First, make yourself a folder on the PC to store your robot code in; for example, 
my_robot_project.

2. Inside that folder, make a test file, using your editor, that will just print a bit of text. 
Put this code into a file named hello.py:

print("Raspberry Pi is alive")
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3. We will copy this to the robot and run it. You can make the copy using the SFTP 
tool FileZilla from https://filezilla-project.org. Download this and 
follow the installation instructions:

Figure 5.1 – FileZilla

4. Plug in and power up your Raspberry Pi. You will notice at the bottom of the  
right-hand panel (Figure 5.1), FileZilla says Not connected.

5. In the Host box, type the local hostname you gave your robot Pi in the headless 
setup, prefixed with sftp://; for example, sftp://myrobot.local.

6. In the Username box, type pi, and in the Password box, enter the password you set 
up before. 

7. Click the Quickconnect button to connect to the Raspberry Pi.

8. When connected, you'll see files on the Raspberry Pi in the right-hand Remote site 
panel, shown in Figure 5.2:

https://filezilla-project.org
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Figure 5.2 – The Raspberry Pi connected

9. Use the left-hand Local site panel to go to your code on your computer. 

10. Now click hello.py, highlighted at the top left of Figure 5.3, and drag it to the 
lower right-hand panel to put it on the Raspberry Pi:

Figure 5.3 – Transferring a file
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11. When you drag the file over, you should see it in the Queued files section, as shown 
in Figure 5.3. Since this file is small, it will only be in this queued state for an instant. 
You can also use the same system for whole folders. You'll soon see the file over in 
the remote site (the Raspberry Pi), shown on the right-hand panel in Figure 5.3. 

12. To run this code, use PuTTY to log in to the Pi and try the following command:

pi@myrobot:~ $ python3 hello.py
Raspberry Pi is alive

This strategy is a great start to making code safer. By working on your laptop/PC and 
copying to the Pi, you've guaranteed there is always one copy other than the one on the 
robot. You've also got the ability to use any code editor you like on the PC and spot some 
errors before they even get to the Raspberry Pi. Now we have a copy, let's see how we can 
track changes to our code and see what we've changed.

Strategy 2 – Using Git to go back in time
Git is a popular form of source control, a way to keep a history of changes you've made 
to code. You can go back through changes, see what they were, restore older versions, 
and keep a commented log of why you made the changes. Git also lets you store code in 
more than one location in case your hard drive fails. Git stores code and its history in 
repositories, or repos. In Git, you can make branches, copies of the whole set of code,  
to try ideas in parallel with your code, and later merge those back to the main branch. 

I will get you started, but this section can only scratch the surface of what you can do with 
Git. Let's begin:

1. Install Git, by following the instructions at https://git-scm.com/book/en/
v2/Getting-Started-Installing-Git for your computer. 

Tip
If you are using Windows or macOS, I would suggest using the GitHub app for 
easier setup. 

2. Git requires you to set your identity using a command line on your computer:

> git config --global user.name "<Your Name>"
> git config --global user.email <your email address>

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
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3. To put this project under source control, we need to initialize it and commit 
our first bit of code. Make sure you are in the folder for your code (my_robot_
project) in a command line on your computer and type the following:

> git init .
Initialized empty Git repository in C:/Users/danny/
workspace/my_robot_project/.git/
> git add hello.py
> git commit -m "Adding the starter code"
[master (root-commit) 11cc8dc] Adding the starter code
 1 file changed, 1 insertion(+)
 create mode 100644 hello.py

git init . tells Git to make the folder into a Git repository. git add tells Git 
you want to store the hello.py file in Git. git commit stores this change for 
later, with -m <message> putting a message in the journal. Git responds to show 
you it succeeded.

4. We can now see the journal with git log:

> git log
commit 11cc8dc0b880b1dd8302ddda8adf63591bf340fe (HEAD -> 
master)
Author: Your Name <your@email.com>
Date: <todays date>

Adding the starter code

5. Now modify the code in hello.py, changing it to this:

import socket
print('%s is alive!' % socket.gethostname())

If you copy this to the Pi using SFTP, this will say myrobot is alive!  
or whatever you set the hostname of your robot to be. However, we are interested in 
Git behavior. Note – more advanced Git usage could let you use Git to transfer code 
to the Raspberry Pi, but that is beyond the scope of this chapter. Let's see how this 
code is different from before: 

> git diff hello.py
diff --git a/hello.py b/hello.py
index 3eab0d8..fa3db7c 100644
--- a/hello.py
+++ b/hello.py
@@ -1 +1,2 @@
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-print("Raspberry Pi is alive")
+import socket
+print('%s is alive!' % socket.gethostname())

The preceding is Git's way of showing the differences. Git interprets the changes as 
taking away a print line, and in its place adding an import and then a print 
line. We can add this into Git to make a new version, and then use git log again 
to see both versions:

> git add hello.py
> git commit -m "Show the robot hostname"
[master 912f4de] Show the robot hostname
 1 file changed, 2 insertions(+), 1 deletion(-)
> git log
commit 912f4de3fa866ecc9d2141e855333514d9468151 (HEAD -> 
master)
Author: Your Name <your@email.com>
Date: <the time of the next commit>

Show the robot hostname

commit 11cc8dc0b880b1dd8302ddda8adf63591bf340fe (HEAD -> 
master)
Author: Your Name <your@email.com>
Date: <todays date>

Adding the starter code

With this method, you can go back to previous versions, or just compare versions, and 
protect yourself against changes you might regret. However, we have only just scratched 
the surface of the power of Git. See the reference in the Further reading section on how to 
branch, use remote services, roll back to previous versions, and find tools to browse the 
code in the Git history. 

Now we can go back and forward in time (at least for our code), we can be more  
confident in making changes. Just remember to make commits frequently – especially 
after making something work! Next, we will look at how to keep the configuration and 
installed packages.
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Strategy 3 – Making SD card backups
Git and SFTP are great for keeping code safe, but they don't help you reinstall and 
reconfigure Raspberry Pi OS on a card. The procedures for Windows, Linux, and macOS 
are quite different for this. The basic idea is to insert the SD card and use a tool to clone 
the whole card to a file known as an image, which you can restore with balenaEtcher when 
you need recovery. 

Important note
You should only restore images to cards of the same size or larger. Putting an 
image on a smaller device is likely to fail to write, creating a corrupt SD card.

Before we begin, properly shut down your Raspberry Pi, take out its SD card, and put 
that into your computer. These clean images are large, so do not put them in your Git 
repository. It's beyond the scope of this chapter, but I recommend finding a way to 
compress these files as they are mostly empty right now. In all cases, expect this operation 
to take 20-30 minutes due to the image sizes.

Windows
For Windows, we'll use Win32DiskImager. So, our first step will be to install and set this 
up. Follow along:

1. Get an installer for this at https://sourceforge.net/projects/
win32diskimager. 

2. Run this and follow the installation instructions. 

Tip
Since we will use it immediately, I suggest leaving the Launch immediately 
checkbox ticked.

https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager
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3. Highlighted on the right of Figure 5.4 is the Device; this should have automatically 
found the SD card device. Use the folder icon highlighted to choose where the 
image file will be stored:

Figure 5.4 – Win32 Disk Imager

4. In Figure 5.5, I name my image myrobot.img in the File name box. You then click 
the Open button to confirm this:

Figure 5.5 – Choose the location

5. After clicking Open, you'll see a screen like the left side of Figure 5.6 with your 
selected location in the Image File box. Click on the Read button to start copying 
the image. As it reads the image, you'll see a progress bar and an estimation of the 
time remaining. When the image is done, Win32 Disk Imager will tell you that the 
read was successful, and you can then exit the software:
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Figure 5.6 – Reading the image

You have now created a complete copy of the data on the SD card. If you have corruption 
or configuration issues, you can write this image back to an SD card to restore it to this 
point.

Mac
MacOS X has a built-in way to make SD card and disk images. This is by using the built-in 
Disk Utility tool. Let's see how this works:

1. Start the Disk Utility tool. When loaded, it should look like Figure 5.7:

Figure 5.7 – The Disk Utility tool
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2. Click the View menu to show Figure 5.8:

Figure 5.8 – The View menu

3. Now click on the Show All Devices option.

4. You should now see the screen shown in Figure 5.9. Select the device that contains  
a boot volume: 

Figure 5.9 – Disk Utility with Show All Devices enabled

5. In the menu bar, select File | New Image (Figure 5.10):

Figure 5.10 – New Image menu
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6. Under this, select Image from <your storage device> (Figure 5.11):

Figure 5.11 – Image from STORAGE DEVICE

7. Disk Utility will show a dialog (Figure 5.12). Set the file name and location, and 
Format to DVD/CD master:

Figure 5.12 – Save dialog

8. Disk Utility gives these files a .cdr extension (Figure 5.13):

Figure 5.13 – File with .cdr extension
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9. Rename this to a .iso:

Figure 5.14 – Renamed to .iso

10. You will need to confirm you want this (Figure 5.15):

Figure 5.15 – Confirm extension change

You are now able to create SD images ready to use with balenaEtcher on macOS.

Linux
Backing up SD cards is done on the command line in Linux by using the dd command. 
Before we see how this works, we will first need to find the device's location. Let's begin:

1. Insert the card and type the following to find the device's location:

$ dmesg

2. This command will output a lot of stuff, but you are interested only in a line near the 
end that looks like the following:

sd 3:0:0:0: [sdb] Attached SCSI removable disk

The card is in the square brackets, [sdb], which may be different on your 
computer. The SD card location will be /dev/<drive location>, for example, 
/dev/sdb. 
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Important note
Be careful to get the locations right, as you could destroy the contents of an 
SD card or your computer hard drive. If you are at all unsure, do not use this 
method.

3. Once you have the SD location (such as /dev/sdb or /dev/disk1), you can  
then start the clone with the dd command. This command dumps data to and  
from drives:

$ sudo dd if=/dev/sdb of=~/myrobot.img bs=32M
Password:
474+2 records in
474+2 records out
15931539456 bytes (16 GB, 15 GiB) copied, 4132.13 s, 3.9 
MB/s

The if parameter is the input file, which in this case is your SD card. The of parameter  
is the output file, the myrobot.img file you are cloning your card into.

The bs parameter is the block size, so making this large, such as 32M, will make the 
operation quicker.

You will need to type your user password for this to start. The dd command creates the 
myrobot.img file as a clone of the whole SD card in your home directory. dd will give 
no output until it is complete, and will then show you stats about the operation.

Summary
In this chapter, you have learned how to look after your code and configuration. You have 
seen how things can go wrong, and the strategies to protect your work from them. You have 
a starting point with Git, SFTP, and SD card backups that you can use together to be a bit 
more experimental and fearless about changes to your robot. You can use SFTP to edit on 
your computer, giving you at least one copy other than the code on your robot and letting 
you use powerful editors. You can use Git to go back in time, so you can wind back from 
mistakes and experiments, or just see the differences. You can use SD card backups to get a 
complete image of the storage your Raspberry Pi is using, and restore it if it goes wrong.

In the next chapter, we'll start to build a basic robot. We'll assemble the robot chassis with 
motors and wheels, determine what power systems to use, then test fit the overall shape of 
our robot. Bring a screwdriver!
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Assessment
• Try creating a file on your computer – a simple image or text. Try using SFTP to 

send it to the Raspberry Pi, then, using PuTTY, see if you can list the file with the 
ls command. The file could be a simple Python script, which you could try running 
on the Raspberry Pi.

• Make a change that is incorrect to hello.py. Use diff to see the difference. Use 
Git resources (see the Further reading section) to find out how to return this to how 
it was before the change.

• Make a backup of your Raspberry Pi SD card using the preceding instructions, 
make some changes to the data in /home/pi, then restore the image using 
balenaEtcher. You could even restore your backup to another SD card, and plug it 
into the Raspberry Pi as if it was the original.

• I recommend finding out more about how Git can be used to look after your code, 
and even as a method of getting code onto the Raspberry Pi. Use the Further reading 
section to find out more about Git, and ways to work it into your coding workflow. 
Git can be complicated, but it is a tool worth learning.

Further reading
Please refer to the following for more information:

• The Git Handbook on GitHub: https://guides.github.com/
introduction/git-handbook/. This document is a comprehensive look at 
what Git is, the problems it solves, and a starting point to using its functionality.

• Hands-On Version Control with Git: https://www.packtpub.com/
application-development/hands-version-control-git-video. 
This is a video tutorial on using Git.

• The GitHub Guides: https://guides.github.com/. A series of guides on 
getting the best out of Git and GitHub.

• GitLab Basics: https://docs.gitlab.com/ee/gitlab-basics/. GitLab 
is an excellent alternative to GitHub, with a large community and some excellent 
guides on using Git.

https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://guides.github.com/
https://docs.gitlab.com/ee/gitlab-basics/


Section 2:  
Building an Autonomous 

Robot – Connecting 
Sensors and Motors  

to a Raspberry Pi

In this section, we will build a robot and use code to get it to move. We will also connect 
sensors and motors to a controller and write code for basic autonomous behaviors.

This part of the book comprises the following chapters:

• Chapter 6, Building Robot Basics – Wheels, Power, and Wiring 

• Chapter 7, Drive and Turn – Moving Motors with Python 

• Chapter 8, Programming Distance Sensors with Python 

• Chapter 9, Programming RGB Strips in Python

• Chapter 10, Using Python to Control Servo Motors

• Chapter 11, Programming Encoders with Python

• Chapter 12, IMU Programming with Python





6
Building Robot 

Basics – Wheels, 
Power, and Wiring

In this chapter, we will start building the robot. We will choose a robot chassis kit with 
wheels and motors, a motor controller, and some power for the robot, talking through the 
trade-offs and things to avoid. We'll see how to ensure that everything fits and then build 
the robot. By the end of the chapter, you will have your basic robot structure ready.

Getting the trade-offs and plan right now gives you a robot you can build upon and 
experiment with, ensuring you know components are suitable before buying them.

In this chapter, you will learn about the following:

• Choosing a robot chassis kit

• Choosing a motor controller board

• Powering the robot

• Test fitting the robot

• Assembling the base

• Connecting the motors to the Raspberry Pi
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Technical requirements
For this chapter, you will require the following:

• A computer with access to the internet.

• The Raspberry Pi and an SD card.

• A set of screwdrivers: M2.5, M3 Phillips, and some jeweler's screwdrivers.

• A pair of long-nose pliers. Optionally, a set of miniature metric spanners.

• Some electrical tape.

• Hook and loop or Velcro tape.

• Drawing software such as app.diagrams.net, Inkscape, Visio, or similar 
software.

• Nylon standoff kits for M2.5 and M3 threads. 

• Some insulation tape.

• Four AA batteries, charged.

Important note
You will be choosing and purchasing a chassis, motor controller, and battery 
compartment in this chapter, but do not buy them yet.

Check out the following video to see the Code in Action: https://bit.ly/3oLofCg

Choosing a robot chassis kit
The chassis, like the controller, is a fundamental decision when making a robot. Although 
these can be self-made using 3D printing or toy hacking, the simplest place to start is with 
a chassis kit. These kits contain sets of parts to start your robot build. A chassis can be 
changed, but it would mean rebuilding the robot.

The internet has plenty of chassis kits around – too many. So how do you choose one?

http://app.diagrams.net
https://bit.ly/3oLofCg
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Size
Getting the size of a robot right matters too. Make too small a robot and you will need 
miniaturization skills for electronics; too large and you will need far more serious power 
handling. These are both things to avoid for a beginner:

Figure 6.1 – Robot chassis sizes compared

We can compare different robot sizes from the chassis photos in Figure 6.1:

• Chassis 1 has a diameter of 11 cm and just about fits a controller in but is too tiny. 
Being so small makes it hard to build your robot. Squeezing the controller, power, 
and all the sensors into this small space would need skill and experience beyond  
the scope of a first robot build.

• Chassis 2 is Armbot. This bigger robot is 33 cm by 30 cm wide, giving it lots of 
space and an arm reach of another 300 mm. It needs eight AA batteries, big motors, 
and a powerful motor controller. These add to the expense and may cause issues 
around power handling, weight, and rigidity for a new builder. Armbot is one  
of my most expensive robots, excluding the cost of the arm!

• Chassis 3 fits the Pi, batteries, and sensor, but without being large and bulky. It is 
around the right dimensions, being between 15-20 cm long and 10-15 cm wide. 
Those that have split levels might work for this, but no more than two levels, as 
three or four can make a robot top-heavy and cause it to topple. Chassis 3 has 
enough space and is relatively easy to build.

Let's look at the wheel count next.

Wheel count
Some chassis kits have elaborate movement methods – legs, tank tracks, Mecanum wheels, 
and tri-star wheels, to name a few. While these are fun and I encourage experimenting 
with them, this is not the place to start. I recommend thoroughly sensible and basic 
wheels on the your first robot.
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There are kits with four-wheel drive (shown in Figure 6.2) and six-wheel drive. These 
can be quite powerful and require larger motor controllers. They may also chew through 
batteries, and you are increasing the likelihood of overloading something. The additional 
motors can mean trickier wiring:

Figure 6.2 – Four-wheel drive robot

Two-wheel drive is the simplest to wire in. It usually requires a third wheel for balance. 
The third wheel can be a castor wheel (shown in Figure 6.3), a rollerball, or just a Teflon 
sled for tiny robots. Two wheels are also the easiest to steer, avoiding some friction issues 
seen with robots using four or more wheels:

 Figure 6.3 – Two wheels with a castor

Two wheels won't have the pulling power of four- or six-wheel drive, but they are simple 
and work. They are also the least expensive.
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Wheels and motors
A kit for a beginner should come with the wheels and the motors. The wheels should have 
simple rubber tires. Figure 6.4 shows a common style for inexpensive robot wheels. There 
are many kits with these in them:

Figure 6.4 – Common inexpensive robot wheels

The kit should also have two motors, one for each wheel, and include the screws or parts 
to mount them onto the chassis. I recommend DC gear motors, as the gearing keeps the 
speed usable while increasing the mechanical pushing power the robot has.

Importantly, the motors should have the wires connected, like the first motor in Figure 6.5:

Figure 6.5 – Gear motors with and without wires

It is tricky to solder or attach these wires to the small tags on motors, and poorly attached 
ones have a frustrating habit of coming off. The kits you want to start with have these 
wires attached, as can be seen in Figure 6.6:

Figure 6.6 – Encoder wheel and slot close up
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Where the motors are mounted, the kits should have some encoder wheels, and a slot  
to read them through. The encoder wheels are also known as odometry, tachometer, or 
tacho wheels.

Simplicity
You don't want to use a complex or hard-to-assemble kit for your first robot build. I've 
repeated this throughout that with two-wheel drive, you want two motors with the wires 
soldered on. I steer clear of large robots, or unique and exciting locomotion systems, not 
because they are flawed, but because it's better to start simple. There is a limit to this, a 
robot kit that is a fully built and enclosed when bought leaves little room for learning or 
experimentation. An entirely premade robot may require toy hacking skills to customize.

Cost
Related to simplicity is cost. You can buy robot chassis kits from around $15, up to 
thousands of dollars. Larger and more complex robots tend to be far more costly. For this 
book, I am aiming to keep to the less costly options or at least show where they are possible.

Conclusion
So, now you can choose a chassis kit, with two wheels and a castor, two motors with wires 
soldered on them, slots, and encoder wheels. These laser-cut bases are not expensive, and 
are widely available on popular internet shopping sites as Smart Car Chassis, with terms 
like 2WD:

Figure 6.7 – The robot kit I'm using
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The kit I'm working with looks like Figure 6.7 when assembled without the Raspberry Pi.

We've chosen a chassis kit. It is a medium-sized one that doesn't need large power 
handling. It has some space constraints but is not tiny. We can use these attributes to 
choose the motor controller.

Choosing a motor controller board
The next important part you'll need is a motor controller. You cannot connect a Raspberry 
Pi directly to DC motors, as they require different voltages and high currents that would 
destroy GPIO pins. Motor controller boards can also add interfaces to other devices like 
sensors and other motor types.

It is a vital robot component that will guide many later decisions. Much like the motors, 
there are some trade-offs and considerations before buying one:

Figure 6.8 – A selection of motor control boards

Figure 6.8 shows a small sample group of motor controller boards. As we compare the 
requirements of our motor board, we refer to the boards pictured there as examples.

Integration level
Motor controllers may only control a motor (usually 2) like the L298N, containing the 
barest minimum to run this chip safely. They are not designed to sit on a Raspberry Pi  
and must be wired into the Pi's I/O output.

Controllers like the PiZMoto sit on top of the Raspberry Pi, reducing wiring. They still 
contain only a single circuit to control a motor. They also have pins to connect additional 
devices like a distance sensor and line sensor, which shift voltage levels, as we'll see later. 
This and the L298N require the Raspberry Pi to generate the PWM signal to move motors.
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At a higher level of integration is the Full Function Stepper HAT. It has a chip that 
specializes in PWM control and is capable of driving multiple servo motors along with 
DC motors. This HAT frees up Raspberry Pi I/O pins by using I2C.

The PiConZero is the most integrated device here. It uses a microcontroller that is the 
equivalent of an Arduino to control DC motors and servo motors, to output to lights and 
take input from various sensors. It also uses I2C, reducing the number of pins needed.

Pin usage
When buying a motor controller in Raspberry Pi HAT form, it's essential to consider 
which I/O pins are in use. Having boards that make use of the same pins for incompatible 
functions won't work.

Important note
Although a HAT plugs into all pins, this doesn't mean they are all used. Only a 
subset of the pins is usually actually connected on a HAT.

To get an idea of how pins in different boards interact on the Raspberry Pi, take a look 
at https://pinout.xyz, which lets you select Raspberry Pi boards and see the pin 
configuration for them.

Using the L298N would require four I/O pins for the DC motors, and using sensors or 
servo motors with it requires further pins. The PIZMoto functions in a similar way to the 
L298N, requiring four I/O pins for DC motor control. The PiZMoto also assigns a pin for 
the line detector, two for distance sensing, two for LEDs, tying up a total of nine GPIO 
pins. The PiZMoto would also require additional support for servo motors.

The PiConZero and Full Function Stepper HAT both use the I2C bus. Using the I2C or 
serial bus makes efficient use of pins, as they use only two pins for I2C. Multiple devices 
can share the I2C bus, so even the use of these pins is shared. The PiConZero assigns some 
other pins to functions like the Ultrasonic device. The Full Function Stepper HAT leaves 
all other pins free to use while supporting the DC motors and 5 servo motors from a 
single I2C connection, making it one of the most flexible control boards in the selection.

Size
The choice of the motor controller size depends on the chassis and the size of the motors 
you have. In simple terms, the larger your chassis, the larger a controller you need. We 
specify the power handling capacity of a motor controller in amps. For a robot like the  
one shown in Figure 6.7, around 1 to 1.5 amps per channel is good.

https://pinout.xyz
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The consequence of too low a rating can range from a robot that barely moves up to 
catching fire. Too large a controller has consequences for space, weight, and cost. A 
heatsink is one way to keep a controller cool while handling current but makes the 
controller larger, as shown in Figure 6.9:

Figure 6.9 – An L298N with a heatsink

The level of integration can also contribute to size. A tiny board that stacks on a Pi takes 
up less space than separate boards.

Another size or shape consideration is whether the board restricts access to the Raspberry 
Pi camera port. Some boards, such as the Pimoroni Explorer HAT Pro, cover the camera 
slot entirely, making it tricky to use. Some boards have a slot for the camera port, like the 
Full Function Stepper HAT, and others are half-size hats (pHat) that don't cover the area, 
such as the PiConZero and PizMoto.

As we are using the camera in this book, it is a requirement that the camera port is 
accessible, either through a slot or by being a half-size (PHat) board.

Soldering
As you choose boards for a robot, note that some come as kits themselves, requiring you 
to solder parts on them. If you have experience with this, it may be an option, with a time 
cost. A small header is going to be a very quick and easy job. A board that comes as a 
bag of components with a bare board will take a chunk of an evening and could require 
debugging itself.

Tip
Soldering is an essential skill for robot building but is not needed for a first 
robot, so for this book, I mostly recommend pre-assembled modules.
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Power input
Motors can require different voltages from the 5 V power supply the Raspberry Pi uses. 
They are also likely to consume a high current. We cover power supply choices later, 
but it is usually good to separate the power supply for the motor from the supply for the 
Raspberry Pi. All the boards in Figure 6.8 have a separate motor power supply input.

The PiConZero and L298N let the user power the Raspberry Pi from the motor supply, 
but this can lead to reset and dropout conditions. Some motor interface boards, such 
as the Adafruit Crickit and the Pimoroni Explorer HAT Pro use the same 5 V supply 
for the motors and the Raspberry Pi, requiring a high current capable 5 V supply. My 
recommendation is to ensure the motor board has a separate power input for motors.

Connectors
Closely related to soldering and power input are the connectors for the motors and 
batteries. I tend to prefer the screw type connectors shown in Figure 6.10: 

Figure 6.10 – Screw terminals for motor and battery connections

Other types may require motors with special connectors, or a robot builder to have 
crimping skills.

Conclusion
Our robot is space-constrained; for this reason, we use the Raspberry Pi HAT type form 
factor. We are also looking to keep the number of pins it uses low. An I2C-based HAT lets 
us do this. The Full Function Stepper Motor HAT is shown in Figure 6.11. It's also known 
as the Full Function Robot Expansion Board and gets us access to all the Pi pins while 
being a powerful motor controller:
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Figure 6.11 – The Full Function Stepper Motor HAT

It's available in most countries, has space for the ribbon for the camera, and controls servo 
motors. I recommend this HAT for the robot in this book. Our code is directly compatible 
with boards based on the PCA9685 chip used on the Full Function board. With some 
minor changes in code and wiring, the 4tronix PiConZero would also be a suitable choice. 

Powering the robot
The robot needs power for all its parts. We must consider two major power systems: the 
power for all the digital parts, such as the Raspberry Pi and sensors, and then the power 
for the motors.

Motors need a separate power system for a few reasons. First, they consume far more 
electrical power than most other components on the robot. They may require different 
voltages; I've seen low-voltage, high-current motor supplies and high-voltage supplies too. 
The other reason that they need their own power system is that they can cause interference. 
They can pull enough power that other circuitry has brownouts. A brownout is when 
circuitry has a voltage drop that is low or long enough to get into an inconsistent or reset 
state. Resets can lead to SD card corruption on a Pi. Motors can also introduce electrical 
noise to a power line as they are used, which could cause digital parts to misbehave.
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There are two primary strategies for powering a robot with motors:

• Dual batteries: The motors and the rest of the robot have entirely separate sets of 
batteries, ensuring that their power is independent.

• Battery eliminators: Use a single battery or are set with a BEC/regulator. A BEC is 
a battery eliminator circuit, shown in Figure 6.12: 

Figure 6.12 – Picture of a BEC 

Dual batteries are the surest option to avoid any brownout, loss of power, or interference 
issues. This option takes more space than a BEC. However, the dual power option, with a 
USB power bank for the Raspberry Pi (shown in Figure 6.13) is a simple and effective way 
to avoid power issues. Choose one with small outercase dimensions, but a high power-
rating, such as 10,000 mAh, and an output of at least 2.1 A:

Figure 6.13 – The USB power bank from Armbot – slightly old and battered, but still effective

Check that the USB power bank comes with the cable to connect the Raspberry Pi – a 
Raspberry Pi 3 (A+ and B+) requires a USB micro connector, and the Raspberry Pi 4 
requires a USB-C connector. Power bank outputs usually use a USB-A connector. If they 
are not included with the power bank, you will need to buy one of these cables too.

Motor controller boards sometimes have power supplies to regulate power for a Pi from 
the motor power. These often have too low an output rating. They can be very inefficient, 
wasting a lot of battery power. Unless using very high current handling batteries, they are 
very likely to lead to brownouts.
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A battery eliminator circuit is lighter and takes up less space. Types include a BEC, uBEC, 
switching supply, or a regulator. Battery eliminators usually need high-power batteries 
such as Li-Ion types. By sharing a supply with motors, batteries need enough current 
capacity not to be vulnerable to the voltage drops that cause controller resets and line 
noise for the controller. This requirement affects switching power supply Pi SHIMs like 
the Wide Input SHIM and the power supplies built into some motor controllers.

You need to ensure that the BEC output can handle at least 2.1 A, preferably more.  
It's common to see 3.4 A and 4.2 A power banks. UBECs with 5 A ratings are also 
reasonably common.

To keep things simple in this robot, and not have to deal with reset issues, we use the dual 
battery approach and accept the cost in bulk and weight:

Figure 6.14 – The 4 x AA battery box we use with the motors

For the motors, 4 x AA batteries work. I recommend using nickel metal hydride 
rechargeable batteries for them. That is not just because you can recharge them, but also 
because they can deliver more current if needed than alkaline batteries. To save space,  
we use the two up/two down or back to back configuration, like the battery box shown  
in Figure 6.14.

In conclusion, for our battery selection, we will use a 4 x AA metal hydride set for the 
motors and a USB power bank for the Raspberry Pi and logic.

We have now made part selections. We know which chassis, controller, and battery 
configurations we will use. We have seen the size of the motors and wheels, and have, in 
previous chapters, selected a Raspberry Pi model to use. Before we go ahead and buy all 
this, we should make a further check to see that it will all fit. In the next section, let's learn 
about test fitting robot parts.
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Test fitting the robot
I recommend test fitting before actually ordering parts. The test fit helps a builder be more 
confident that components fit, and you'll know roughly where these parts go. This step 
saves you time and money later.

You can use paper and a pen for test fitting, or an app such as diagrams.net. First, I 
find the dimensions for all the parts. Figure 6.15 has a screenshot from Amazon showing 
how to spot product dimensions:

Figure 6.15 – Finding product specifications 

Some information-digging is needed to find these for your parts. For each, first find a 
shop you can buy them at, such as Amazon, several online shops, or eBay. You can then 
search for or ask for information about the dimensions of each board or item. Make sure 
you are looking at the dimensions of the part and not its packaging:

Figure 6.16 – A battery box product drawing with dimensions

You can find diagrams like the battery box in Figure 6.16 by doing image searches on 
dimensions or part datasheets. In this case, the dimensions are in mm. The ± signs show 
the manufacturing variation of plus or minus the next number. When test fitting, err on 
the higher side, so take 57±1 as 58 mm for that dimension.

http://diagrams.net
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So, the dimensions I have are as follows:

• The Raspberry Pi 3a+: 65 mm x 56 mm.

• The chassis: Mine suggests it is 100 mm x 200 mm. Be aware that the dimensions 
here are outer dimensions and include the wheels.

• The motor controller fits over the Pi, so it is counted here as the Pi. This controller 
makes things taller but is only really a concern for a multi-level robot chassis.

• The 4 x AA battery box: The type I suggested is 58 mm x 31.5 mm.

• The USB power bank: 60 mm x 90 mm.

For this, drawing rectangles to scale is enough detail. In diagrams.net, create a new  
blank diagram:

Figure 6.17 – Using diagrams.net to create test fit parts

You can follow the instructions to create test fit parts as shown in Figure 6.17:

1. Use the general palette on the left to drag out rectangles.

2. It helps to label each part clearly. Double-click a rectangle and type a label into it. 
Press Enter to accept the label. I've added a text label on the front of the chassis.

3. Select the item so it has a blue highlight. Click the tabs on the right to select the 
Arrange tab.

http://diagrams.net
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4. Here, type your dimensions (swap millimeters for points) into the Width and 
Height boxes.

5. You can repeat steps 1 through 4 for all the items and then drag the parts together:

Figure 6.18 – The test fit

The Pi should be near the front of the robot, as we'll later have sensors here, and the motor 
wires can go forward into it. In Figure 6.18, I've dragged the rectangles into place. Draw.io  
helps you here by showing blue guidelines for centering and aligning objects. I put the 
power bank at the rear, with the AA batteries closer to the Pi so they can go into the motor 
controller easily.

The parts look like they fit. It's not 100% accurate, but good enough to say this  
probably works.

Now, it's time to buy parts. My shopping list looks like this:

• The chassis kit.

• The Full Function Stepper Motor HAT.

• 4 x AA battery box.

• 4 x metal hydride AA batteries. If you don't have one, you need a charger for  
these too.

• 1 x USB power bank able to deliver 3 amps or more.

Now you've selected your parts and made the trade-offs. You've followed that by test fitting 
them to see how they're laid out and check they all fit. It's time for you to go and buy your 
parts and chassis. Once done, come back here because then we can begin our build.

http://Draw.io
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Assembling the base
Assuming you bought a chassis similar to mine, you can assemble it with these steps. For 
a completely different chassis, I strongly recommend consulting the documentation for 
assembly instructions. A chassis that is very different from the recommendations here 
may make it harder to follow the next few chapters.

Some parts may be covered in a layer of paper (shown in Figure 6.19). This layer prevents 
the plastic from getting scratches and can be safely removed. You can do this by getting a 
nail under it or using a craft knife. It's not essential to remove it, but a robot looks better 
without it:

Figure 6.19 – Removing the protective backing from robot parts

With the laser-cut kits that use the yellow motors, there are two main ways the motors are 
attached. One type has plastic brackets, and the other has metal motor brackets. Given 
that you may buy kits of either style, let's look at how the kits could differ. The difference 
only matters in assembly steps, so buy what is available to you.

For a kit with a plastic motor bracket, you should have the parts shown in Figure 6.20:

Figure 6.20 – Robot kit parts
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In the kit, you should have the following:

1. Two wheels.

2. Encoder wheels.

3. A pair of motors with wires.

4. A castor wheel.

5. Bolts and brass standoffs to mount the castor wheel. I've replaced one set of bolts 
with non-conductive nylon ones. You should be able to do the same from the nylon 
standoff kit.

6. The chassis plate.

7. Plastic brackets to mount the motors. Your kit may have metal types, which work 
slightly differently and come with four extra screws.

8. Four bolts and nuts to mount the motors.

Figure 6.21 shows how the metal motor bracket parts differ:

Figure. 6.21 – Metal type motor bracket

In the kit, you should have the following:

1. The metal bracket replaces the plastic brackets here.

2. Chassis to bracket bolts – instead of slotting through, these brackets need to be 
bolted to the chassis.

3. The long bolts for the bracket to the motor will still be the same.

Important note
The other components not shown are going to be very similar to this.

Now, let's see how to attach encoder wheels.
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Attaching the encoder wheels
We'll start by attaching the encoder wheels to the motor. We need these for a later  
chapter on sensors:

Figure 6.22 – The encoder wheel is attached to the motor

Follow the steps in Figure 6.22:

1. Observe on which side the wires are connected to it. The encoder wheel should 
attach on the same side as the wires.

2. Find the axle hole with flattened sides in the encoder wheel.

3. The axles on the motors are shaped to match this hole.

4. Line up the axle hole with the motor axle on the same side as the wires and gently 
push it on. It should have a little friction. Repeat this for the other motor.

You should now have two motors with encoder wheels on them, on the same side as their 
wires. Next, we fit the motor brackets to the robot.

Fitting the motor brackets
There are two kinds of motor brackets commonly used in the pictured laser-cut chassis. 
You should use the section that is most similar to the type you have.

Fitting plastic motor brackets

Important note
If you have the metal type, skip this section.
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To fit the plastic type of bracket, first look for the slots to attach it, as shown in Figure 6.23:

Figure 6.23 – Plastic motor mount

To fit these, follow these steps:

1. The arrows point at the slots. Push the plastic brackets through the slots.

2. Push the motor against the bracket. Note that the wires and the encoder wheel face 
the inside. The encoder should be under a cutout in the chassis body for it.

3. There is a slot in the chassis for an outer bracket, sandwiching the motor. Push 
another bracket into this slot.

4. Push the long screws through from the outside.

5. Then, push a nut onto the screws and use a screwdriver to screw them in.

6. For the nut closest to the chassis, one of its flattened edges should hold it in place  
as you tighten the screw. For the outer nut, use a spanner or pliers.

7. You need to repeat the same steps for the other side.

This section has covered attaching motors to a chassis with plastic brackets. If you have 
metal brackets, you should use the following section instead.
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Fitting metal motor brackets
Please skip this section if you have assembled the plastic motor brackets. The metal type of 
bracket is slightly different; Figure 6.24 shows its assembly:

Figure 6.24 – Assembling metal motor brackets

To do this, perform the following steps:

1. You should be able to see two small screw holes in the top of the bracket; these are 
threaded. There are two short screws per bracket.

2. The chassis has holes in the wheel mount area that match these. Line these up, and 
then screw the short screws through the chassis holes into the bracket.

3. Take the motor and ensure the wires are facing away from you. Push the long screws 
through the two holes in the motor.

4. Then, take this motor assembly and push the long threads into the holes on the side 
of the bracket.

5. It should fit through like this.

6. Now, push nuts onto the threads that stick out the other end of the bracket.

7. You can tighten the nuts furthest from the chassis with pliers, or a spanner and a 
screwdriver. The closer nuts catch on one flat side, so you'll only need a screwdriver.

8. You now have the completed assembly and need to repeat these steps for the  
other side.

After completing either set of steps, you should now have a motor mounted on each side. 
We will use these for the drive wheels. But first, we need the castor wheel.
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Adding the castor wheel
Next, it is time to fit the castor wheel. The castor wheel balances the robot. It is not driven, 
so will be dragged along by the robot. It's important that it has little friction. Figure 6.25, 
along with the steps that follow, will teach you exactly how to get this done:

Figure 6.25 – Fitting the castor wheel

Use these steps with the Figure 6.25:

1. This is the castor. It has four screw holes.

2. You need to push a metal screw through the hole, so the thread is facing away from 
the wheel.

3. Now, screw one of the brass standoffs into this screw.

4. Repeat this for the four other sides.

5. Line the other side of the standoffs with the four holes on the chassis. Note that this 
castor wheel is a rectangle, not a square. Make sure the wheel is facing down.

6. Push one of the screws through and screw it down.

7. I suggest you screw the opposite corner.

8. This makes the remaining two screws easier to put in.

9. The castor should now be attached to the robot like this.
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With the castors attached, the robot will balance, but it needs wheels to move anywhere, 
so let's add wheels.

Putting the wheels on
The wheels now need to be pushed on, as shown in Figure 6.26:

Figure 6.26 – Fitting the wheels

Follow these steps:

1. First, note that they have two flattened sides in their axle hole, like the encoder wheel.

2. Line the wheels up with the axles, taking into account the flat edges, and push them 
on. Do not push on the wires or the encoder disk as they may break.

3. Sometimes, rotating the wheels until they push in helps. You should be able to push 
the wheel on, being sure to support the motor from the other side. After doing this, 
you may want to realign the encoder wheels with their slots.

The wheels are on the motors and the robot is starting to take shape. The robot should 
now be able to sit on three wheels. You can roll it around manually, but it's not quite ready 
to drive itself yet.

Bringing the wires up
A last minor step in chassis assembly is to bring the wires up. The motor controller will be 
on the top of the robot, so the wires need to be above the chassis too:

Figure 6.27 – Bringing the wires up
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Follow the steps in Figure 6.27:

1. First, gather the two wires from one motor. Locate the small slot in the middle of 
the chassis.

2. Push the wires through.

3. Gently pull them through to the top of the chassis, so they are poking out as shown. 
Repeat this for the other motor.

We should now have a robot that looks like Figure 6.28 (motor brackets vary):

Figure 6.28 – The assembled chassis

With the motors in place and wheels ready, we can see how the robot will move. You've 
built the mechanical section of the robot. The wires are in position, and we're now ready 
to add the electronics. We'll start by adding the central controller, the Raspberry Pi.

Fitting the Raspberry Pi
We will not fit the motor controller yet – we'll address that in the next chapter, but we can 
mount the Raspberry Pi now and prepare it to have other boards connected to it. We need 
to put standoffs on the Pi to bolt it onto the chassis, but leave room for the motor bracket 
mounting, and later sensors that go under the Pi:
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Figure 6.29 – Fitting the Raspberry Pi

Perform the steps shown in Figure 6.29:

1. You need a small posidrive screwdriver, a small spanner or pair of pliers, 4 x M2.5 
5mm screws, 4 x M2.5 8 mm standoffs with threads, 4 x M2.5 12 mm standoffs, and 
the Raspberry Pi.

2. Push an 8 mm standoff thread up through the screw hole from the bottom of the Pi.

3. Then, screw a 10 mm standoff onto the top of these, with the thread facing upward, 
using the pliers/spanner to hold the standoff.

4. Repeat for all four corners.

5. Line two of these up with some slots or screw holes on the chassis and screw them 
in from underneath.

6. On the chassis I used, there were only two holes that line up, so I screwed those in 
and used the other standoffs to keep the Pi level.

This robot now has a main controller, which will be able to run code and command the 
robot. However, before it will do much, the controller and motors need power.

Adding the batteries
There are two sets of batteries that you have bought: the 4 x AA battery holder, as in  
Figure 6.14 (with a set of rechargeable metal hydride batteries), and a USB power bank, as 
in Figure 6.13. The power bank contains a lithium-ion cell and a USB charging system.

We mount these on the back of the robot, where they'll counterbalance some of the 
sensors that we'll add later.
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Setting up the USB power bank
Do not connect the power bank to the Raspberry Pi yet (or be sure to log in and shut it 
down properly before pulling the power cable out if you have done so):

Figure 6.30 – Mounting the power bank

To attach a USB power bank to the chassis, use the following instructions and Figure 6.30:

1. For this power bank, we use some hook and loop tape.

2. Take a look at the power bank and note that one side has the USB connector on 
it. This connector should end up on the left of the robot. If it has an LED charge 
display, this should be on top.

3. Measure two lengths of hook and loop tape. Stick the rough sides in two strips on 
the robot.

4. Stick the soft sides to the power bank, and line these up with the robot.

5. Push the power supply down, so the hook and loop have stuck together. This 
connection holds well.

6. This is how the power bank should sit on the robot.

Alternatives are to use sticky tack (for a cheap but flimsy connection), cable ties,  
double-sided tape, or rubber bands to hold the battery in place. These are suitable for 
different sizes of batteries.
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Mounting the AA battery holder
We will also use hook and loop tape to add an AA battery holder for motor power. We 
need the holder to be easy to remove so the batteries can be replaced. Hook and loop tape 
is a convenient choice for this. Adding the AA battery holder is shown in Figure 6.31:

Figure 6.31 – Mounting the AA battery holder

To mount the AA battery holder, use Figure 6.31 with the following steps:

1. Make sure that the AA battery holder does not have batteries in it yet.

2. Cut and stick a small strip of hook and loop tape to the bottom of the battery holder.

3. Stick the opposite hook and loop strip to the robot just in front of the power bank 
(removed for clarity – you do not need to remove the power bank).

4. Attach the battery holder here using the hook and loop strips.

At a pinch, sticky tack can be used for this, but remember that the AA battery box needs 
to be removable to replace the cells in it.
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The completed robot base
You have now completed the robot base, which should look something like Figure 6.32:

Figure 6.32 – The completed chassis

You've now built your first robot chassis! Hopefully, the first of many. With the robot 
chassis completed, sporting wheels, a Raspberry Pi, and battery compartment, it is nearly 
ready to roll. It needs some wiring to a motor controller and code to really come to life.

Connecting the motors to the Raspberry Pi
In this section, we will connect the motors to the Raspberry Pi. Once we have connected 
them, we can use code on the Raspberry Pi to control the motors and make the robot 
move. Figure 6.33 is the block diagram for the robot that we are building in this chapter. 
We will be using the Full Function Stepper Motor HAT as the controller board, calling it 
the Motor HAT for short.

This block diagram is similar to the type shown in Chapter 3, Exploring the Raspberry Pi. 
First, it starts with the Raspberry Pi, here in gray, as we've chosen that as our controller. 
Connected to the Pi is the Motor HAT, with instructions flowing from the Raspberry 
Pi to this board. The Motor HAT and its connections are highlighted as we are adding 
these parts in this chapter. As we build on this block diagram in later chapters, existing 
components will be in the color gray. Added components will be highlighted with red 
to show what is new. Finally, the two motors are added to the left and right of the Motor 
HAT, with arrows going from the Motor HAT to show it is controlling the motors:
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Figure 6.33 – Block diagram of the robot

The first step in connecting the motors is to fit the Motor HAT onto the Raspberry Pi. 
Figure 6.34 shows the Motor HAT:

Figure 6.34 – The Full Function Stepper Motor HAT
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Let's attach this HAT to our robot and wire it in so we can start programming our robot:

Figure 6.35 – Fitting the motor controller

Refer to Figure 6.35 and follow these steps:

1. Line up the motor board socket with the Pi header. The four holes in the corners 
should also line up with the screw threads facing up.

2. Gently and evenly push the motor board onto the Raspberry Pi, guiding the screw 
threads through. Continue until the board is firmly seated on the GPIO header.

3. The robot should now look like this.

The board is now attached to the Raspberry Pi, and we can start wiring it.
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Wiring the Motor HAT in
We will now wire in the Motor HAT, first to the motors, and also partially to the motor 
batteries. We wire the motor batteries so the motors have their own source of power and 
do not cause low-power reset conditions on the Raspberry Pi. The motor controller needs 
to be wired to the motors to power and control them.

Figure 6.36 shows how we wire this up. Don't wire in the ground (black) wire on the 
batteries until we are ready to power it up. I suggest using a little insulation tape to tape 
the tip of it down to a plastic part of the chassis, so it does not catch on anything. Leaving 
ground unwired lets us use it as a kind of makeshift switch:

Important note
The black wire on a battery may be referred to as ground, GND, and negative. 
The red wire can be referred to as positive (+ve), vIn (voltage In), or by the 
voltage input rating – for example, 5 V – 12 V.

Figure 6.36 – How to wire up the motors and batteries
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Figure 6.37 shows the steps for the connections:

Figure 6.37 – Steps for connecting the wires

Perform the following steps with reference to Figure 6.37 to connect the wires:

1. Loosen up the screw terminals for the 5 V – 12 V connection, GND, the two M2 
connectors, and the M1 connectors.

2. Push the red wire from the AA battery box into the screw terminal marked 5 V – 12 
V, so the metal part of the wire (the core) is in the slot formed by the metal cover. 

3. Screw it down firmly, so the wire does not pull out easily. Ensure that the core is 
being gripped, and not the plastic outer layer (its insulation).

4. Repeat for the motor terminals, making the connections shown in image 4.

5. The result should look like image 5.

We have now connected the motors to the controller, so it can drive them. We have 
partially connected the battery power, but we have left one connection free, so we can use 
this as a power switch. Let's try powering up the robot.
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Independent power
So far, although we have set up a headless Raspberry Pi, we have still been plugging it into 
the wall. Now it is time to try powering it independently. We will power up the motors 
from the AA batteries, and the Raspberry Pi from the USB power bank. We will see lights 
on the devices to tell us they are powered:

Figure 6.38 – Going on to independent power

Follow the steps shown in Figure 6.38:

1. Plug the Micro USB (tiny) end of the cable into the Pi in the USB micro-socket 
indicated by the arrow.

2. Fit the four AA batteries; you may need to pop the battery box up and push it back 
down again after this.

3. You can power up the motor board now. Connect the black wire from the battery 
box into the GND terminal indicated by the arrow, next to 5 V – 12 V. When you do 
so, a light appears on the motor board to show it is active.
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4. Turn on the Pi by plugging the USB A (wide) end into the power bank. The 
intention from here is to keep the micro-USB tiny end in, and only connect/
disconnect the USB A (wide) end when powering the Pi.

5. The Raspberry Pi and motor board are now powered, as shown in image 5.

Congratulations, your robot is now running on independent power, freeing the Raspberry 
Pi from the wall and giving the motors power too: 

Figure 6.39 – The complete Chapter 6 robot
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The photograph in Figure 6.39 shows our robot so far. It has motors on the chassis, with 
a Raspberry Pi and a motor control board fitted. The robot has a power supply for the 
Raspberry Pi – currently powered up. It has a power supply for the motors, currently 
disconnected with the black ground wire carefully taped out of the way of the rest of the 
robot. The motors are wired into the control board. This is enough robot to start making 
things move.

Important note
SD cards can be corrupted by removing power from the Pi without shutting it 
down. When turning it off, log in with PuTTY and use sudo poweroff 
before removing the power.

Your motors are ready to drive, and the Raspberry Pi is ready to run code without needing 
to be plugged into a wall. Combining independent power with headless Wi-Fi control 
means the robot can be driven around by instructions from your computer.

Summary
In this chapter, you've now learned how to choose the parts for a robot by reasoning and 
making some important design decisions. You used a simple tool to test fit these parts 
and see what works before buying anything. Finally, you bought the parts and built your 
starting robot platform.

By considering the trade-offs and test fitting again, you have gained skills for planning 
any hardware project, including finding dimensions on the datasheets/vendor websites, 
making a simple test-fit sketch, and considering how the parts will interact together. 
You've learned how the size of a robot affects motor and controller decisions. You've seen 
how to make parts easy to remove using hook and loop tape and considered other options 
for this.

By hooking up independent power, and connecting the motors, the robot has the 
hardware it will need to drive itself around without being tethered to a wall. What it 
doesn't yet have is any code to move with. In the next chapter, we will start writing the 
code to get this robot moving!
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Exercises
• In Chapter 2, Exploring Robot Building Blocks – Code and Electronics, you created 

block diagrams for a different robot. Consider what chassis, power, and parts it 
needs. Use online vendors to find suitable parts.

• Consider whether there is a suitable combination of Raspberry Pi hats or bonnets 
that fit your design. Use resources such as https://pinout.xyz to check their 
pin usage is compatible.

• What power systems might be suitable for the Raspberry Pi and the output devices 
in your new design?

• Are there components that may need to be removed easily? How could you approach 
that? Can you come up with alternatives to hook and loop tape? Keep it simple.

• Make a test-fitting sketch for your new robot parts, checking that they fit using  
part dimensions.

Further reading
Please refer to the following for more information:

• For further reading on chassis designs, consider Raspberry Pi Robotic Blueprints,  
Dr. Richard Grimmett, Packt Publishing. This includes modifying an RC car into  
a robot.

• For more robot chassis types, the community sharing website https://www.
instructables.com has many buildable examples. Some of these are very 
interesting and more advanced than our robot.

https://pinout.xyz
https://www.instructables.com
https://www.instructables.com


7
Drive and  

Turn – Moving 
Motors with Python

In this chapter, we will take the robot we started building in the last chapter, connect 
the motors to the Raspberry Pi, and build the Python code to make them move. We 
will cover programming techniques to create a layer between the physical robot and its 
behavior code, to reduce the impact of hardware changes. Our code and build will get the 
robot moving! We finish by programming the robot to drive a small set path. The robot 
code layer will serve as a foundation for all our robot behaviors, and the set path will 
demonstrate how to use it.
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We cover the following topics in this chapter: 

• Writing code to test your motors

• Steering a robot

• Making a Robot object—code for our experiments to talk to the robot

• Writing a script to follow a predetermined path

Technical requirements
To complete the experiments in this chapter, you will require the following:

• A computer with access to the internet

• The chassis built in the Chapter 6, Building Robot Basics – Wheels, Power,  
and Wiring

• The motor controller bought in Chapter 6, Building Robot Basics  – Wheels, Power, 
and Wiring

• A 2-meter by 2-meter flat space for the robot to drive on

Important note
Be prepared to stop your robot from driving over the edges if you use a table! 
It's best to use the floor.

Check out the following video to see the code in action: https://bit.ly/39sHxWL

Writing code to test your motors
Before we get stuck in and do fancy things with the motors, we need to get them set up 
and test them. This way, we can make sure they work and iron out any problems.

We need to download the library to work with the motor board we have chosen. Many 
robot parts, apart from the simplest ones, have an interface library to control the motors 
and other devices on the board. It's time to log in to your Pi using PuTTY again.

https://bit.ly/39sHxWL


Writing code to test your motors     127

Preparing libraries
We download this code from a project on GitHub using Git on the Raspberry Pi. So, we 
need to install Git on the Pi; we also need I2C (i2c-tools and python3-smbus) and 
pip to install things into Python. Type the following command:

pi@myrobot:~ $ sudo apt-get install -y git python3-pip python3-
smbus i2c-tools

To get the library for the motor board, Raspi_MotorHAT, we use Git and download it 
from GitHub, installing it for use in any of your scripts with the following command:

pi@myrobot:~ $ pip3 install git+https://github.com/orionrobots/
Raspi_MotorHAT
Collecting git+https://github.com/orionrobots/Raspi_MotorHAT
  Cloning https://github.com/orionrobots/Raspi_MotorHAT to /
tmp/pip-c3sFoy-build
Installing collected packages: Raspi-MotorHAT
  Running setup.py install for Raspi-MotorHAT ... done
Successfully installed Raspi-MotorHAT-0.0.2

We now have the libraries prepared for starting the robot. Documentation for the  
Raspi_MotorHAT library is sparse but is at https://github.com/orionrobots/
Raspi_MotorHAT, along with examples of using it.

Test – finding the Motor HAT
The Raspberry Pi uses I2C to connect to this Motor HAT. I2C buses let you send and 
receive data, and are flexible in that we can connect many devices to the same bus. To 
enable I2C, use raspi-config again. We also enable the Serial Peripheral Interface 
(SPI) while we are here. We may need this to connect other boards and sensors. Type  
the following command:

$ sudo raspi-config

https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
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Now, we use interfacing settings on this. Figure 7.1 shows how, as follows:

Figure 7.1 – Using raspi-config to enable SPI and I2C

Refer to the screenshots in Figure 7.1 and perform the following steps:

1. First, select Interfacing Options.

2. Next, select I2C. 

3. The Pi asks if you want this interface to be enabled. Select <Yes>. 
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4. You are then taken back to the initial screen and need to navigate again to the 
Interfacing Options screen. From there, select SPI and <Yes> again.

5. A confirmation screen tells you now that SPI is enabled. Select <Ok>.

6. Finally, press Esc twice to finish raspi-config. It asks if you want to reboot. 
Select <Yes>, and then wait for the Pi to reboot and reconnect to the Raspberry Pi. 
If it doesn't ask, please use sudo reboot to reboot it.

With I2C, we need a way to choose which device we are talking with. Just as with houses 
along a road, an address allows us to say which one we specifically want.

We should check that the Raspberry Pi can see the Motor HAT with sudo i2cdetect 
-y 1 by running the following code:

pi@myrobot:~ $ sudo i2cdetect -y 1
     0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 6f
70: 70 -- -- -- -- -- -- --

This scans the I2C bus 1 for devices attached to our Raspberry Pi. It shows numbers at the 
addresses if something is found. The device found at addresses 6f and 70 is our motor 
controller. If you cannot see this, power down the Raspberry Pi and carefully check that 
the Motor HAT has been plugged in, then try again.

The addresses are hexadecimal, where each digit counts to 16, using the digits 0-9, then 
letters A-F instead of counting only 10. When used in code, these get a 0x prefix. This is  
a zero and then a lowercase x.

We have enabled the I2C (and SPI) bus, and we then used the i2cdetect tool to find 
our motor device. This confirms first that it is connected and responding, and secondly 
that we have the right address—0x6f—for it. We can now start to send commands to it.
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Test – demonstrating that the motors move
We need a test file to demonstrate that the motors work. Carry out the following steps:

1. Create the following file, called test_motors.py:

from Raspi_MotorHAT import Raspi_MotorHAT

import time
import atexit

mh = Raspi_MotorHAT(addr=0x6f)
lm = mh.getMotor(1)
rm = mh.getMotor(2)

def turn_off_motors():
  lm.run(Raspi_MotorHAT.RELEASE)
  rm.run(Raspi_MotorHAT.RELEASE)

atexit.register(turn_off_motors)

lm.setSpeed(150)
rm.setSpeed(150)

lm.run(Raspi_MotorHAT.FORWARD)
rm.run(Raspi_MotorHAT.FORWARD)
time.sleep(1)

2. Upload this file to your Raspberry Pi using the methods found in Chapter 5, Backing 
Up the Code with Git and SD Card Copies.

Important note
Move your robot from your desk and down to the floor for this next step,  
as when it moves, it might not go in the direction you expect!

3. To run this code, through PuTTY on the Pi, type the following:

pi@myrobot:~ $ python3 test_motors.py

Your robot should now drive roughly forward. It may move slightly to the side, but it 
should not be turning or going backward, and both motors should be moving.
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Troubleshooting
If you see any problems, try this troubleshooting chart and go back:

By this point, you should have a robot that will drive forward, have seen it move, and dealt 
with the preceding troubleshooting issues.

Understanding how the code works
Now, our motors are moving and the robot drives using the test_motors.py code.  
But how does our motor test code really work? In this section, let's take a closer look  
and understand this.

The first few lines of code here are imports: 

from Raspi_MotorHAT import Raspi_MotorHAT

import time
import atexit
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Imports are how Python code pulls in other libraries of code to use them. The Raspi_
MotorHAT library is the one we installed for interacting with our motors. The time 
library allows us to work with time; in this case, we use it for a delay between starting  
and stopping motors. The atexit library allows us to run code when this  
file exits.

In the following lines, we connect the library to the Motor HAT and the two motors we 
have connected:

mh = Raspi_MotorHAT(addr=0x6f)
lm = mh.getMotor(1)
rm = mh.getMotor(2)

The first line here makes a Raspi_MotorHAT object with the I2C address 0x6f passed 
in as addr, which we saw in the scan. We call the returned object mh as an abbreviation 
for the connected Raspi_MotorHAT. 

We then create shortcuts to access the motors: lm for the left motor and rm for the right 
motor. We get these motor controls from the mh object, using the motor number shown 
on the board. Motor 1 is left, and motor 2 is right. 

We now define a function, turn_off_motors, which runs Raspi_MotorHAT.
RELEASE on each motor on this board—an instruction to make the motors stop, as 
illustrated in the following code snippet:

def turn_off_motors():
  lm.run(Raspi_MotorHAT.RELEASE)
  rm.run(Raspi_MotorHAT.RELEASE)
atexit.register(turn_off_motors)

We pass that into atexit.register(turn_off_motors), a command that runs 
when this file finishes—when Python exits. atexit runs even when there are errors. 
Without this, the code could break in some interesting way, and the robot keeps driving. 
Robots without this kind of safeguard have a habit of driving off tables and into walls. 
If they carry on trying to drive when their motors are stuck, it can damage the motors, 
motor controllers, and batteries, so it's better to stop.
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The speed of the motors for this controller/library ranges from 0 to 255. Our code sets 
the speed of each motor to just above half speed and then runs the Raspi_MotorHAT.
FORWARD mode, which makes each motor drive forward, as illustrated in the following 
snippet:

lm.setSpeed(150)
rm.setSpeed(150)

lm.run(Raspi_MotorHAT.FORWARD)
rm.run(Raspi_MotorHAT.FORWARD)

Finally, we ask the code to wait for 1 second, as follows:

time.sleep(1)

The sleep allows the motors to run in their forward-drive mode for 1 second. The  
program then exits. Since we told it to stop motors when the code exits, the motors stop.

We've now written and understood the code to test the motors. You've also seen it 
running. This confirms that you have a viable robot, and you have also started using 
Python imports. You've learned the atexit trick to turn things off and about using  
a timer so that the robot has some time to run before exiting. Now, we look at how we  
can steer the robot.

Steering a robot
Now, we've made a robot drive forward. But how do we steer it? How does it turn left or 
right? In order to understand this, we need to first learn about a few significant forms of 
steering that exist. Let's take a look at some, settle on the one our robot uses, and write 
some test code to demonstrate it. 

Types of steering
The most common techniques for steering a wheeled vehicle (including a robot) fall into 
two major categories—steerable wheels and fixed wheels, as discussed in the following 
subsections. Each of them comes with a couple of slightly unusual variants. 
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Steerable wheels
In movable wheel designs, one or more wheels in a robot face in a different direction from 
the others. When the robot drives, the differently positioned wheel makes the robot turn. 
There are two common styles of movable wheel steering on a robot, as shown here in 
Figure 7.2:

Figure 7.2 – Steerable wheel types

The green arrows show the direction of movement. The white arrows show changes to  
the shape of the robot and the angle of the wheels. Going through Figure 7.2, we can note  
the following:

1. Cars typically use rack and pinion steering. When straight, the car goes forward.

2. When the lower bar is moved, shown by the white arrows, the car turns.

3. The other common type is wagon-style steering, used in homemade racing karts. 
When straight, it goes forward.

4. By turning the front bar, you can steer the vehicle.
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There are also other variants besides the ones we discussed previously. They include  
the following:

• Robots with the ability to independently reorient each wheel and drive sideways

• Ackerman steering, where the amount each wheel rotates is different

• Rear steering, where a front set of wheels and a rear set of wheels steer—used in 
long vehicles

A good example of wagon-style steering is the Unotron robot, shown here in Figure 7.3. 
This was built by my son from the Unotron chassis by 4tronix, with an Arduino Nano 
controller:

Figure 7.3 – Wagon-style steering Unotron robot

In the Unotron design, there is a single motor-driven wheel at the back (under the motor 
controller). A servo motor turns the whole front plate, steering the two front wheels. 

The disadvantages of this type of steering are related to space, weight, and complexity.  
A chassis set up for movable wheel steering requires more moving parts and space to 
house them. Unotron is as simple as it gets. There is more complexity in other designs, 
which can lead to required maintenance.

The distance needed to make a turn (known as the turning circle) or for robots with 
steerable wheel systems is longer, as these must drive forward/backward to steer.

You require one large motor for the fixed axle, as you cannot distribute power across two 
motors, or you need complex mechanisms to balance the input. If the mechanism does 
not center after steering, then the robot veers.
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Fixed wheels
Fixed-wheel steering is used frequently in robots, whereby the wheels' axes are fixed in 
relation to the chassis. The relative speed of each wheel or set of wheels sets the direction 
of the robot. That is, the wheels do not turn from side to side; however, by one side going 
faster than the other, the robot can make turns. A typical use of this is known as skid 
steering, which is illustrated in the following screenshot: 

Figure 7.4 – Fixed-wheel steering or skid steering

Figure 7.4 shows this in action. The white arrows show the relative speed of the motors. 
The green arrows show the direction of the robot. 

In the preceding figure, we can see the following:

1. The motors are going at the same speed, so the robot is driving straight forward.

2. The motors on the right are going fast; the motors on the left are going slow. This 
robot is driving forward and left.

This has several advantages. If you intend to use tank tracks, you need this type of drive 
system. It is mechanically simple in that a drive motor per wheel is all that is needed to 
make turns. Skid steering allows a robot to turn on the spot, doing a full 360 degrees in  
a turning circle the width of the widest/longest part of the robot. 

There are some disadvantages to using this. When turning, a skid-steer system may drag 
wheels sideways, causing friction. Also, any minor differences in the motors, their gearing, 
or the controller output can result in a veer.

Other steering systems
The controller we are using on our robot allows us to control four motor channels.  
A builder can use four motors for special wheel types, known as Mecanum wheels.  
These wheels allow skid-steering style motions along with crabbing motions so that  
a robot can drive left or right without turning. Technically, this is still fixed-wheel steering. 
Figure 7.5 here shows a base with Mecanum wheels:
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Figure 7.5 – Mecanum wheels on the Uranus Pod by Gwpcmu [CC BY 3.0  
(https://creativecommons.org/licenses/by/3.0)]

These are amazingly flexible but mechanically complex, high maintenance, heavy, and  
a bit pricier than normal wheels. They are fun, however.

Steering the robot we are building
Based on the three-wheel chassis we have chosen, with one castor wheel and then a driven 
wheel on each side, independently controlled, we are using skid steering. By varying the 
speed and direction of these wheels, we steer our robot. We can also spin 360 degrees  
with it. The castor wheel negates the problem mentioned with the drag seen on four-  
and six-wheel skid-steer robots.

We can make the robot spin on the spot with one change to the previous code. Making 
one motor go back while the other goes forward spins the robot. Let's see how to do this, 
as follows: 

1. Find the following lines in test_motors.py: 

lm.run(Raspi_MotorHAT.FORWARD)
rm.run(Raspi_MotorHAT.FORWARD)

2. Modify this as follows so that one motor goes BACKWARD:

lm.run(Raspi_MotorHAT.FORWARD)
rm.run(Raspi_MotorHAT.BACKWARD)
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3. Run this on the Pi with python3 turn_motors.py, and your robot now spins 
to the right. Swap them so left (lm) is BACKWARD, and right (rm) is FORWARD, and 
it spins the other way.

4. What about less aggressive turns? In the previous code, before the direction lines, 
we also set the speed of each motor, as follows:

lm.setSpeed(150)
rm.setSpeed(150)

lm.run(Raspi_MotorHAT.FORWARD)
rm.run(Raspi_MotorHAT.FORWARD)

We can make a gentler turn by setting both lm and rm modes to FORWARD, and 
then making one of the speeds smaller than the other, like this:

lm.setSpeed(100)
rm.setSpeed(150)

lm.run(Raspi_MotorHAT.FORWARD)
rm.run(Raspi_MotorHAT.FORWARD)

This code makes the robot drive forward and turn gently to the left.
You've now seen a few ways to steer robots. Based on the design our robot has, you've  
then put one of them into practice, making a robot spin on the spot, and also drive 
forward and turn too. In the next section, we'll turn this into a layer for different behaviors 
to use the robot.

Making a Robot object – code for our 
experiments to talk to the robot
Now we have seen how to move and turn our robot, we come on to a layer of software to 
group up some of the hardware functions and isolate them from behaviors. By behaviors, 
I mean code to make a robot behave a certain way, for example following a line or 
avoiding walls. Why would we want that isolation? 

When we chose our motor controller, we made many trade-offs to find what works for our 
project. Motor controllers can change when the considerations change or when we simply 
want to build our next robot. Although controlling the speed and direction of two motors 
is the same kind of operation, each controller does it slightly differently. Creating a layer 
in front of a controller lets us use the same commands for it, even if it changes. This layer 
acts as a façade or interface to robot functionality.
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Each controller has quirks. With this one, we set a run mode and speed. Many controllers 
use 0 to mean stop, but this one uses a RELEASE mode, which is slightly different from 
speed 0, which holds the motors. Controllers often use negative numbers to mean go 
backward; this one has a BACKWARD mode. The speed values on this controller go from 
0-255. Some go from -128-128, or 0-10. What we can do is to create an object with an 
interface to hide quirks specific to this controller.

Why make this object?
You design an interface to give you a way to interact with some other code. It can simplify, 
or make more consistent, different underlying systems to make them behave the same 
way, as with all the types of motor controller mentioned. It also provides a way to cleanly 
separate parts of code into layers. Different layers mean that you can change one part 
of some code without it making considerable changes in another, as illustrated in the 
following figure:

Figure 7.6 – Software layers

In Figure 7.6, panel 1 shows a block of code that has different systems mixed. It's hard to 
change; adding a new behavior or swapping the motor controller in this code would be 
quite tricky. It's good to avoid mixing responsibilities in this way.

The code represented by panel 2 shows two separate systems interacting. They have  
a relationship where the path-following behavior is in control of the robot hardware setup 
and control code.

Throughout the book we write many behaviors, and we can reuse the hardware control 
library, perhaps extending it occasionally. After all, who wants to keep writing the same 
code? When you extend and make new behaviors, you can use this layer again too.

The robot hardware setup/control block in the second panel of Figure 7.6 is our Robot   
object. It is an interface to hide the quirks of the Full Function Stepper HAT board.
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This standard interface means we could make an object that looks the same from the 
outside on other robots, and our behaviors still work. Some serious robot builders use 
interfaces to swap real controllers for simulations of robots, to test complex behaviors.

What do we put in the robot object?
An object is a building block to make interfaces in Python. Objects have methods—things 
we can call on it to perform tasks. Objects also have members, bits of data, or references  
to other objects.

The next section builds code in the Robot object to do the following:

• Set up the Motor HAT and store its motors as members: left_motor and 
right_motor.

• Deal with the exit state.

• Stop motors with a stop_motors method.

• Let us use percentages to mean speeds—values of 0 to 100. We map this to what the 
controller wants.

• The modes are particular to this controller. Our interface uses negative values to 
mean going backward.

• At a later stage, the Robot object can act as a gatekeeper to data buses that require 
code to hold exclusive locks on them and some of the hardware.

• Our interface (and therefore our object) does not contain behavior, other than the 
stopping-on-exit safeguard.

We put it in a file named robot.py, as follows:

from Raspi_MotorHAT import Raspi_MotorHAT

import atexit

class Robot:
    def __init__(self, motorhat_addr=0x6f):
        # Setup the motorhat with the passed in address
        self._mh = Raspi_MotorHAT(addr=motorhat_addr)

        # get local variable for each motor
        self.left_motor = self._mh.getMotor(1)
        self.right_motor  = self._mh.getMotor(2)
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        # ensure the motors get stopped when the code exits
        atexit.register(self.stop_motors)

    def stop_motors(self):
        self.left_motor.run(Raspi_MotorHAT.RELEASE)
        self.right_motor.run(Raspi_MotorHAT.RELEASE)

This class has a __init__ method, a special one that sets this layer up. The __init__ 
method stores the output of the getMotor methods from the Raspi_MotorHat library 
in the left_motor and right_motor members. This method also registers a stop 
system. I have added some comments to state what the fragments of code do.

So far, our Robot object has set up our Motor HAT and has a way to stop the motors. The 
code is the same setup code we have seen before but is structured slightly differently. 

We can test this in another file named behavior_line.py, as illustrated in the 
following code snippet:

import robot
from Raspi_MotorHAT import Raspi_MotorHAT
from time import sleep

r = robot.Robot()
r.left_motor.setSpeed(150)
r.right_motor.setSpeed(150)
r.left_motor.run(Raspi_MotorHAT.FORWARD)
r.right_motor.run(Raspi_MotorHAT.FORWARD)
sleep(1)

This starts by pulling in the robot.py file we just created with an import. It goes forward 
for 1 second and stops. Run with python3 behavior_line.py. 

We still have to set speeds specific to this board (not out of 100). Let's fix that in robot.
py (new code is in bold), as follows:

from Raspi_MotorHAT import Raspi_MotorHAT

import atexit

class Robot(object):
    def __init__(self, motorhat_addr=0x6f):
        self._mh = Raspi_MotorHAT(addr=motorhat_addr)
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        self.left_motor = self._mh.getMotor(1)
        self.right_motor  = self._mh.getMotor(2)
        atexit.register(self.stop_motors)

    def convert_speed(self, speed):
        return (speed * 255) // 100

    def stop_motors(self):
        self.left_motor.run(Raspi_MotorHAT.RELEASE)
        self.right_motor.run(Raspi_MotorHAT.RELEASE)

We can now use convert_speed, to use speeds from 0 to 100. This returns speeds from 
0 to 255 for this Motor HAT. For other motor boards, this returns something else.

We multiply the speed by 255 and divide that by 100. This formula is a way of turning  
a percentage into a fraction of 255. We multiply first because we are doing integer  
(whole number) math, and dividing 80/100 with whole numbers gives 0, but dividing 
(80*255) by 100 returns 204. 

This code is still unwieldy, though—to use it, we need the following in behavior_
line.py:

import robot
from Raspi_MotorHAT import Raspi_MotorHAT
from time import sleep

r = robot.Robot()
r.left_motor.setSpeed(r.convert_speed(80))
r.right_motor.setSpeed(r.convert_speed(80))
r.left_motor.run(Raspi_MotorHAT.FORWARD)
r.right_motor.run(Raspi_MotorHAT.FORWARD)
sleep(1)

This still uses the run and setSpeed methods of the Raspi_MotorHAT library, which 
are specific to this control board. Other boards don't work the same way. We can also 
collect up the cumbersome conversion a little.

We start by modifying the convert_speed method. It can be convenient for robots to 
use negative values to mean the motor goes backward. We still need to scale the speed, but 
we need to determine the run mode too.
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We need to do the following two things:

• Determine if the speed is above, below, or equal to zero, and set the mode for the 
run function.

• Remove the sign from the speed for setSpeed, so it's always a positive value.

The default mode that we get at speed zero is RELEASE or stop. If the speed is above 0, we 
return the FORWARD mode, and if it's below 0, we return BACKWARD.

We can use a simple if statement to get the correct mode. Let's replace the convert_
speed method in the class to return the mode and positive value. I've used comments to 
show the two sections to this function. Modify this in robot.py, as follows:

def convert_speed(self, speed):
        # Choose the running mode
        mode = Raspi_MotorHAT.RELEASE
        if speed > 0:
            mode = Raspi_MotorHAT.FORWARD
        elif speed < 0:
            mode = Raspi_MotorHAT.BACKWARD

        # Scale the speed
        output_speed = (abs(speed) * 255) // 100
        return mode, int(output_speed)

We've added one more operation to our speed calculation: abs(speed). This operation 
returns the absolute value, which removes the sign from a number. For example, -80 and 
80 both come out as 80, which means there is always a positive output from the method.

Next, we add some methods to directly set the speed and direction of the left and right 
motors in the robot. These call convert_speed and use the mode and output speed 
from it to make calls to the Raspi_MotorHAT functions.

We then need to change our motor movement methods to use this speed conversion,  
as follows:

    def set_left(self, speed):
        mode, output_speed = self.convert_speed(speed)
        self.left_motor.setSpeed(output_speed)
        self.left_motor.run(mode)

    def set_right(self, speed):
        mode, output_speed = self.convert_speed(speed)
        self.right_motor.setSpeed(output_speed)
        self.right_motor.run(mode)
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So, for each motor, we get the mode and output speed from the passed-in speed, then call 
setSpeed and run.

The whole of robot.py should now look like the following:

from Raspi_MotorHAT import Raspi_MotorHAT

import atexit

class Robot:
    def __init__(self, motorhat_addr=0x6f):
        # Setup the motorhat with the passed in address
        self._mh = Raspi_MotorHAT(addr=motorhat_addr)

        # get local variable for each motor
        self.left_motor = self._mh.getMotor(1)
        self.right_motor = self._mh.getMotor(2)

        # ensure the motors get stopped when the code exits
        atexit.register(self.stop_motors)

    def convert_speed(self, speed):
        # Choose the running mode
        mode = Raspi_MotorHAT.RELEASE
        if speed > 0:
            mode = Raspi_MotorHAT.FORWARD
        elif speed < 0:
            mode = Raspi_MotorHAT.BACKWARD

        # Scale the speed
        output_speed = (abs(speed) * 255) // 100
        return mode, int(output_speed)

    def set_left(self, speed):
        mode, output_speed = self.convert_speed(speed)
        self.left_motor.setSpeed(output_speed)
        self.left_motor.run(mode)

    def set_right(self, speed):
        mode, output_speed = self.convert_speed(speed)
        self.right_motor.setSpeed(output_speed)
        self.right_motor.run(mode)
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    def stop_motors(self):
        self.left_motor.run(Raspi_MotorHAT.RELEASE)
        self.right_motor.run(Raspi_MotorHAT.RELEASE)

Our simple behavior in behavior_line.py is now only a few lines, as can be seen in 
the following code snippet:

import robot
from time import sleep

r = robot.Robot()
r.set_left(80)
r.set_right(80)
sleep(1)

This simplification means we can build on this code to create more behaviors. I have  
a common interface, and versions of the Robot object for my other robots. An exciting 
outcome is I can run this behavior_lines.py code on ArmBot (the robot seen at the 
end of Chapter 1, Introduction to Robotics) or my other Raspberry Pi robots. They all go 
forward for 1 second at 80% of their motor speed. 

Writing a script to follow a predetermined 
path
So, we now get to the first behavior that feels like a robot. Let's make a quick sketch of  
a path for us to get our robot to follow. For an example, see Figure 7.7 here:

Figure 7.7 – Path for our robot
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In Figure 7.7, I've drawn a path. The straight lines are for driving forward; the 1s mean 1 
second. We don't yet have a way to consider distance traveled, only time. We may be able 
to guess at times relative to distances, but this isn't very precise or repeatable. The gentle 
curves are a turn where we slow one motor down more than the other.

The final spiral means a victory spin on the spot when the path is complete—we can do 
this by putting one motor in reverse while the other drives forward. 

Let's write this code. First, we want the imports: sleep and robot. But before we do 
anything, let's make some helper functions for this behavior. I called my file behavior_
path.py, and the code is shown in the following snippet:

import robot
from time import sleep

def straight(bot, seconds):
    bot.set_left(80)
    bot.set_right(80)
    sleep(seconds)

def turn_left(bot, seconds):
    bot.set_left(20)
    bot.set_right(80)
    sleep(seconds)

def turn_right(bot, seconds):
    bot.set_left(80)
    bot.set_right(20)
    sleep(seconds)

def spin_left(bot, seconds):
    bot.set_left(-80)
    bot.set_right(80)
    sleep(seconds)

The helpers use the same language we used to describe the behavior. We have straight, 
turn_left, turn_right, and spin_left. These are not in the Robot object 
because other behaviors may use more continuous behavior than this. I've called the 
Robot object bot now because one-letter variable names such as r become less easy to 
find, read, or reason about when there is more code.
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These helpers each set the motor speeds, and then sleep for a determined number  
of seconds. We can then create the Robot object and sequence them by adding the 
following code to behavior_path.py:

bot = robot.Robot()
straight(bot, 1)
turn_right(bot, 1)
straight(bot, 1)
turn_left(bot, 1)
straight(bot, 1)
turn_left(bot, 1)
straight(bot, 1)
spin_left(bot, 1)

Now, we can upload this to the Raspberry Pi, and run it via PuTTY with the following:

$ python3 behavior_path.py

Now, if your robot is anything like mine, you saw it drive and make turns, but the turns 
have overshot in some way, and the robot may be veering to one side. We can fix the 
overshoot here by reducing the amount of time in the turn steps, like this:

bot = robot.Robot()
straight(bot, 1)
turn_right(bot, 0.6)
straight(bot, 1)
turn_left(bot, 0.6)
straight(bot, 1)
turn_left(bot, 0.6)
straight(bot, 1)
spin_left(bot, 1)

You need to tweak these values to get close to 90-degree turns. This tweaking takes 
patience: change them and upload them. Tweaking values in code is a crude form of 
calibration to match the quirks of our robot. If you move between surfaces (for example, 
from a wooden floor to a carpet), then the timings will change.

You may be able to account for some of the veering by tuning one motor to be slower in 
the straight function (adjust for your own robot's veer), like this:

def straight(bot, seconds):
    bot.set_left(80)
    bot.set_right(70)
    sleep(seconds)
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This code holds up for a while but may be hard to fine-tune. Why do we get this veer? 

Motor speeds can vary, even those from the same manufacturer. Other causes of minor 
variations are wheel diameters, axle positioning, weight distribution, slippery or uneven 
surfaces, wiring resistance, and motor controller variations. This variation makes it 
unlikely that you'd get a perfectly straight line from a robot this way. Depending on which 
sensors we are using, this may or may not be a problem. To account for this problem, we 
introduce encoders/speed sensors in a later chapter and calibrate those sensors to get  
a more accurate version of a path behavior.

Without sensors, a robot is not able to determine where it is or if it has bumped into 
anything. If the robot ran into a wall, you'd probably have to go and move it to where  
it had room to move.

Summary
In this chapter, we've learned how to install the libraries for the motor board and 
demonstrate that our motors work. We then started building the first layer of code for our 
behaviors to use, while noting how we could make a layer like that for other robots. We 
saw our robot move in a path and tuned it, while finding out some of the shortcomings  
of using motors without any sensors. 

You can now use this when starting any hardware project: get the motors/output devices 
tested first, then create a layer for a behavior to use them, such that if their hardware later 
changes, you only need to change the motor code.

In the following chapters, we start adding sensors and building behaviors using these 
sensors.

Exercises
Try these further ideas to enhance your learning from this chapter:

1. Sketch out another simple path and write code for the robot to follow it. For 
example, try to follow a figure-of-8 shape using your experience.

2. Which methods would you add to the Robot object if you had an additional output 
to control, perhaps a single light-emitting diode (LED)?

3. Consider how you would lay out a Robot object for a robot with kart-style steering. 
Which methods would it have? You don't need to write the code yet, but having 
an interface in mind is a good start. Hint—it probably has one motor speed for the 
drive and a motor position for the steering.
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Further reading
Please refer to the following for more information:

• For more information on the style used for the Robot object, along with the use of 
similar interfaces and classes, I recommend Learning Object-Oriented Programming, 
Gastón C. Hillar, Packt Publishing. This book not only works through these concepts 
in Python but takes them more generally and shows how object-oriented (OO) 
concepts also apply to the C# and JavaScript languages.





8
Programming 

Distance Sensors 
with Python

In this chapter, we look at distance sensors and how to use them to avoid objects. Avoiding 
obstacles is a key feature in mobile robots, as bumping into stuff is generally not good. It is 
also a behavior that starts to make a robot appear smart, as if it is behaving intelligently. 

In this chapter, we find out about the different types of sensors and choose a suitable type.  
We then build a layer in our robot object to access them and, in addition to this, we create 
a behavior to avoid walls and objects.

You will learn about the following topics in this chapter:

• Choosing between optical and ultrasonic sensors

• Attaching and reading an ultrasonic sensor

• Avoiding walls – writing a script to avoid obstacles
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Technical requirements
To complete the hands-on experiments in this chapter, you will require the following:

• The Raspberry Pi robot and the code from the previous chapters.

• Two HC-SR04P, RCWL-1601, or Adafruit 4007 ultrasonic sensors. They must have 
a 3.3 V output.

• A breadboard.

• 22 AWG single-core wire or a pre-cut breadboard jumper wire kit.

• A breadboard-friendly single pole, double toggle (SPDT) slide switch.

• Male-to-female jumpers, preferably of the joined-up jumper jerky type.

• Two brackets for the sensor.

• A crosshead screwdriver.

• Miniature spanners or small pliers.

The code for this chapter is available on GitHub at https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition/
tree/master/chapter8.

Check out the following video to see the Code in Action: https://bit.ly/2KfCkZM

Choosing between optical and ultrasonic 
sensors
Before we start to use distance sensors, let's find out what these sensors actually are, how 
they work, and some of the different types available.

The most common ways in which to sense distance are to use ultrasound or light. The 
principle of both of these mechanisms is to fire off a pulse and then sense its reflected 
return, using either its timing or angle to measure a distance, as can be seen in the 
following diagram: 

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter8
https://bit.ly/2KfCkZM
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Figure 8.1 – Using pulse timing in a distance sensor

We focus on the sensors that measure the response time, otherwise known as the time of 
flight. Figure 8.1 shows how these sensors use reflection time.

With this basic understanding of how sensors work, we'll now take a closer look at optical 
sensors and ultrasonic sensors.

Optical sensors
Light-based sensors, like the one in Figure 8.2, use infrared laser light that we cannot see. 
These devices can be tiny; however, they can suffer in strong sunlight and fluorescent  
light, making them misbehave. Some objects reflect light poorly or are transparent and  
are undetectable by these sensors:

Figure 8.2 – A VL530LOx on a carrier board
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In competitions where infrared beams detect course times, the beams and these sensors 
can interfere with each other. However, unlike ultrasonic sensors, these are unlikely to 
cause false detections when placed on different sides of a robot. Optical distance sensors 
can have higher accuracy, but over a more limited range. They can be expensive, although 
there are cheaper fixed range types of light sensors out there.

Ultrasonic sensors
Many sound-based distance measuring devices use ultrasonic sound with frequencies 
beyond human hearing limits, although they can annoy some animals, including dogs. 
Mobile phone microphones and some cameras pick up their pulses as clicks. Ultrasonic 
devices tend to be larger than optical ones, but cheaper since sound travels slower than 
light and is easier to measure. Soft objects that do not reflect sound, such as fabrics,  
can be harder for these to detect.

Figure 8.3 shows the HC-SR04, a common and inexpensive sound-based distance sensor:

Figure 8.3 – The HC-SR04

They have a range of up to 4 meters from a minimum of about 2 cm. 

There are a number of ultrasonic-based devices, including the common HC-SR04, but not 
all of them are suitable. We'll look at logic levels as this is an important factor in choosing 
which sensor to buy.

Logic levels and shifting
The I/O pins on the Raspberry Pi are only suitable for inputs of 3.3 V. Many devices in 
the market have a 5 V logic, either for their inputs when controlling them, or from their 
outputs. Let's dig into what I mean by logic levels, and why it is sensible to try and stick  
to the native voltage level when possible.
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Voltage is a measure of how much pushing energy there is on an electrical flow. Different 
electronics are built to tolerate or to respond to different voltage levels. Putting too high  
a voltage through a device can damage it. On the other hand, putting too low a voltage 
can cause your sensors or outputs to simply not respond or behave strangely. We are 
dealing with logic devices that output a high or low voltage to represent a true/false value. 
These voltages must be above a threshold to be true, and below it to be false. We must 
be aware of these electrical properties, or we will destroy things and fail to get them to 
communicate.

The graph in Figure 8.4 shows the effects that different levels have:

Figure 8.4 – Voltages and logic levels

In Figure 8.4, we show a graph. On the y-axis (left), it shows voltage labels from 0 to 5 V. 
The y-axis shows different operating conditions. There are 4 dashed lines running through 
the graph. The lowest dashed line is at 0.8 V; below this, an input will consider it as logic 
0. The next line, at around 2.3 V, is where many 3.3 V devices consider things at logic 1. 
The line at 3.3 V shows the expected input and output level for logic 1 on a Raspberry Pi. 
Above this line, damage may occur to a Raspberry Pi. At around 4.2 V is what some 5 V 
devices expect for logic 1 (although some will allow as low as 2 V for this) – the Raspberry 
Pi needs help to talk to those.

Along the graph are 5 bars. The first labeled bar is at 0 – meaning a clear logic 0 to all 
devices. The next bar is a clear logic 1 for the Raspberry Pi at 3.3 V, but it is also below 4.2 
V, so some 5 V devices won't recognize this. The bar labelled unclear is at 1.8 V – in this 
region, between the low and the high thresholds, the logic might not be clear, and this 
should be avoided. The bar labeled Vague logic 1 is above the threshold, but only just, and 
could be misinterpreted or cause odd results on 3.3 V devices. The last bar is at 5 V, which 
5 V devices output. This must not go to the Raspberry Pi without a level shifter or it will 
destroy that Raspberry Pi. 
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There are bars in Figure 8.4 at 1.7 V and 2.3 V. These voltages are very close to the logic 
threshold and can result in random data coming from the input. Avoid intermediate 
voltages between the required logic levels. 3 V is OK, but avoid 1.5 V as this is ambiguous.

Important note
Putting more than 3.3 V into a Raspberry Pi pin damages the Raspberry Pi. Do 
not use 5 V devices without logic level shifters.

If you use devices that are 5 V, you require extra electronics to interface them. The 
electronics come with further wiring and parts, thereby increasing the cost, complexity,  
or size of the robot's electronics:

Figure 8.5 – Wiring the HC-SR04 sensors into the level shifters

Figure 8.5 shows a wiring diagram for a robot that uses HC-SR04 5v sensors that require 
logic level shifting. This circuit diagram shows the Raspberry Pi GPIO pins at the top. 
Coming from 3 pins to the left are the 5 V, 3.3 V (written as 3v3), and ground (GND) 
lines. Below the GPIO pins are the 3.3 V and 5 V lines.
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Below the power lines (or rails) are two level shifters. Going into the right of the level 
shifters are connections from the Raspberry Pi GPIO pins 5, 6, 17, and 27. In this style  
of diagram, a black dot shows a connection, and lines that do not connect are shown  
with a bridge. 

The bottom of the diagram has a ground line from the ground pin. This is shown as it's 
normal that additional electronics will require access to a ground line.

The left of the diagram has the two distance sensors, with connections to 5 V and GND. 
Each sensor has the trig and echo pins wired to the level shifters. It's not hard to see 
how adding more sensors that also require level shifters to this would further increase 
complexity.

Thankfully, other options are now available. Where it is possible to use a 3.3 V native 
device or a device that uses its supply voltage for logic high, it is worth choosing these 
devices. When buying electronics for a robot, consider carefully what voltage the robot's 
main controller uses (like the Raspberry Pi), and check that the electronics work with the 
controller's voltages. 

The HC-SR04 has several replacement parts that have this ability. The HC-SR04P, the 
RCWL-1601, and Adafruit 4007 models output 3.3 V and can connect directly to the 
Raspberry Pi.

Why use two sensors?
Having two sensors allows a behavior to detect which side is closer. With this, the  
robot can detect where open spaces are and move toward them. Figure 8.6 shows how  
this works:

Figure 8.6 – Using two sensors
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In Figure 8.6, the second robot can make more interesting decisions because it has more 
data from the world with which to make those decisions. 

Considering all of these options, I recommend you use a 3.3 V variant like the  
HC-SR04P/RCWL-1601 or Adafruit 4007 because they are cheap and because it is  
easy to add two or more of these sensors.

We've seen some distance sensor types and discussed the trade-offs and choices for  
this robot. You've learned about voltage levels, and why this is a crucial consideration  
for robot electronics. We've also looked at how many sensors we could use and where  
we could put them. Now let's look at how to add them.

Attaching and reading an ultrasonic sensor
First, we should wire in and secure these sensors to the robot. We then write some 
simple test code that we can use to base our behavior code on in the next section. After 
completing this section, the robot block diagram should look like Figure 8.7:

Figure 8.7 – Robot block diagram with ultrasonic sensors

This diagram builds on the block diagram in Figure 6.33 from Chapter 6, Building Robot 
Basics – Wheels, Power, and Wiring by adding left and right ultrasonic sensors. Both have 
bi-directional arrows to the Raspberry Pi, since, being an active sensor, the Raspberry Pi 
triggers a sensor measurement and then reads back the result. Let's attach the sensors to 
the robot chassis. 

Securing the sensors to the robot
In the Technical requirements section, I added an HC-SR04 bracket. Although it is possible 
to make a custom bracket with CAD and other part making skills, it is more sensible to 
use one of the stock designs. Figure 8.8 shows the bracket I'm using:
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Figure 8.8 – Ultrasonic HC-SR04 sensor brackets with the screws and hardware

These are easy to attach to your robot, assuming that your chassis is similar enough  
to mine, in that it has mounting holes or a slot to attach this bracket:

Figure 8.9 – Steps for mounting the sensor bracket

To mount the sensor bracket, use Figure 8.9 as a guide for the following steps:

1. Push the two bolts into the holes on the bracket.

2. Push the bracket screws through the holes at the front of the robot.

3. Thread a nut from underneath the robot on each and tighten. Repeat this for the 
other side.



160     Programming Distance Sensors with Python

4. The robot should look like this with the two brackets mounted.

Figure 8.10 shows how to push the sensors into the brackets:

Figure 8.10 – Pushing the sensors into the brackets

5. Look at the sensor. The two transducer elements, the round cans with a gauze on 
top, will fit well in the holes in the brackets.

6. The distance sensors can simply be pushed into the brackets, since they have  
a friction fit. The electrical connector for the sensor should be facing upward.

7. After putting in both sensors, the robot should look like panel 7 of Figure 8.10. 

You've now attached the sensors to the chassis. Before we wire them, we'll take a slight 
detour and add a helpful power switch.

Adding a power switch
Before we turn on the robot again, let's add a switch for the motor power. This switch 
is more convenient than screwing the ground wire from the battery into the terminal 
repeatedly. We'll see how to do this in three simple steps. Follow along:

1. Make sure you have the following equipment ready, as shown in Figure 8.11:  
a breadboard, some velcro, a mini breadboard-friendly SPDT switch, and one 
length of single-core 22 AWG wire:
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Figure 8.11 – Items needed to add a power switch

2. Now use two strips of Velcro to stick the breadboard on top of the robot's battery, 
as shown in Figure 8.12. The velcro holds firm but is easy to remove if you need to 
disassemble the robot:

Figure 8.12 – Adding velcro strips

With the breadboard in place, we can now add a switch.
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Take a look at Figure 8.13 for details on how the switch is connected:

Figure 8.13 – Wiring the switch 

Figure 8.13 shows a circuit diagram, a close-up of a breadboard, and a suggested way  
to wire the physical connections on the robot. Let's look at this in detail:

1. This is a circuit diagram showing the batteries, switch, and motor power input 
connectors. At the top is the motor power in terminal. From the positive (+) side  
of that terminal, a wire goes down the left to the batteries, shown as alternating 
thick and thin bars. From the batteries, the bottom terminal is their negative side.  
A wire goes from this around to the switch on the right of the diagram. The top  
of the switch is then connected via a wire to the negative (-) side of the motor  
power in terminal. This is the important diagram for making the connections.

2. Before we physically wire the switch, it's worth talking about the rows of the 
breadboard. This panel shows a close-up of a breadboard, with 2 of the rows 
highlighted in green lines. The green lines show that the rows are connected in 
groups of 5. The arrangement of a breadboard has two wired groups of 5 holes 
(tie-points) for each of the rows (numbered 1 to 30). It has a groove in the middle 
separating the groups.

3. The physical wiring uses the breadboard to make connections from wires to devices. 
It won't match the diagram precisely. The left shows the motor board, with a red 
wire from the batteries, their positive side, going into the positive (+ or VIN) 
terminal on the motor power in terminal. The batteries are in the middle. A black 
wire goes from the batteries into the breadboard in row 3, column d. In column e, 
a switch is plugged into the breadboard going across rows 1, 2, and 3. An orange 
precut 22 AWG wire goes from row 2 to the GND terminal, where it is screwed in. 
Sliding this switch turns on the power to the robot motors.
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We've now given our robot a power switch for its motor batteries, so we can turn the 
motor power on without needing a screwdriver. Next, we will use the same breadboard  
to wire up the distance sensors.

Wiring the distance sensors
Each ultrasonic sensor has four connections:

• A trigger pin to ask for a reading

• An echo pin to sense the return

• A VCC/voltage pin that should be 3.3 V

• A GND or ground pin

Ensure that the whole robot is switched off before proceeding any further. The trigger and 
echo pins need to go to GPIO pins on the Raspberry Pi. 

Figure 8.14 shows a close-up of the Raspberry Pi GPIO port to assist in making 
connections:

Figure 8.14 – Raspberry Pi connections

Figure 8.14 is a diagram view of the GPIO connector on the Raspberry Pi. This connector 
is the 40 pins set in two rows at the top of the Pi. Many robots and gadgets use them. The 
pin numbers/names are not printed on the Raspberry Pi, but this diagram should assist in 
finding them.
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We use a breadboard for this wiring. Figure 8.15 shows the connections needed for these:

Figure 8.15 – Sensor wiring diagram
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Wires from the Raspberry Pi to the breadboard, and from the sensor to the breadboard, 
need male-to-female jumper wires. Wires on the breadboard (there are only 4 of these) 
use short pre-cut wires. Figure 8.15 shows a circuit diagram above, and a breadboard 
wiring suggestion below.

To wire the sensors, use Figure 8.15 as a guide, along with these steps:

1. Start with the power connections. A wire goes from the 3.3 V (often written as 
3v3 on diagrams) pin on the Raspberry Pi to the top, red-marked rail on the 
breadboard. We can use this red rail for other connections needing 3.3 V.

2. A wire from one of the GND pins on the Pi goes to the black- or blue-marked rail 
on the breadboard. We can use this blue rail for connections requiring GND.

3. Pull off a strip of 4 from the male-to-female jumper wires for each side.

4. For the left-hand sensor, identify the four pins—VCC, trig, echo, and GND. For the 
connection from this to the breadboard, it's useful to keep the 4 wires together. Take 
4 male-to-female connectors (in a joined strip if possible), from this sensor, and 
plug them into the board. 

5. On the breadboard, use the precut wires to make a connection from ground to the 
blue rail, and from VCC to the red rail.

6. Now use some jumper wires to make the signal connections from the trig/echo pins 
to the Raspberry Pi GPIO pins.

Important note
Depending on where you've placed your breadboard, the distance sensor wires 
may not reach. If this is the case, join two male-to-female wires back to back, 
and use some electrical tape to bind them together. 

For neatness, I like to wrap wires in spiral wrap; this is entirely optional but can reduce the 
clutter on the robot.

Please double-check your connections before you continue. You have now installed the 
distance sensors into your robot's hardware, but in order to test and use them, we need  
to prepare the software components.
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Installing Python libraries to communicate with the 
sensor
To work with the GPIO sensor, and some other hardware, you need a Python library. Let's 
use the GPIOZero library, designed to help interface with hardware like this:

$ pip3 install RPi.GPIO gpiozero

With the library now installed, we can write our test code.

Reading an ultrasonic distance sensor
To write code for distance sensors, it helps to understand how they work. As suggested 
previously, this system works by bouncing sound pulses off of objects and measuring  
the pulse return times.

The code on the Raspberry Pi sends an electronic pulse to the trigger pin to ask for  
a reading. In response to this pulse, the device makes a sound pulse and times its return. 
The echo pin responds using a pulse too. The length of this pulse corresponds to the 
sound travel time.

The graph in Figure 8.16 shows the timing of these:

Figure 8.16 – Timing of a pulse and the response for an ultrasonic distance sensor
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The GPIOZero library can time this pulse, and convert it into a distance, which we can 
use in our code.

The device might fail to get a return response in time if the sound didn't echo back soon 
enough. Perhaps the object was outside the sensor's range, or something dampened  
the sound.

As we did with our servo motor control class previously, we should use comments  
and descriptive names to help us explain this part of the code. I've called this file  
test_distance_sensors.py:

1. Begin by importing time and the DistanceSensor library:

import time
from gpiozero import DistanceSensor

2. Next, we set up the sensors. I've used print statements to show what is going on. 
In these lines, we create library objects for each distance sensor, registering the pins 
we have connected them on. Try to make sure these match your wiring:

print("Prepare GPIO Pins")
sensor_l = DistanceSensor(echo=17, trigger=27, queue_
len=2)
sensor_r = DistanceSensor(echo=5,  trigger=6,  queue_
len=2)

You'll note the extra queue_len parameter. The GPIOZero library tries to collect 
30 sensor readings before giving an output, which makes it smoother, but less 
responsive. And what we'll need for our robot is responsive, so we take it down  
to 2 readings. A tiny bit of smoothing, but totally responsive.

3. This test then runs in a loop until we cancel it: 

while True:

4. We then print the distance from our sensors. .distance is a property, as we saw 
with the .count property on our LED system earlier in the book. The sensors  
are continuously updating it. We multiply it by 100 since GPIOZero distance is  
in terms of a meter:

    print("Left: {l}, Right: {r}".format(
        l=sensor_l.distance * 100, 
        r=sensor_r.distance * 100))



168     Programming Distance Sensors with Python

5. A little sleep in the loop stops it flooding the output too much and prevents tight 
looping:

    time.sleep(0.1)

6. Now, you can turn on your Raspberry Pi and upload this code. 

7. Put an object anywhere between 4 centimeters and 1 meter away from the sensor,  
as demonstrated in the following image: 

Figure 8.17 – Distance sensor with object
Figure 8.17 shows an item roughly 10.5 cm from a sensor. The object is a small 
toolbox. Importantly it is rigid and not fabric. 

8. Start the code on the Pi with python3 test_distance_sensors.py. As you 
move around the object, your Pi should start outputting distances:

pi@myrobot:~ $ python3 test_distance_sensors.py 
Prepare GPIO Pins
Left: 6.565688483970461, Right: 10.483658125707734
Left: 5.200715097982538, Right: 11.58136928065528
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9. Because it is in a loop, you need to press Ctrl + C to stop the program running.

10. You'll see here that there are many decimal places, which isn't too helpful here.  
First, the devices are unlikely to be that accurate, and second, our robot does 
not need sub-centimeter accuracy to make decisions. We can modify the print 
statement in the loop to be more helpful:

    print("Left: {l:.2f}, Right: {r:.2f}".format(
        l=sensor_l.distance * 100, 
        r=sensor_r.distance * 100))

:.2f changes the way text is output, to state that there are always two decimal 
places. Because debug output can be essential to see what is going on in the robot, 
knowing how to refine it is a valuable skill.

11. Running the code with this change gives the following output:

pi@myrobot:~ $ python3 test_distance_sensors.py 
Prepare GPIO Pins
Left: 6.56, Right: 10.48
Left: 5.20, Right: 11.58

You've demonstrated that the distance sensor is working. Added to this is exploring how 
you can tune the output from a sensor for debugging, something you'll do a lot more 
when making robots. To make sure you're on track, let's troubleshoot anything that has 
gone wrong.

Troubleshooting
If this sensor isn't working as expected, try the following troubleshooting steps:

• Is anything hot in the wiring? Hold the wires to the sensor between the thumb and 
forefinger. Nothing should be hot or even warming! If so, remove the batteries, turn 
off the Raspberry Pi, and thoroughly check all wiring against Figure 8.12.

• If there are syntax errors, please check the code against the examples. You should 
have installed Python libraries with pip3 and be running with python3.
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• If you are still getting errors, or invalid values, please check the code and 
indentation.

• If the values are always 0, or the sensor isn't returning any values, then you may 
have swapped trigger and echo pins. Try swapping the trigger/echo pin numbers in 
the code and testing it again. Don't swap the cables on a live Pi! Do this one device 
at a time.

• If you are still getting no values, ensure you have purchased 3.3 V-compatible 
systems. The HC-SR04 model will not work with the bare Raspberry Pi.

• If values are way out or drifting, then ensure that the surface you are testing on is 
hard. Soft surfaces, such as clothes, curtains, or your hand, do not respond as well  
as glass, wood, metal, or plastic. A wall works well!

• Another reason for incorrect values is the surface may be too small. Make sure that 
your surface is quite wide. Anything smaller than about 5 cm square may be harder 
to measure.

• As a last resort, if one sensor seems fine, and the other wrong, it's possible that  
a device is faulty. Try swapping the sensors to check this. If the result is different, 
then a sensor may be wrong. If the result is the same, it is the wiring or code that  
is wrong.

You have now troubleshooted your distance sensor and made sure that it works. You 
have seen it output values to show that it is working and tested it with objects to see its 
response. Now, let's step up and write a script to avoid obstacles.

Avoiding walls – writing a script to avoid 
obstacles
Now that we have tested both sensors, we can integrate them with our robot class and 
make obstacle avoidance behavior for them. This behavior loop reads the sensors and  
then chooses behavior accordingly.
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Adding the sensors to the robot class
So, before we can use the sensors in a behavior, we need to add them to the Robot class, 
assigning the correct pin numbers for each side. This way, if pin numbers change or even 
the interface to a sensor changes, behaviors will not need to change:

1. To use the DistanceSensor object, we need to import it from gpiozero; the 
new code is in bold:

from Raspi_MotorHAT import Raspi_MotorHAT
from gpiozero import DistanceSensor

2. We create an instance of one of these DistanceSensor objects for each side in 
the robot class. We need to set these up in the constructor for our robot. We use  
the same pin numbers and queue length as in our test:

class Robot:
    def __init__(self, motorhat_addr=0x6f):
        # Setup the motorhat with the passed in address
        self._mh = Raspi_MotorHAT(addr=motorhat_addr)

        # get local variable for each motor
        self.left_motor = self._mh.getMotor(1)
        self.right_motor = self._mh.getMotor(2)

        # Setup The Distance Sensors
        self.left_distance_sensor = 
DistanceSensor(echo=17, trigger=27, queue_len=2)
        self.right_distance_sensor = 
DistanceSensor(echo=5, trigger=6, queue_len=2)

        # ensure the motors get stopped when the code 
exits
        atexit.register(self.stop_all)

Adding this to our robot layer makes it available to behaviors. When we create our robot, 
the sensors will be sampling distances. Let's make a behavior that uses them.
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Making the obstacle avoid behaviors
This chapter is all about getting a behavior; how can a robot drive and avoid (most) 
obstacles? The sensor's specifications limit it, with smaller objects or objects with  
a soft/fuzzy shell, such as upholstered items, not being detected. Let's start by drawing 
what we mean in Figure 8.18:

Figure 8.18 – Obstacle avoidance basics

In our example (Figure 8.18), a basic robot detects a wall, turns away, keeps driving until 
another wall is detected, and then turns away from that. We can use this to make our first 
attempt at wall-avoiding behavior.
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First attempt at obstacle avoidance
To help us understand this task, the following diagram shows a flow diagram for the 
behavior:

Figure 8.19 – Obstacle avoidance flowchart

The flow diagram in Figure 8.19 starts at the top. 
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This diagram describes a loop that does the following:

1. The Start box goes into a Get Distances box, which gets the distances from  
each sensor.

2. We test whether the left sensor reads less than 20 cm (a reasonable threshold):

a) If so, we set the left motor in reverse to turn the robot away from the obstacle.

b) Otherwise, we drive the left motor forward.

3. We now check the right sensor, setting it backward if closer than 20 cm, or forward 
if not.

4. The program waits a short time and loops around again.

We put this loop in a run method. There›s a small bit of setup required in relation to this. 
We need to set the pan and tilt to 0 so that it won't obstruct the sensors. I've put this code 
in simple_avoid_behavior.py:

1. Start by importing the robot, and sleep for timing:

from robot import Robot
from time import sleep
...

2. The following class is the basis of our behavior. There is a robot object stored in 
the behavior. A speed is set, which can be adjusted to make the robot go faster or 
slower. Too fast, and it has less time to react:

...
class ObstacleAvoidingBehavior:
    """Simple obstacle avoiding"""
    def __init__(self, the_robot):
        self.robot = the_robot
        self.speed = 60
        ...

3. Now the following method chooses a speed for each motor, depending on the 
distance detected by the sensor. A nearer sensor distance turns away from the 
obstacle:

    ...
    def get_motor_speed(self, distance):
        """This method chooses a speed for a motor based 
on the distance from a sensor"""
        if distance < 0.2:
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            return -self.speed
        else:
            return self.speed
    ...

4. The run method is the core, since it has the main loop. We put the pan and tilt 
mechanism in the middle so that it doesn't obstruct the sensors:

    ...
    def run(self):
        self.robot.set_pan(0)
        self.robot.set_tilt(0)

5. Now, we start the main loop:

        while True:
            # Get the sensor readings in meters
            left_distance = self.robot.left_distance_
sensor.distance
            right_distance = self.robot.right_distance_
sensor.distance
            ...

6. We then print out our readings on the console:

            ...
            print("Left: {l:.2f}, Right: {r:.2f}".
format(l=left_distance, r=right_distance))
            ...

7. Now, we use the distances with our get_motor_speed method and send this to 
each motor:

            ...
            # Get speeds for motors from distances
            left_speed = self.get_motor_speed(left_
distance)
            self.robot.set_left(left_speed)
            right_speed = self.get_motor_speed(right_
distance)
            self.robot.set_right(right_speed)
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8. Since this is our main loop, we wait a short while before we loop again. Under this is 
the setup and starting behavior:

            ...
            # Wait a little
            sleep(0.05)

bot = Robot()
behavior = ObstacleAvoidingBehavior(bot)
behavior.run()

The code for this behavior is now completed and ready to run. It's time to try it out. To 
test this, set up a test space to be a few square meters wide. Avoid obstacles that the sensor 
misses, such as upholstered furniture or thin obstacles such as chair legs. I've used folders 
and plastic toy boxes to make courses for these.

Send the code to the robot and try it out. It drives until it encounters an obstacle, and then 
turns away. This kind of works; you can tweak the speeds and thresholds, but the behavior 
gets stuck in corners and gets confused.

Perhaps it's time to consider a better strategy.

More sophisticated object avoidance
The previous behavior can leave the robot stuck. It appears to be indecisive with some 
obstacles and occasionally ends up ramming others. It may not stop in time or turn into 
things. Let's make a better one that drives more smoothly.

So, what is our strategy? Well, let's think in terms of the sensor nearest to an obstacle, 
and the furthest. We can work out the speeds of the motor nearest to it, the motor further 
from it, and a time delay. Our code uses the time delay to be decisive about turning away 
from a wall, with the time factor controlling how far we turn. This reduces any jitter. Let's 
make some changes to the last behavior for this: 

1. First, copy the simple_avoid_behavior.py file into a new file called  
avoid_behavior.py.

2. We won't be needing get_motor_speed, so remove that. We replace it with  
a function called get_speeds. This takes one parameter, nearest_distance, 
which should always be the distance sensor with the lower reading:

...
    def get_speeds(self, nearest_distance):
        if nearest_distance >= 1.0:
            nearest_speed = self.speed
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            furthest_speed = self.speed
            delay = 100
        elif nearest_distance > 0.5:
            nearest_speed = self.speed
            furthest_speed = self.speed * 0.8
            delay = 100
        elif nearest_distance > 0.2:
            nearest_speed = self.speed
            furthest_speed = self.speed * 0.6
            delay = 100
        elif nearest_distance > 0.1:
            nearest_speed = -self.speed * 0.4
            furthest_speed = -self.speed
            delay = 100
        else: # collison
            nearest_speed = -self.speed
            furthest_speed = -self.speed
            delay = 250
        return nearest_speed, furthest_speed, delay
...

These numbers are all for fine-tuning. The essential factor is that depending on the 
distance, we slow down the motor further from the obstacle, and if we get too close, 
it drives away. Based on the time delay, and knowing which motor is which, we can 
drive our robot. 

3. Most of the remaining code stays the same. This is the run function you've already 
seen:

    ...
    def run(self):
        # Drive forward
        self.robot.set_pan(0)
        self.robot.set_tilt(0)
        while True:
            # Get the sensor readings in meters
            left_distance = self.robot.left_distance_
sensor.distance
            right_distance = self.robot.right_distance_
sensor.distance            # Display this
            self.display_state(left_distance, right_
distance)
            ...
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4. It now uses the get_speeds method to determine a nearest and furthest distance. 
Notice that we take the min, or minimum, of the two distances. We get back the 
speeds for both motors and a delay, and then print out the variables so we can see 
what's going on:

            ...
            # Get speeds for motors from distances
            nearest_speed, furthest_speed, delay = self.
get_speeds(min(left_distance, right_distance))
            print(f"Distances: l {left_distance:.2f}, 
r {right_distance:.2f}. Speeds: n: {nearest_speed}, f: 
{furthest_speed}. Delay: {delay}")
            ...

We've used an f-string here, a further shortcut from .format (which we used 
previously). Putting the letter prefix f in front of a string allows us to use local 
variables in curly brackets in the string. We are still able to use .2f to control the 
number of decimal places.

5. Now, we check which side is nearer, left or right, and set up the correct motors:

            ...
            # Send this to the motors
            if left_distance < right_distance:
                self.robot.set_left(nearest_speed)
                self.robot.set_right(furthest_speed)
            else:
                self.robot.set_right(nearest_speed)
                self.robot.set_left(furthest_speed)
            ...

6. Instead of sleeping a fixed amount of time, we sleep for the amount of time in the 
delay variable. The delay is in milliseconds, so we need to multiply it to get seconds:

            ...
            # Wait our delay time
            sleep(delay * 0.001)
...

7. The rest of the code remains the same. You can find the full code for this file 
at https://github.com/PacktPublishing/Learn-Robotics-
Programming-Second-Edition/tree/master/chapter8.

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter8
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When you run this code, you should see smoother avoidance. You may need to tweak the 
timings and values. The bottom two conditions, reversing and reverse turning, might need 
to be tuned. Set the timings higher if the robot isn't quite pulling back enough, or lower if 
it turns away too far.

There are still flaws in this behavior, though. It does not construct a map at all and has no 
reverse sensors, so while avoiding objects in front, it can quite quickly reverse into objects 
behind it. Adding more sensors could resolve some of these problems. Still, we cannot 
construct a map just yet as our robot does not have the sensors to determine how far it  
has turned or traveled accurately.

Summary
In this chapter, we have added sensors to our robot. This is a major step as it makes the 
robot autonomous, behaving on its own and responding in some way to its environment. 
You've learned how to add distance sensing to our robots, along with the different kinds  
of sensors that are available. We've seen code to make it work and test these sensors.  
We then created behaviors to avoid walls and looked at how to make a simplified but 
flawed behavior, and how a more sophisticated and smoother behavior would make  
for a better system.

With this experience, you can consider how other sensors could be interfaced with your 
robot, and some simple code to interact with them. You can output data from sensors so 
you can debug their behavior and create a behavior to make a robot perform some simple 
navigation on its own.

In the next chapter, we look further into driving predetermined paths and straight lines 
using an encoder to make sure that the robot moves far more accurately. We use an 
encoder to compare our motor's output with our expected goals and get more accurate 
turns.

Exercises
1. Some robots get by with just a single sensor. Can you think of a way of avoiding 

obstacles reliably with a single sensor?

2. We have a pan/tilt mechanism, which we use later for a camera. Consider putting  
a sensor on this, and how to incorporate this into a behavior.

3. The robot behavior we created in this chapter can reverse into things. How could 
you remedy this? Perhaps make a plan and try to build it.
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Further reading
Please refer to the following links for more information:

• The RCWL-1601 is still quite similar to the HC-SR04. The HC-SR04 data  
sheet has useful information about its range. You can find the data sheet at 
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf.

• ModMyPi has a tutorial with an alternative way to wire the original HC-SR04 
types, and level shift their IO: https://www.modmypi.com/blog/hc-sr04-
ultrasonic-range-sensor-on-the-raspberry-pi.

• Raspberry Pi Tutorials also has a breadboard layout and Python script, using  
RPi.GPIO instead of gpiozero, at https://tutorials-raspberrypi.
com/raspberry-pi-ultrasonic-sensor-hc-sr04/.

• We've started to use many pins on the Raspberry Pi. When trying to ascertain  
which pins to use, I highly recommend visiting the Raspberry Pi GPIO at 
https://pinout.xyz/.

• We briefly mentioned debug output and refining it. W3schools has an interactive 
guide to Python format strings at https://www.w3schools.com/python/
ref_string_format.asp.

• There are many scholarly articles available on more interesting or 
sophisticated object behavior. I recommend reading Simple, Real-Time 
Obstacle Avoidance Algorithm (https://pdfs.semanticscholar.
org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf)  
for mobile robots for a more in-depth look at these behaviors.

https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://pinout.xyz/
https://www.w3schools.com/python/ref_string_format.asp
https://www.w3schools.com/python/ref_string_format.asp
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
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Strips in Python
LED lights can be used with a robot to debug and give it feedback so that the code 
running on the robot can show its state. Colored RGB LEDs let you mix the red, green, 
and blue components of light to make many colors, adding brightness and color to  
a robot. We have not paid much attention to making it look fun, so this time we will  
focus on that.

Mixing different sequences of LEDs can be used to convey information in real time. You 
can use which are on/off, their brightness, or their color to represent information. This 
feedback is easier to read than a stream of text, which will help as sensors are added to the 
robot. This also means the code on the robot can show state without relying on the SSH 
terminal to do so.

In this chapter, we will learn the following:

• What is an RGB strip?

• Comparing light strip technologies

• Attaching the light strip to the Raspberry Pi
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• Making a robot display a code object

• Using the light strip for debugging the avoid behavior 

• Making a rainbow display with LEDs

Technical requirements
To build this you will need the following:

• A computer with internet access and Wi-Fi

• The robot, a Raspberry Pi, and the code from the previous chapter

• The Pimoroni LED SHIM

The code for this chapter is on GitHub at https://github.com/
PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-
Programming-Second-Edition/blob/master/chapter9.

Check out the video at the following link to see the Code in Action: https://bit.
ly/39vglXm.

What is an RGB strip?
Using lights to display data can be a simple yet flexible way to get data to the user without 
connecting a full display. For example, a single light could be turned on or off to indicate 
whether a robot is powered on or the state of a simple sensor. A multicolor light can 
change color to show more detail, to indicate a few different states that the robot is in. 
RGB in this chapter stands for Red-Green-Blue, so by controlling the intensity levels of 
these color channels in a light, multiple colors can be shown. We'll investigate how this 
happens later in the RGB values section.

Adding multiple lights lets you show more data. These can be in a strip (a line of lights),  
as well as panels/matrixes, rings, and other interesting shapes.

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter9
https://bit.ly/39vglXm
https://bit.ly/39vglXm
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Comparing light strip technologies
There are many competing technologies for lights and light strips. For light types, 
incandescent lights, such as old light bulbs, tend to use a lot of power and take up 
too much space to be useful in robots. Fluorescent lights, such as kitchen strips or 
curly compact types, need complex power systems that also take up too much space. 
Electroluminescent wire, also known as EL wire, is often used to decorate objects by 
outlining them; it looks interesting but is tricky to control. Light Emitting Diode (LED) 
technology is low power and tends to be small and easy to control, which makes it best 
suited for robots such as ours. LEDs are also cheap.

The most useful kind, in our case, which we will use in this chapter, are addressable RGB 
LEDs. Addressable means that each individual LED in the strip can be set to different 
colors and brightness, allowing a sequence of colors along the strip. To keep it simple,  
we will use a type with a built-in controller.

Figure 9.1 shows some of the types of addressable RGB LED configurations I have 
experimented with:

Figure 9.1 – Types of addressable RGB LEDs

All of these LED controllers take a stream of data. Some types, such as the Neopixel, 
WS2812, SK9822, APA102C, DotStar, and 2801 types, take the red, green, and blue 
components that they need, and then pass the remaining data to the next LED. Designers 
arrange these LEDs into strips, rings, or square matrixes, chaining them to take advantage 
of how they pass the data along. The LED strips can come as rigid sticks or as flexible 
strips on a reel. For our robot, eight or more LEDs make for a great display.



184     Programming RGB Strips in Python

There are also some completely different technologies, such as the LED SHIM from 
Pimoroni and LED matrices in color using shift registers. The Pimoroni LED SHIM is  
one of the easiest to use (with a Raspberry Pi) of the LED strips. It houses a controller  
(the IS31FL3731), which is controlled over the I2C data bus. The Pimoroni LED SHIM 
has 24 LEDs, which is more than enough to cater to our needs. It doesn't need any extra 
power handling and is also widely available. 

Our robot uses the I2C data bus for the motor controller, which happily shares with other 
devices, such as the LED SHIM, by having a different address. I2C instructions are sent  
as an address for the device, followed by an I2C register to write and a value for it. 

Because of its simplicity and compatibility with our robot, I will continue this chapter with 
the Pimoroni LED SHIM. This can be bought from Mouser Electronics in most countries, 
along with Pimoroni, Adafruit, and SparkFun.

RGB values
The colors red, green, and blue can mix to make almost any color combination. Systems 
express these as RGB values. RGB is the same principle used by most, if not all, color 
display screens you see. TVs, mobile phones, and computer screens use this. Multicolor 
LEDs use the same principle to produce many colors. Code usually specifies the amounts 
of each color to mix as three-number components, as shown in the following diagram:

Figure 9.2 – The RGB color space  
[SharkD / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)]

The diagram in Figure 9.2 shows an RGB color cube. It has arrows showing axes for 
increasing each of the red, green, and blue components. The exposed surfaces of the cube 
show different shades and intensities as the color combinations mix throughout the cube.

The corner to the bottom-front-right is blue, the top-front-right is turquoise (mixing blue 
and green), the bottom-front-left is purple (mixing red and blue), the bottom-far-left is 
red (with no green or blue), and the top-far-left is yellow (high red and green, no blue). 
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As each value is increased, we get different colors from them being mixed. The top-front-
left corner would be the maximum of all three – white. The bottom-rear-right corner 
would be the minimum of all three – black. The cutout shows a color with intensities  
as fractions.

In our code, we will use numbers ranging from 0 for absolutely turned off to 255 for full 
intensity, with values in between for many levels of intensity. The colors are mixed by 
adding, so adding all of them at full brightness makes white.

Although this theoretically gives many colors, in practice, the differences between the 
intensity of 250 and 255 are not discernible on most RGB LEDs.

You have seen some of the LED technologies and a little information about how to  
mix colors for them. We have also made a decision about which technology to use,  
the Pimoroni LED SHIM. Since we'll be attaching this to our robot, please buy one  
and come back for the next section.

Attaching the light strip to the Raspberry  Pi
Before we write code to display color sequences on the LED SHIM, we need to attach 
it to the Raspberry Pi on our robot. After we have finished this section, the robot block 
diagram will look as in Figure 9.3:

Figure 9.3 – The robot block diagram with the LED strip
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The block diagram now shows the LED strip connected to the Raspberry Pi, with an arrow 
indicating information flow from the Raspberry Pi to the strip. The strip is highlighted as 
a new addition to the system. Let's see how this works.

Attaching the LED strip to the robot
The Pimoroni LED SHIM attaches quite readily to the Raspberry Pi. We put it on top of 
the motor controller, with its pass-through header, so that we can see the lights on top. 
Take a look at Figure 9.4 to see how:

Figure 9.4 – Fitting the LEDs

Use Figure 9.4 with the following steps to attach the strip:

1. The strip is small. Line the strip up with the header pins coming from the top of  
the motor HAT. You will need to unplug the wires already plugged into the 
Raspberry Pi to add the SHIM.

2. The wider part should be sticking out from the HAT. Gently push the SHIM onto  
the pins, only a little at first, working across the strip until all the pins are in the 
holes – it is slightly stiff but should grip on.

3. Once all the pins are in, evenly push the SHIM down so that the pins mostly  
stick out.

4. Now, you'll need to replace the wires. Refer to Figure 8.15 in Chapter 8, 
Programming Distance Sensors with Python, for the distance sensor wiring 
information.

Now that you've attached the LED SHIM, this robot is ready to light up. Let's program it.
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Making a robot display the code object
Although we are building around the Pimoroni LED SHIM, we've already seen that  
there are other types of RGB LED systems. Since we might later swap the SHIM out for  
a different system, it would be a good idea to make an interface on top of the LEDs. Like 
the motor's interface, this decouples handling hardware and making behaviors.

Making an LED interface
So, what interface do we want for the LEDs? First, we want them to be available on the 
robot as robot.leds. We want to clear the LEDs (turn them all off), set each individual 
LED to a different color, and set a bunch/range of LEDs to a list of colors. 

It's useful for the code to tell us how many LEDs we have, so if the number changes,  
the animations or displays still make some sense.

For the colors, we use three values – r, g, and b – to represent the red, green, and blue 
components. Python has a type called a tuple, perfect for making a group from a small 
number of items such as these colors. When we use color as a parameter, this is a tuple 
of (r, g, b).

The LEDs in strips are addressable, so our code uses an LED number starting at 0.

So, as a structure, our code starts with robot.leds. leds will be a member of the 
existing robot class. It is an object with these members:

• set_one(led_number, color): This sets one LED at led_number to the 
specified color.

• set_range(led_range, color): This sets all the LEDs defined by  
a Python iterable led_range to color. A Python iterable can be a list of  
LED numbers [0, 3], or it can be a range made using the range function.  
For example, range(2,8) creates the list [2, 3, 4, 5, 6, 7].

• set_all(color): This sets all of the LEDs to the color.

• clear(): This clears all of the LEDs to black, turning them all off.

• show(): All of the other methods prepare a display, allowing you to set combinations 
of LEDs. Nothing is updated on the LED device until your code calls this. This 
method reflects how most LED strips expect to set all the LEDs from one stream  
of data. 

• count: This holds the number of LEDs in the strip.
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Keeping the preceding points in mind, let's write this code for the LED SHIM:

1. First, we need to install the LED SHIM library. So, on the Raspberry Pi, type the 
following:

pi@myrobot:~ $ pip3 install ledshim

2. Our code must start by importing this and setting up the device. Put the following 
code in leds_led_shim.py (named after the device type):

import ledshim

class Leds: 
    @property
    def count(self):
        return ledshim.width

Our code only needs to use import ledshim to set the device up.

We have set up a property for the number of LEDs in our LED class, called count. 
This property can be read like a variable but is read-only, and our code can't 
accidentally overwrite it.  

3. Now, we create the methods to interact with the strip. Setting a single LED is fairly 
straightforward:

    def set_one(self, led_number, color):
        ledshim.set_pixel(led_number, *color)

While our interface uses a tuple of (r, g, b), the LED SHIM library expects 
them to be separate parameters. Python has a trick for expanding a tuple into a set 
of parameters by using an asterisk with the variable name. This expansion is what 
*color means on the second line.

The LED SHIM code raises KeyError if the user attempts to set an LED out  
of range.

4. Setting a bunch of LEDs is also a simple wrapper in our code:

    def set_range(self, led_range, color):
        ledshim.set_multiple_pixels(led_range, color)
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5. We also want a way to set all of the LEDs. This code is similar to setting a  
single LED:

    def set_all(self, color):
        ledshim.set_all(*color)

6. Let's add a method for clearing the LEDs:

    def clear(self):
        ledshim.clear()

7. Finally, we need the show code, to send the colors we've configured to the LEDs. 
The Pimoroni LED SHIM library has made this very simple:

    def show(self):
        ledshim.show()

We have installed the LED SHIM library and created an interface for ourselves. We can 
use this interface to communicate with the LEDs, and it is designed to be swapped out for 
compatible code for a different type of LED device. Now, we'll make this LED interface 
available in our Robot object. 

Adding LEDs to the Robot object
Next, we update our robot.py file to deal with an LED system. For this, we do  
the following:

1. Start by adding the leds_led_shim file to the imports (the new code is in bold):

from Raspi_MotorHAT import Raspi_MotorHAT
from gpiozero import DistanceSensor
import atexit
import leds_led_shim

2. Next, we add an instance of the SHIM to the constructor (init) method for Robot 
(the new code is in bold): 

class Robot:
    def __init__(self, motorhat_addr=0x6f):
       # Setup the motorhat with the passed in address
       self._mh = Raspi_MotorHAT(addr=motorhat_addr)

       # get local variable for each motor
       self.left_motor = self._mh.getMotor(1)
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       self.right_motor = self._mh.getMotor(2)

       # Setup The Distance Sensors
       self.left_distance_sensor = 
DistanceSensor(echo=17, trigger=27, queue_len=2)
        self.right_distance_sensor = 
DistanceSensor(echo=5, trigger=6, queue_len=2)

        # Setup the Leds
        self.leds = leds_led_shim.Leds()

3. As we have to stop more than just the motors, we'll swap stop_motors for a new 
stop_all method in the atexit call to stop other devices (such as the LEDs) too: 

        # ensure everything gets stopped when the code 
exits
        atexit.register(self.stop_all)

4. Create the stop_all method, which stops the motors and clears the LEDs: 

    def stop_all(self):
        self.stop_motors()

        # Clear the display
        self.leds.clear()
        self.leds.show()

Important note
The complete code can be found at https://github.com/
PacktPublishing/Learn-Robotics-Fundamentals-of-
Robotics-Programming-Second-Edition/blob/master/
chapter9.

We have now added support for the LEDs to the Robot class, making the interface we 
designed earlier available, and ensuring that the LEDs are cleared when the robot code 
exits. Next, we will start testing and turning on LEDs.

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter9
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Testing one LED
We have installed some hardware, along with a library for it, and then added code to  
make this available in our robot. However, before we go further, we should make sure  
that everything works with a test. This is a good place to find any problems and 
troubleshoot them.  

Let's try testing a single LED. One aspect of our robot running Python that we've not 
explored is that it can run the Python REPL – read, eval, print loop. What that means  
is you can start Python and immediately type code to run there. We'll use this to test  
our LEDs a little:

1. Copy the leds_led_shim.py and robot.py code onto the Raspberry Pi.

2. SSH into the robot, and just type python3. The Raspberry Pi should respond  
like this:

pi@myrobot:~ $ python3
Python 3.7.3 (default, Apr  3 2019, 05:39:12) 
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more 
information.
>>>

3. Let's get our robot library ready to use. Type the parts shown in bold:

>>> import robot
>>> r = robot.Robot()

4. Now, try turning on an LED, setting it to red:

>>> r.leds.set_one(0, (255, 0, 0))

5. Hmm – nothing happened. Remember, we need to call leds.show to display our 
setting on them:

>>> r.leds.show()

You should now see a single red LED.

6. Let's try and set another to purple by mixing red and blue LEDs:

>>> r.leds.set_one(5, (255, 0, 255))
>>> r.leds.show()
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This adds LED 5, so now two LEDs are lit. 

Important note
Do not forget to use leds.show to send the colors to the LED device.

7. To stop this session, press Ctrl +D on an empty line. The atexit code 
automatically turns all the LEDs off.

You should now have seen an LED working and lighting up in multiple colors. This 
demonstrates that the code so far is good. If not, please refer to the following section.  
If this is all working, skip on ahead to the Testing all LEDs section.

Troubleshooting
If you encounter problems trying to light the LEDs, there are some troubleshooting steps 
you can take.

If running the code shows errors, do the following:

• Check that you have enabled I2C (as shown in Chapter 7, Drive and Turn – Moving 
Motors with Python). 

• Use sudo i2cdetect -y 1, as seen in Chapter 7, Drive and Turn – Moving 
Motors with Python. You should see the LEDs at the address 74.

• Check that you have installed the ledshim Python package with pip3.

• Carefully check the code for mistakes and errors. If it's the code from GitHub,  
create an issue!

If the LEDs do not light at all, do the following:

• Try running the example code that comes with the SHIM at https://github.
com/pimoroni/led-shim/tree/master/examples.

• Ensure you have installed the LEDs the correct way around, as shown in Figure 9.4.

• Ensure you have evenly pushed the LED strip down onto the header pins.

• Did you remember to use leds.show()?

By following these troubleshooting tips, you will have eliminated the most common  
issues with this system. You should now have a working LED and be able to proceed  
to the next section.

https://github.com/pimoroni/led-shim/tree/master/examples
https://github.com/pimoroni/led-shim/tree/master/examples
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Testing all LEDs
Now, we can try the set_all method. We'll make something that simply flashes a couple 
of different colors on the LEDs. Create a file called leds_test.py:

1. First, we need imports. We need to import our Robot library and time to  
animate this:

from robot import Robot
from time import sleep

2. Now, let's set up our bot, along with a couple of named colors:

bot = Robot()
red = (255, 0, 0)
blue = (0, 0, 255)

3. The next part is the main loop. It alternates between the two colors, with sleep:

while True:
    print("red")
    bot.leds.set_all(red)
    bot.leds.show()
    sleep(0.5)
    print("blue")
    bot.leds.set_all(blue)
    bot.leds.show()
    sleep(0.5)

The print methods are there to show when the system is sending the data to the 
LEDs. We use the set_all method to set all the LEDs to red and call the show 
method to send it to the device. The code uses sleep to wait for half a second, 
before switching to blue. 

Important note
The complete code is at https://github.com/PacktPublishing/
Learn-Robotics-Fundamentals-of-Robotics-
Programming-Second-Edition/blob/master/chapter8/
leds_test.py.

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter8/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter8/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter8/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming-Second-Edition/blob/master/chapter8/leds_test.py
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4. When you have uploaded these files to the Raspberry Pi, type the following to show 
the red/blue alternating LED display:

pi@myrobot:~ $ python3 leds_test.py

5. Press Ctrl + C on the terminal to stop this running.

We have now shown all the LEDs working. This has also shown them switching between 
different colors, using timing to produce a very simple animation. We can build on this, 
producing more interesting uses of color and animation, but first, we will divert to learn  
a bit more about mixing colors.

Making a rainbow display with the LEDs
Now we get to use these for some fun. We will extend our avoiding behavior from the 
previous chapter to show rainbow bar graphs on a side corresponding to the distances 
read. We could also use this for sensors. Before we can link the movement to the 
animation, how is a rainbow created?

Colour systems
RGB is how the hardware expects colors. However, RGB is less convenient for expressing 
intermediate colors or creating gradients between them. Colors that appear close to the 
eye can be a little far apart when in RGB. Because of this, there are other color systems.  

The other color system we use is Hue, Saturation, and Value (HSV). We use HSV in this 
chapter to make rainbow-type displays and when doing computer vision in a later chapter 
to assist our code in detecting objects.

Hue
Imagine taking the colors of the spectrum and placing them on a circle, blending through 
red to orange, orange to yellow, yellow to green, green to blue, blue to purple, and 
back around to red. The hue expresses a point around this circle. It does not affect the 
brightness of the color or how vivid it is. Figure 9.5 shows how we can represent these 
points on a color wheel:
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Figure 9.5 – A color wheel of hues

In Figure 9.5, the circle shows that around 0 degrees, a red hue is seen. The compass points 
around the circle correspond to different colors. Colors are blended as you move around 
from one hue to another. You may have seen something like this in a color wheel gadget 
on a painting or drawing computer program. A continuous wheel setup like this is what 
lets us make a rainbow.

Saturation
If you take a color such as red, it can be a grayish/dull red or a vivid, intense red. 
Saturation is an expression of the vividness of the color. As you go toward zero, it only 
makes shades of gray. As we increase the saturation, color begins to emerge – first in pastel 
tones, through to poster colors, and then to a striking hazard sign or pure colors at the 
high end of the saturation scale.

Value
The value of the color is its brightness. It ranges from black at 0, through to a very dark 
version of the color, to a very bright color. Note that this does not approach white  
(in other words, pink colors), but a very bright red. To make a white color, you need to 
reduce the saturation too. Other color systems (such as HSL) specify a light component 
that would make things white this way.
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Converting HSV to RGB
There are complicated formulas to convert between one color system to another. However, 
Python can make this conversion itself. 

We will use colorsys.hsv_to_rgb to make this conversion. It accepts the three HSV 
components as fractions between 0 and 1, inclusive. 

In the case of the hue component, 0 is the start of the circle, 0.5 represents 180 degrees,  
the half circle, and 1 is all the way around to 360, the full circle.

The saturation component at 0 is gray, fully desaturated, and 1 is the most intense color.

The value component at 0 is black, fully dark, and at 1 is the brightest – a fully lit color. 

To make a bright cyan color, we would go past the half circle to about 0.6 for hue, 1.0  
for saturation, and 1.0 for value:

cyan = colorsys.hsv_to_rgb(0.6, 1.0, 1.0)

However, this is not enough. The output from the colorsys call is a tuple, a collection  
of three items for the R, G, and B components. 

The output components are in terms of 0 to 1.0, too. Most RGB systems expect values 
between 0 and 255. To use them, we need to convert these values back up by multiplying 
them:

cyan_rgb = [int(c * 255) for c in cyan]

In the preceding line, we loop over each component, c, and multiply it by 255. By putting 
a for loop in square brackets like that in Python, we can loop over elements, and put the 
result back into a list.

Now that you know how to convert HSV values to RGB, let's use this information to make 
a rainbow.

Making a rainbow on the LEDs
We can use our color system understanding to make a rainbow on the LEDs: 
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Figure 9.6 – LEDs showing a rainbow on the robot

Figure 9.6 shows a rainbow being displayed on the LEDs attached to the robot.

Let's make this! Make a new file called led_rainbow.py:

import colorsys

def show_rainbow(leds, led_range):
    led_range = list(led_range)
    hue_step = 1.0 / len(led_range)
    for index, led_address in enumerate(led_range):
        hue = hue_step * index
        rgb = colorsys.hsv_to_rgb(hue, 1.0, 0.6)
        rgb = [int(c*255) for c in rgb]
        leds.set_one(led_address, rgb)

Let's go over this file line by line:

• This code starts by importing colorsys.

• We define a function, show_rainbow, which takes two parameters, a link  
to our LEDs system (which would usually be given robot.leds) and an LED 
range to set.

• Because we want to know the length of our LED range, we need to make sure it is  
a list, so we cast this on the first line of our function.
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• For a rainbow, the hue value should sweep a full circle. In Python, colorsys is the 
values from 0 to 1. We want to advance the hue a fraction of a step for each LED in 
the range. By dividing 1.0 by the number of LEDs in a range, we get this fraction.

• We then loop over the LEDs. enumerate gives us an index while led_address 
advances. This code makes no assumptions about the range so that it could use an 
arbitrary list of LEDs.

• We then multiply hue_step and index to give the hue value, the right fraction of 
1.0 to use. The following line converts this into an RGB value with a fixed saturation 
and brightness value.

• Because colorsys outputs values between 0 and 1, the code needs to multiply 
this by 255 and make the resulting number into an integer: rgb = [int(c*255) 
for c in rgb].

• The code uses the leds.set_one method with this RGB value and the LED 
address.

Let's test this with a file called test_rainbow.py:

from time import sleep
from robot import Robot
from led_rainbow import show_rainbow

bot = Robot()

while True:
    print("on")
    show_rainbow(bot.leds, range(bot.leds.count))
    bot.leds.show()
    sleep(0.5)
    print("off")
    bot.leds.clear()
    bot.leds.show()
    sleep(0.5)

This is quite similar to our previous red/blue test. However, in the first section, we use the 
show_rainbow function, which the code has imported from led_rainbow. It passed 
in the robot's LEDs and makes a range covering all of them. 

The code waits for half a second and then clears the LEDs for half a second. These are in 
a loop to make an on/off rainbow effect. Start this with python3 test_rainbow.py, 
and use Ctrl + C to stop it after seeing it work. 
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Now that you've seen some simple animation and multicolor LED usage, we can take this 
to the next level by making the LEDs respond to sensors.

Using the light strip for debugging the avoid 
behavior
LEDs in rainbows are fun, and switching colors looks nice. However, LEDs can be used 
for practical purposes too. In Chapter 8, Programming Distance Sensors with Python, we 
added sensors to our robot to avoid obstacles. You can follow along in a PuTTY window, 
and see what the sensors are detecting by reading the numbers. But we can do better;  
with the light strip, we can put information on the robot to tell us what it is detecting.

In this section, we will tie the LED output together to values from a behavior, first by basic 
lighting, and then by making some rainbow colors, too.

Adding basic LEDs to the avoid behavior
Before we get fancy and reintroduce the rainbow, let's start with the basic version. The 
intent here will be to make two indicator bars to the left and right side of the LED bar.  
For each bar, more LEDs will light when the corresponding distance sensor detects  
a closer obstacle. We'll make it so that the bars go into the middle, so when a single outer 
LED is lit, the obstacle is far away. When most or all of the LEDs on one side are lit, the 
obstacle is much closer.

We need to add a few parts to our avoid behavior:

• Some variables to set up the LED display, and how our distances map to it

• A way to convert a distance in to how many LEDs to show

• A method to display the state of our sensors on the LEDs using the preceding items

• To call the display_state method from the behavior's main loop

Let's see how to incorporate the preceding points. Open the avoid_behavior.py file 
that you made in Chapter 8, Programming Distance Sensors with Python, and follow along:

1. Before we can use the LEDs in this behavior, we need to separate them into the bars. 
In the __init__ method of ObstacleAvoidingBehavior, add the following:

        # Calculations for the LEDs
        self.led_half = int(self.robot.leds.leds_count/2)
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2. Next, we need a color for the LEDs when sensing. I chose red. I encourage you to 
try another:

        self.sense_colour = 255, 0, 0

3. With the variables' setup out of the way, let's add a method for converting the 
distance into LEDs. I added this after the __init__ method:

    def distance_to_led_bar(self, distance):

4. The distances are in terms of meters, with 1.0 being 1 meter, so subtracting the 
distance from 1.0 inverts this. The max function will return the largest of the two 
values, here it is used to ensure we don't go below zero:

        # Invert so closer means more LED's. 
        inverted = max(0, 1.0 - distance)

5. Now, we multiply this number, some fraction between 0 and 1, by the self.led_
half value to get the number of LEDs to use. We round it up and turn this into an 
integer with int(round()), as we can only have a whole number of LEDs turned 
on. Rounding means that after our multiplication, if we end up with a value such as 
3.8, we round it up to 4.0, then convert it into an integer to light four LEDs. We add 
1 to this so that there's always at least one LED, and then return it:

        led_bar = int(round(inverted * self.led_half))
        return led_bar

6. The next method is a trickier one; it will create the two bars. Let's start by declaring 
the method and clearing the LEDs:

    def display_state(self, left_distance, right_
distance):
        # Clear first
        self.robot.leds.clear()

7. For the left bar, we convert the left sensor distance to the number of LEDs, then 
create a range covering 0 to this number. It uses the set_range method to set a 
bunch of LEDs to sense_color. Note that your LEDs might be the other way 
around, in which case swap left_distance and right_distance in this 
display method:

        # Left side
        led_bar = self.distance_to_led_bar(left_distance)
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        self.robot.leds.set_range(range(led_bar), self.
sense_colour)

8. The right side is trickier; after converting to an LED count, we need to create a range 
for the LEDs. The variable led_bar holds the number of LEDs to light. To light the 
right of the bar, we need to subtract this from the count of the LEDs to find the first 
LED, and create a range starting there to the total length. We must subtract 1 from 
the length – otherwise it will count 1 LED too far:

        # Right side
        led_bar = self.distance_to_led_bar(right_
distance)
        # Bit trickier - must go from below the leds 
count up to the leds count.
        start = (self.robot.leds.count – 1) - led_bar
        self.robot.leds.set_range(range(start, self.
robot.leds.count - 1), self.sense_colour)

9. Next, we want to show the display we've now made:

        # Now show this display
        self.robot.leds.show()

10. We then display our readings on the LEDs by calling display_state inside  
the behavior's run method. Here are a couple of lines for context, with the extra  
line highlighted:

            # Get the sensor readings in meters
            left_distance = self.robot.left_distance_
sensor.distance
            right_distance = self.robot.right_distance_
sensor.distance
            # Display this
            self.display_state(left_distance, right_
distance)
            # Get speeds for motors from distances
            nearest_speed, furthest_speed, delay = self.
get_speeds(min(left_distance, right_distance))

Save this, send it to the Raspberry Pi, and run it. When it's running, you should be able  
to see the LEDs light up in a bar based on the distance. This is both satisfying and gives  
a good feel for what the robot is detecting. Let's make this a little more interesting by 
adding rainbows.
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Adding rainbows
We can use our LED rainbow to make our distance-sensing demo even more fun: 

Figure 9.7 – Distance sensor rainbow bars

Figure 9.7 shows a photo of the rainbow bars for each distance sensor. This is a great visual 
demonstration of the LEDs animating.

Since we added a library for showing rainbows, we can reuse it here. Let's see how to do it:

1. Open up the avoid_behaviour.py code from the previous section.  

2. At the top, import led_rainbow so that we can use it:

from robot import Robot
from time import sleep
from led_rainbow import show_rainbow

3. Our existing code displayed a bar for the left. Instead of a bar, display a rainbow 
here. We need to ensure we have at least one item:

     # Left side
     led_bar = self.distance_to_led_bar(left_distance)
     show_rainbow(self.robot.leds, range(led_bar))
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4. Once again, the right side will be a little bit trickier; as we want the rainbow to  
go the other way, we need to make the range count backward for the rainbow too. 
The Python range function, along with the start and end parameters, takes  
a step parameter. By making a step of -1, we can count down in the range:

        start = (self.robot.leds.count – 1) - led_bar
        right_range = range(self.robot.leds.count - 1, 
start, -1)
        show_rainbow(self.robot.leds, right_range)

5. Upload this and run it, and the bar graph will be in rainbow colors instead of  
a solid color.

You have gone from a single LED to a number of LEDs. With some work on color systems, 
we were able to generate a rainbow and use it to show the status of a behavior.

Summary
In this chapter, you learned how to interact with and use RGB LEDs, as well as how  
to choose and buy RGB LED strips that work with the Raspberry Pi. You learned how  
to make code for the LEDs on the robot, using them with robot behaviors. You also saw 
how the HSV color system works, which can be used to generate rainbows.

You can take the techniques used here to add LED-based status displays to robots and 
write code to link them with behaviors.

In the next chapter, we will look at servo motors and build a pan and tilt mechanism for 
moving sensors.

Exercises
1. Try mixing a different RGB color, or looking one up, and using set_one,  

set_all, or set_range to light LEDs in that color.

2. Use the show left rainbow and show right rainbow functions to make the robot turn 
on rainbows corresponding to the side it's turning to in the behaviour_path code.

3. By making a timer loop and advancing an index or changing a range, it would  
be possible to animate the rainbows or make them scan across the LED bar. Try  
this out.

4. Could the other parts of the HSV color be used to make pulsing LED strips that 
change brightness?
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Further reading
Please refer to the following for more information:

• Make Electronics: Learning by Discovery, Charles Platt, Make Community, LLC: I've 
only started to cover some basic electronics with the switch and breadboard. To get 
a real feel for electronics, Make Electronics is a superb introduction.

• For more advanced electronics, try Practical Electronics for Inventors, Fourth Edition, 
Paul Scherz, Simon Monk, McGraw-Hill Education TAB: This gives practical building 
blocks for electronics that can be used to interface a robot controller with almost 
anything or build new sensors.

• The colorsys library, like most Python core libraries, has a great reference: 
https://docs.python.org/3/library/colorsys.html.

• Pimoroni have some other demos with the LED SHIM at https://github.
com/pimoroni/led-shim/tree/master/examples. These could be  
fun to adapt to our LED layer.

https://docs.python.org/3/library/colorsys.html
https://github.com/pimoroni/led-shim/tree/master/examples
https://github.com/pimoroni/led-shim/tree/master/examples
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Using Python to 

Control Servo 
Motors

Servo motors can make precise and repeatable motions. Motion such as this is vital for 
moving sensors, controlling robot legs or arms, and moving them to a known position. 
Its uses are so engineers can predict robot behavior, so a robot can repeat things in 
automation, or so code can move limbs to accurately respond to what their sensors are 
instructing them. Raspberry Pi or add-on boards can control them. In this chapter, we  
will use these motors to build a pan and tilt mechanism—a head to position a sensor.

In this chapter, we will cover the following topics:

• What are servo motors?

• Positioning a servo motor with the Raspberry Pi

• Adding a pan and tilt mechanism

• Creating pan and tilt code
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Technical requirements
For this chapter, you require the following:

• The robot with the Raspberry Pi built in the previous chapters

• Screwdrivers—small Phillips

• Small pliers or a set of miniature spanners

• Nylon bolts and standoffs kit—2.5 mm

• A two-axis mini pan-tilt micro servo kit

• Two micro SG90/9g or MG90s servo motors, with their hardware and servo horns. 
The pan-tilt kit may already include the following:

• Cutting pliers or side cutters

• Safety goggles

The code for this chapter is available at https://github.com/PacktPublishing/
Learn-Robotics-Programming-Second-Edition/blob/master/
chapter10/.

Check out the following video to see the Code in Action: https://bit.ly/2LKh92g.

What are servo motors?
Servo motors, or servomechanism motors, are used to position robotic appendages 
such as arms, grippers, legs, and sensor mounts. They create other movements where 
the position is the main factor, unlike the wheel motors (DC motors), where speed is the 
controlling factor. Servo motors are used where (to some level of accuracy) turning to a 
specific place might be required. You can use code to control these precise positioning 
movements or a sequence of them:

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter10/
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter10/
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter10/
https://bit.ly/2LKh92g
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Figure 10.1 – A small selection of servo motors

Servos come in many sizes, from the very small at around 20-30 mm (shown in Figure 10.1) 
to those large enough to move heavy machinery. Figure 10.2 shows some of the miniature 
hobby servos I use for my robots:

Figure 10.2 – A small selection of servo motors in robots

Now that you've seen where you might use servo motors, we can dive deeper and find out 
how a servo motor works.
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Looking inside a servo
Inside the compact form of a servo motor hides a controller, a DC motor, a gearbox 
(usually with a stop), and a sensor. These motors have a built-in feedback system. A servo 
motor takes input from a controller, which specifies a position for the motor to go to. The 
servo's controller gets the motor's current direction from the internal sensor. The controller 
compares the current motor position with the position that has been requested and 
generates an error—a difference. Based on this difference, the servo drives its motor to try 
and reduce that error to zero. When the motor moves, the sensor changes, and that error 
value changes, generating feedback and making the control loop shown in Figure 10.3:

Figure 10.3 – The servo motor control loop

Some types of servo motors, such as those used in ArmBot (Figure 10.2), have an 
additional output allowing you to read the state of the position sensor in your code too.

Sending input positions to a servo motor
Signals are sent to servo motors using Pulse Width Modulation (PWM). PWM is the 
same system seen in Chapter 2, Exploring Robot Building Blocks – Code and Electronics, 
and is used on our robot to drive the wheel motors. PWM is a square wave, which has two 
states, on or off only. It is the timing of the signal, shown in Figure 10.4, which is interesting. 
You can consider the wave as a stream of pulses, where the length in time of each pulse 
encodes the position information for the servo controller. These pulses repeatedly cycle, 
with a period or frequency. People usually express frequency as cycles-per-second or hertz. 
A shorter pulse is a lower value, and a longer pulse is a higher value. The controller keeps 
the period/frequency the same, and it is the duty cycle (on-time to off-time ratio) that 
changes. With servo motors, the pulse length is the information encoding feature:
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Figure 10.4 – PWM for servo motors

In Figure 10.4, each graph has time on the x-axis. The y-axis for each of the stacked graphs 
has L for a logic-low and H for a logic-high. The top graph shows short pulses. The charts 
at the bottom show increased pulse time; however, they vary in an important aspect. In 
the middle graph, the off-time has not changed, but the period has changed.

In the bottom graph of Figure 10.4, the period is the same as the first graph, but it has 
a longer pulse time, with shorter off-time. Servo motors measure pulse length and not 
frequency, so the third graph's variation is the correct type.

In our robot, we already have a chip in the motor controller that performs the fixed 
period PWM style. The chip is designed to control LEDs, but happily controls other PWM 
devices. We can control when the off-time and the on-times should start in a fixed period, 
which means it behaves like the bottom graph for longer pulse widths.

Pulse width control leads us nicely into the next section, where we make our robot generate 
PWM to position a servo. Let's prepare a servo motor, plug it in, and make it move.
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Positioning a servo motor with the  
Raspberry Pi
To position a servo, we need to set up a servo horn to see it move, and then plug it into 
the motor controller board. A servo horn is a small collar with one or more arms, usually 
used to connect the servo spindle/axle to a mechanism they move. Figure 10.5 shows how 
to attach a horn to a servo:

Figure 10.5 – Fitting a servo horn

The images in Figure 10.5 show how to fit a servo horn. Perform the following steps:

1. Servo motors usually come with small bags of hardware, containing a few different 
horn types and screws to attach them to the servo and the parts you want them  
to move.

2. Use the very short small screws for this, as the longer screws can break the servo.

3. Screw a one-armed servo horn into the servo. The long collar of the horn fits over 
the servo's output spindle.

4. The servo should now look like this. Don't over-tighten the collar screw, as you may 
need to loosen it and set the middle again.
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In the next image, we plug the servo into the control board to test it:

Figure 10.6 – Plugging a servo into the control board

Follow Figure 10.6 to see how to connect the servo to the Full Function Motor HAT board 
on the robot. Make sure you power down the robot fully before connecting it: 

1. The outline arrow here indicates the servo connector. Servo connectors have three 
pins shown with the solid arrows: brown for ground (G), red for voltage (V), and 
yellow/orange/white for signal (S).

2. This panel shows that the Motor HAT has a 4 x 3 block of connectors marked 
PWM/Servo, indicated by the arrows. The four servo channel columns are 
numbered (0, 1, 14, and 15). Each channel has three pins, marked with a pin label 
(GVS). GVS refers to ground, voltage, and signal. Align the yellow wire from the 
servo connector with row S and the brown wire with row G, with the red wire in  
the middle. Plug this servo into channel 0.

The connection is similar to controllers such as the PiConZero, but may require some 
soldering work on other motor boards. Now that you have wired this motor in, we need  
to write some code to test it.

Writing code for turning a servo
Some board libraries can convert directly from degree to servo movement pulses. With 
this library, we need to write the code for that math. Some of the calculations result in 
constants that won't change once we know which servo controller and servo we are using. 
We can store the results as constants and reuse them.
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You could store the result of such calculations in a variable, but letting the computer do it 
has a few advantages: 

• The computer is excellent and quick at calculating these constants. It may make 
rounding errors but is likely to make fewer errors than a human would copying 
from a calculator. 

• It's clear what numbers came from where and how to calculate them. Putting  
in a magic number that came from a calculator makes it harder to see where it  
came from.

• If you change a tuning factor, the calculations stay fresh.

• If you find an error, it's easy to change it here.

Tip
When setting out calculations in code, use descriptive variable names and 
comments—being descriptive helps you understand your code and check 
whether the math makes sense. You read code many times after writing it, so 
this principle applies to any variable or function name.

Let's make some test code to move a servo to a position typed by the user in degrees. Put 
this code in servo_type_position.py:

1. The Raspi_MotorHAT library we are using for the robot has a PWM module, which 
we import and create an object to manage. We use atexit again to ensure that the 
controller stops signaling the motor:

from Raspi_MotorHAT.Raspi_PWM_Servo_Driver import PWM
import atexit

2. We must specify the address when setting up the PWM device — it's the same I2C 
device we are using for the motors and has the same address:

pwm = PWM(0x6f)

3. The servo works in cycles at 50 Hz; however, we can use 100 Hz so our motors  
can drive too. If the frequency is low, the DC motors will stall very easily. This 
frequency will be a time base for our PWM frequency, which we keep to also use  
in calculations:

# This sets the timebase for it all
pwm_frequency = 100
pwm.setPWMFreq(pwm_frequency)
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4. Let's call the middle position 0 degrees. For most servos, turning to -90 degrees 
requires a pulse of 1 ms; going to the center requires 1.5 ms:

# Mid-point of the servo pulse length in milliseconds.
servo_mid_point_ms = 1.5

This code is an example of using descriptive variable names. A variable named m or 
p means far less than servo_mid_point_ms.

5. Turning it to 90 degrees requires a pulse of 2 ms; this is 0.5 ms from the mid-point, 
which gives us a primary calibration point for 90 degrees:

# What a deflection of 90 degrees is in pulse length in 
milliseconds
deflect_90_in_ms = 0.5

6. The length of a pulse in our chip also depends on the frequency. This chip specifies a 
pulse's size as the number of steps per cycle, using 4,096 steps (12 bits) to represent 
this. A higher frequency would require more steps in the pulse to maintain the pulse 
length in milliseconds. We can make a ratio for this; steps per millisecond:

# Frequency is 1 divided by period, but working ms, we 
can use 1000
period_in_ms = 1000 / pwm_frequency
# The chip has 4096 steps in each period.
pulse_steps = 4096
# Steps for every millisecond.
steps_per_ms = pulse_steps / period_in_ms 

7. Now that we have steps per millisecond and know how many milliseconds a pulse 
should be for 90 degrees, we can get a ratio of steps per degree. We can also use this 
to redefine our middle point in steps, too:

# Steps for a degree.
steps_per_degree = (deflect_90_in_ms * steps_per_ms) / 90
# Mid-point of the servo in steps
servo_mid_point_steps = servo_mid_point_ms * steps_per_ms
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8. We can use these constants in a convert_degrees_to_pwm function to get the 
steps needed for any angle in degrees:

def convert_degrees_to_steps(position):
    return int(servo_mid_point_steps + (position * steps_
per_degree))

9. Before we move anything, we should make sure the system stops. We stop by setting 
PWM to 4096. This number may sound odd, but instead of giving a long pulse, it 
turns on an additional bit in the control board, which turns the servo pin entirely 
off. Turning off the pin releases/relaxes the servo motor. Otherwise, the motor 
would try to seek/hold the last position we gave it until it's powered down. We can 
use atexit to do this, just as we did with stopping motors:

atexit.register(pwm.setPWM, 0, 0, 4096)

10. We can now ask for user input in a loop. The input function in Python asks the 
user to type something and stores it in a variable. We convert it into an integer  
to use it:

while True:
    position = int(input("Type your position in degrees 
(90 to -90, 0 is middle): "))

11. We can then convert the position to an end step using our preceding calculations:

    end_step = convert_degrees_to_steps(position)

12. We can then use pwm.setPWM to set our pulse in steps. It takes the servo  
channel number, a start step, which we'll hold at 0, and an end step, which we've 
calculated previously:

    pwm.setPWM(0, 0, end_step)

You can now turn the robot on and send this code to it. When you run this code, it will 
ask you to type a number. Start with number 0. When you press Enter, you will hear the 
servo move.

You can now try other values, but do not give it values outside of -90 to 90 degrees as you 
may damage the servo. We add code later to protect against this damage. If this system 
works, you should see the servo move between each different value.
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Troubleshooting
If you find problems getting this to run, try the following:

• Ensure that the servo motors are plugged into the correct ports and are the right 
way around. The S pin should go into a yellow cable on most servos.

• Lots of jittering or failing to get to the right position can mean you have less than 
fresh batteries—please ensure they are fresh.

• When running DC motor behaviors from other chapters, if the servo droops,  
this may also be down to lower battery power. Make sure you are using metal 
hydride rechargeables.

Before we move on, how does this Motor HAT control both servo motors and DC motors? 
Let's take a closer look at it.

Controlling DC motors and servo motors
The HAT that I've suggested for this book (and readers may choose others) is based on a 
PCA9685 chip, which is popular for making robots such as this. It is a multi-channel PWM 
controller. Take a look at the diagram for an overview of how it is connected in this robot:

Figure 10.7 – Block diagram of the motor board
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Figure 10.7 shows a block diagram of the Full Function Motor HAT. This is not a wiring 
diagram, it is still a functional block diagram, but it shows components and connections 
on the board. On the far left is the Raspberry Pi, with a line connecting the PCA9685 chip. 
This line is the I2C communication going into the hat, shown by the labeled gray box.

The PWM generator has many connections out. Eight of these outputs go to control 
TB6612 motor drivers. These have power outputs suitable for DC motors (or stepper 
motors). They are still in the gray box as they are part of the hat. We connected those 
power outputs to our right motor (m1), left motor (m2), and have a space m3/m4 
connection for other motors.

The servo channels expose four of these PWM outputs directly. We'll connect the pan 
servo to one output and tilt to another.

In the preceding code, I mentioned driving the PWM chip at 100 Hz instead of 50. This  
is because if we combine servo motors and DC motors, the time base for the chip applies 
to all the PWM outputs, even if the duty cycle (on-time to off-time ratio) changes.

Now that you have tested the basics, we can calibrate the servo, finding where the 0 
position is and making sure 90 degrees is moving by the right amount.

Calibrating your servos
The servo horn allows you to see the servo motor's movement. Zero should be close to  
the middle:

1. First, use a screwdriver with the horn to line zero up with the middle. Loosen it, lift 
it, move it around to the middle, and then push it down again. Do not tighten this 
much as we will be removing this again.

Important note
If the servo motor's motion is impeded, including an attempt to move it past its 
limits, it pulls higher currents to try and reach the position. Stalling a servo like 
that can cause a lot of heat and damage to the stalled motor.  

2. Now try entering 90 and -90. You may find the two sides are not reaching 90 
because servos can vary slightly. Increase the deflect_90_in_ms value to adjust 
the motor range. Do so in small 0.1 increments, as going too far here may lead to 
servo damage.
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3. When you've calibrated your servo, it is a good idea to ask each servo to go to 
position 0 before starting the next step. You can do this by plugging the second 
servo into channel 1 on the servo's connector, and then swapping the first  
parameter of every call to the pwm.setPWM method from 0 to 1.

You have now tested some basic servo code, and then tried both servos and two channels. 
We can now use the servo motors to build a pan and tilt mechanism to point sensors.

Adding a pan and tilt mechanism
We are now going to build and add a pan and tilt servo mechanism to our robot. This 
mechanism is like a head for our robot to mount sensors on it. A pan and tilt mechanism, 
shown in Figure 10.8, moves a sensor (or anything else) through two axes under servo 
motor control.

Pan means to turn left or right. Tilt means to tilt up or down:

Figure 10.8 – A pan and tilt mechanism from a typical kit
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Kits like the one in Figure 10.8 are available from Mouser, along with Adafruit outlets. You 
may need to purchase the servo motors separately. There are other types of pan-tilt. Ensure 
it is the type that uses two servos and refer to the manufacturer's documentation where it is 
different. We build the kit, mount it onto our robot, and plug it into the controller.

Our robot block diagram with the servos looks like Figure 10.9:

Figure 10.9 – Block diagram of the robot with servo motors added

The block diagram in Figure 10.9 extends the block diagram from the previous chapter by 
adding the pan and tilt servos. These connect to the Motor HAT.

Now that you've seen how it fits in the robot block diagram, it's time to build it!
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Building the kit
You need your pan and tilt kit, a screwdriver, and a cutter. Figure 10.10 shows the parts of 
the mechanism laid out:

Figure 10.10 – The parts of the pan-tilt mechanism

Take note of the terms I use for the different plastic parts in Figure 10.10; I use those for 
the assembly. Next to these are the screws that would have come with the kit too. There  
are usually self-tapping M2 screws in a servo motor's hardware bag – please ensure you 
have them.

Important note
The plastic here may ping off, so don't do this without safety goggles. Be aware 
of other people in the room and tiny sharp plastic bits landing. Please wear 
safety goggles for this step!
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Once you have your parts ready, we'll begin by assembling the base:

Figure 10.11 – Preparing the pan base

Let's assemble the base, as shown in Figure 10.11, with the help of the following steps:

1. Measure out and cut a cross-shaped servo horn to fit the base. There are ridges it 
must fit into in the base. Shorten the servo horn's long arms to just over three holes 
and make them slightly thinner with the cutters.

2. Line up the servo horn in the base, so the arms are in the recessed area, and the 
servo horn collar is facing away from the base.

3. Find four of the long M2 self-tapping screws.

4. Screw the servo horn into the base. Note that, with some servo horns, only the 
horizontal or the vertical screws may line up; two is sufficient, but four are more secure.

Our base is now ready. Next, we'll assemble the left arm:

Figure 10.12 – Assembling the left arm and tilt plate
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To assemble the left arm, perform the following steps:

1. Line up the stud with the hole on the tilt plate, as shown in Figure 10.12. 

2. Push the stud into this hole; you will need to hold this in place for the next step.

3. Take one of the servo motors and the two screws with collars. The servo rests on 
the two brackets on the tilt plate, and when screwed in, holds the left arm in place. 
Ensure that the servo's spindle aligns with the stud and hole before screwing it in.

Great! Now let's move on to the right arm:

Figure 10.13 – Assembling the right arm

Follow these steps to assemble the arm:

1. To assemble the right arm, you need another servo horn—this time, the kind with 
just a collar and a single straight arm. As shown in Figure 10.13, the servo horn 
needs trimming to fit the intended recess on the right arm. Use one of the M2  
self-tapping screws to bolt this onto the right arm of the mechanism. The servo 
horn you have attached is at the front of the mechanism.

2. Flip this assembly over and slot another servo (this is the pan servo) into the slots  
as indicated.

3. It should have the spindle facing the bottom of the photo, as shown in the third 
panel. This servo motor faces downward. 
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Our next step is to combine the left and right arm that we just created. Follow along:

Figure 10.14 – Combining the left arm and right arm

You need to follow these steps to combine the arms:

1. Figure 10.14 shows how to bring the left and right arm of the mechanism together. 
When combining the arms, the right arm servo horn's collar should clip around  
the tilt servo you screwed onto the tilt plate.

2. The pan servo, in the left-arm assembly, fits into a matching cut-out.

3. Use one of the short screws to attach the collar of the right arm to the tilt servo, 
keeping the tilt plate upright.

4. Use two of the small thin screws to screw the two arms together.

We're almost there. The last part is to combine the base that we initially created to the rest 
of the mechanism:

Figure 10.15 – Combining the base with the mechanism
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Continue with the procedure as follows:

1. Figure 10.15 shows how to attach the mechanism to its base. Push the collar from 
the servo horn screwed into the base onto the pan servo spindle. Line it up so that 
the long axis of the base is in line with the bottom of the mechanism.

2. Use one of the very short screws to bolt the collar onto the servo.

3. The final panel shows the fully assembled pan and tilt mechanism.

You've seen how a pan and tilt mechanism goes together around the servos. Assembling 
constructions like this is valuable for seeing how these mechanisms work and getting a feel 
for what the servo motors will do when they move. Now that the pan and tilt mechanism 
has been assembled, we need to attach it to the robot before we can move the head around.

Attaching the pan and tilt mechanism to the robot
The mechanism needs to become part of the robot. We need both to attach it physically 
and wire it in place so that the motor controller can send signals to it.

Figure 10.16 shows how to attach the pan and tilt mechanism to the robot:

Figure 10.16 – Attaching the pan and tilt mechanism to the robot
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Follow these instructions, along with the steps shown in Figure 10.16:

1. For this, you need two long bolts and two nuts to attach the pan and tilt mechanism to 
the robot.

2. Drop the bolts into the short end of the pan and tilt base so that they are  
pointing down.

3. The chassis I recommended has a slot across the front, which came in handy for 
the line sensor. This slot is perfect for mounting this pan and tilt mechanism, with 
the screws through the slot. On another chassis, you may need to measure and drill 
holes for this.

4. Thread on the nuts and tighten from beneath the robot.

5. Wire in the servos. The tilt (up and down servo) should plug into servo channel 0, 
and the pan (left and right) should plug into servo channel 1.

Congratulations! Your robot is ready, and the hardware setup is complete. You are now 
ready to write code and try out the new head for your robot. So, let's dive straight in.

Creating pan and tilt code
We build our pan and tilt code in layers. We create a Servos class and put the previous 
calculations into it. We set up our robot class to have an instance of the Servos class,  
and ways to access the servo to pan and the servo to tilt. 

Making the servo object
In this class, we encapsulate (internally manage the details of) converting an angle into a 
servo movement, and the quirks, such as channel numbers, of our servo board. We make  
a Servos class in a servos.py file for this: 

1. The servos.py file starts with an import and then goes straight into the 
constructor (the __init__ function):

from Raspi_MotorHAT.Raspi_PWM_Servo_Driver import PWM

class Servos:
  def __init__(self, addr=0x6f, deflect_90_in_ms=0.6):

Here we have an address for the PWM device. There's a deflection/calibration 
parameter called deflect_90_in_ms so that it can be overridden with the  
value obtained while calibrating your servos.
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2. Next, we will add a comment, so when we use the Servos class, we can see what 
we meant. The text in here will show up as help for our class in some code editors:

     """addr: The i2c address of the PWM chip.
     deflect_90_in_ms: set this to calibrate the servo 
motors. 
     it is what a deflection of 90 degrees is
     in terms of a pulse length in milliseconds."""

The triple-quoted string at the top of the constructor is a convention known as a 
docstring in Python. Any string declared at the top of a function, method, class, or 
file becomes a special kind of comment, which many editors use to show you more 
help for the library. It's useful in any kind of library layer. The convention of using a 
docstring will complement all of the explanatory comments that we'll carry in from 
the test code.

3. The next section of the __init__ method should look familiar. It sets up all the 
calculations created in steps 3 to 7 of the Writing code for turning a servo section 
within the servos object. We are storing the PWM object in self._pwm. We 
only keep some of the variables for later by storing them in self, and the rest are 
intermediate calculations:

        self._pwm = PWM(addr)
        # This sets the timebase for it all
        pwm_frequency = 100
        self._pwm.setPWMFreq(pwm_frequency)
        # Mid-point of the servo pulse length in 
milliseconds.
        servo_mid_point_ms = 1.5
        # Frequency is 1/period, but working ms, we can 
use 1000
        period_in_ms = 1000 / pwm_frequency
        # The chip has 4096 steps in each period.
        pulse_steps = 4096
        # Steps for every millisecond.
        steps_per_ms = pulse_steps / period_in_ms
        # Steps for a degree
        self.steps_per_degree = (deflect_90_in_ms * 
steps_per_ms) / 90
        # mid-point of the servo in steps
        self.servo_mid_point_steps = servo_mid_point_ms * 
steps_per_ms
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4. In the last part of the __init__ method, we create self._channels; this 
variable lets us use channel numbers 0, 1, 2, and 3, and maps them to the quirky 
numbers on the board:

        # Map for channels
        self._channels = [0, 1, 14, 15]

5. Next, we want a safety function to turn all of the servo motors off. Sending no pulse 
at all does that and releases the servos, protecting power and saving the motors from 
damage. This function uses the trick seen in step 9 of the Writing code for turning a 
servo recipe, setting a start time of 0 and 4096 for the off flag to generate no pulse:

    def stop_all(self):
        # 0 in start is nothing, 4096 sets the OFF bit.
        off_bit = 4096
        self._pwm.setPWM(self.channels[0], 0, off_bit)
        self._pwm.setPWM(self.channels[1], 0, off_bit)
        self._pwm.setPWM(self.channels[2], 0, off_bit)
        self._pwm.setPWM(self.channels[3], 0, off_bit)

6. Next is the conversion function, which we saw in step 8 of the Writing code for 
turning a servo section, but localized to the class. We will only use this conversion 
internally. The Python convention for this is to prefix it with an underscore:

    def _convert_degrees_to_steps(self, position):
        return int(self.servo_mid_point_steps + (position 
* self.steps_per_degree))

7. Also, we need a method to move the servo to an angle. It will take a channel number 
and an angle. I've used another docstring in this method to explain what it does and 
what the limits are:

    def set_servo_angle(self, channel, angle):
        """position: The position in degrees from the 
center. -90 to 90"""        

8. The next couple of lines validate the input. It limits the angle to protect the servo 
from an out-of-range value, raising a Python exception if it's outside. An exception 
pushes a problem like this up to calling systems until one of them handles it, killing 
the code if nobody does: 

        # Validate
        if angle > 90 or angle < -90:
            raise ValueError("Angle outside of range")
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9. The last two lines of this method set the position:

      # Then set the position
      off_step = self._convert_degrees_to_steps(angle)
      self._pwm.setPWM(self.channels[channel], 0, off_
step)

You can find the full code at https://github.com/PacktPublishing/Learn-
Robotics-Programming-Second-Edition/blob/master/chapter10/
servos.py.

This class is now ready to incorporate into our robot. Let's do this in the next section.

Adding the servo to the robot class
Before we start using the preceding Servos class in behaviors, we will incorporate it 
into our robot.py file and assign specific purposes to specific servo motors. This way, a 
behavior could use a different robot with differently configured pan and tilt mechanisms 
by swapping out the robot class:

1. Next, we need to patch this into the Robot class in robot.py. First, let's import it 
after the leds import:

import leds_led_shim
from servos import Servos
...

2. This servos object then needs to be set up in the constructor for Robot, passing 
along the address:

class Robot:
    def __init__(self, motorhat_addr=0x6f):
       # Setup the motorhat with the passed in address
       self._mh = Raspi_MotorHAT(addr=motorhat_addr)

       # get local variable for each motor
       self.left_motor = self._mh.getMotor(1)
       self.right_motor = self._mh.getMotor(2)

       # Setup the Leds
       self.leds = leds_led_shim.Leds()

       # Set up servo motors for pan and tilt.
       self.servos = Servos(addr=motorhat_addr)

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter10/servos.py
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       # ensure the motors get stopped when the code 
exits
       atexit.register(self.stop_all)
...

3. Now, we should make sure it stops when the robot stops by adding it to the  
stop_all code:

    def stop_all(self):
        self.stop_motors()

        # Clear the display
        self.leds.clear()
        self.leds.show()

        # Reset the servos
        self.servos.stop_all()
...

4. The last thing to do in robot is to map setting pan and tilt values to the actual 
servo motors: 

    def set_pan(self, angle):
        self.servos.set_servo_angle(1, angle)
    
    def set_tilt(self, angle):
        self.servos.set_servo_angle(0, angle)

Our Robot object now has methods to interact with the pan and tilt servos on the robot 
chassis. This gives us specific controls for servos on the robot and presents a layer to use  
in behaviors. In the next section, we will make a behavior that uses these to make circles.

Circling the pan and tilt head
In this section, we make the pan and tilt head move in small circles of around 30 degrees. 
This behavior demonstrates the mechanism and the parts of the code to talk to it. The 
code creates a repeating animated kind of behavior that uses a time base—a current time. 
We use the time base to draw the circle:

1. Create a new file; I suggest the name circle_pan_tilt_behavior.py.
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2. We start with a number of imports; the Robot object, the math library, and  
some timing:

from time import sleep
import math

from robot import Robot

We prepare the math library as we are going to use sine and cosine to calculate that 
circle.

3. As our behavior has local data, we will put it into a class of its own. The constructor 
(the__init__ method) takes the Robot object:

class CirclePanTiltBehavior:
    def __init__(self, the_robot):
        self.robot = the_robot

4. This behavior is essentially an animation, so it has a time and count of frames or 
positions for each circle. We use a frames_per_circle variable to adjust how 
many steps it goes through:

        self.current_time = 0
        self.frames_per_circle = 50

5. The math functions work in radians. A full circle of radians is 2 times pi. We divide 
that by frames_per_circle to make a multiplier we call radians_per_
frame. We can multiply this back out with the current frame to give us a radian 
angle for the circle later:

        self.radians_per_frame = (2 * math.pi) / self.
frames_per_circle

We work with radians and not degrees here because we'd end up with a constant 
multiplier, taking the degrees into radians and dividing by frames per circle, so we'd 
end up back with radians_per_frame.

6. Being a circle, it should also have a radius, representing how far our servos deflect 
from the middle:

        self.radius = 30
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7. The next method in the behavior is run. This puts the behavior in a while True 
loop, so it runs until the user stops it:

    def run(self):
        while True:

8. When our behavior runs, we then take current_time and turn it into a frame 
number using the modulo (remainder) operation on frames_per_circle. The 
modulo constrains the number between zero and the number of frames: 

            frame_number = self.current_time % self.
frames_per_circle

9. We then take this frame_number variable and turn it back into radians, a position 
around the circle, by multiplying it back with radians_per_frame. This 
multiplication gives us a value we call frame_in_radians:

            frame_in_radians = frame_number * self.
radians_per_frame

10. The formula for drawing a circle is to make one of the axes the cosine of the angle, 
times the radius, and the other the sine of the angle, times the radius. So, we 
calculate this and feed each axis to a servo motor:

            self.robot.set_pan(self.radius * math.
cos(frame_in_radians))
            self.robot.set_tilt(self.radius * math.
sin(frame_in_radians))

11. We perform a small sleep() to give the motors time to reach their position,  
and then add one to the current time:

            sleep(0.05)
            self.current_time += 1

12. That entire run method together (steps 7-11) is as follows:

    def run(self):
        while True:
            frame_number = self.current_time % self.
frames_per_circle
            frame_in_radians = frame_number * self.
radians_per_frame
            self.robot.set_pan(self.radius * math.
cos(frame_in_radians))
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            self.robot.set_tilt(self.radius * math.
sin(frame_in_radians))
            sleep(0.05)
            self.current_time += 1

13. Finally, we just want to start up and run our behavior:

bot = Robot()
behavior = CirclePanTiltBehavior(bot)
behavior.run()

So, we've built a Servos class, and incorporated it to control the pan and tilt mechanism 
in our Robot code. You've seen code to move servo motors in an animation-like way. We 
can combine this with the physical pan-tilt in the next section to see this run.

Running it
You need to send servos.py, robot.py, and circle_pan_tilt_behavior.py to 
the Raspberry Pi over SFTP. On the Raspberry Pi, type python3 circle_pan_tilt_
behaviour.py to see it. The head should now be making circles.

This is demonstration code for the device, but will later be able to use the same device to 
track faces by mounting a camera on it. The use of frames here to create an animation is 
important for making smooth predetermined movements with a robot, controlling small 
movements over time.

Troubleshooting
If this does not run, please try the following:

• Ensure you were able to test the servos as shown in the Writing code for turning a 
servo section. There is no need to disassemble the pan and tilt mechanism for this, 
but please make sure you have made a servo move with the code there and followed 
that troubleshooting section.

• If you see errors while running this, please ensure you are running with python3. 
Please ensure that you have checked for typos in your code.

• If the code fails to import anything, ensure that you have copied over all the 
preceding files and that you have installed/set up the libraries in previous chapters.

• If the motors move to an extreme position, you may have missed the step to 
calibrate them. You will need to unbolt and pop each out of the servo horn, send it 
to position 0, using the test code from the Writing code for turning a servo section, 
and then push them back in at a neutral position, screwing them back in.
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• If a servo refuses to move at all, check that it has been plugged in the right way, 
ensuring that G corresponds to the black servo wire, V corresponds to the red wire, 
and S to the yellow signal wire from the servo. The robot code has assumed that the 
servo motors are plugged into channels 0 and 1 of the motor control board.

• Ensure that there are no breaks in the wires or their insulation. I have seen a batch 
of servo motors of this type with wire problems and had to return them. You should 
not be able to see any bare patches of wire.

• Ensure that the connectors are pushed in firmly. If they are loose here, then a signal 
may not be getting to the servo motors.

• It's worth saying again: low batteries will make a servo jitter or fail to reach a set point.

You should now have troubleshot the common problems seen with running this circle 
servo motor behavior and see the head making small and slow circles. We will be able to 
use this system in a later chapter to look at faces.

Building a scanning sonar
Using the distance sensor we attached in Chapter 8, Programming Distance Sensors with 
Python, with the pan and tilt mechanism allows us to set up an interesting experiment. 
If we attach the distance sensor to the head, and then slowly sweep in a direction (for 
example, the pan direction), we can create a sensor sweep of an area. We can then use 
some Python code to plot this, making a small map of things in front of the robot.

A sensor similar to this combination is found in advanced robots (like those from Boston 
Dynamics) and autonomous cars. LIDAR and RADAR sensors use laser light or radio 
frequencies with a fast spinning drum to perform the same kind of sweeps far faster than 
our example. LIDAR sensors are starting to appear on the hobbyist market, but are still  
a little costly.

To visualize this, we are going to use a special kind of chart – a polar plot. This plots 
around a circle, with the x-axis being where we are around a circle (in radians – multiples 
of pi). The y-axis forms how far a plotted point is from the center of a circle – so a larger 
value will be further out. This lends itself very well to this example because we are 
sweeping the servo through angles and receiving distance data. We will have to account 
for the servo working in degrees and translate to radians for the graph output.
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Attaching the sensor
In this step, we'll extend a sensor's wires and reposition the sensor onto the pan-and-tilt 
head. Start with the robot powered down:

Figure 10.17 – Pop out the sensor and prepare two wires

Follow these steps to reposition the sensor together with Figure 10.17:

1. You will need to pop one of the distance sensors out of the mount on the robot's 
front. I used the left.

2. On the pan/tilt head there, identify the small slots.

3. Make two lengths of single-core wire or sandwich ties. A length of about 18 cm  
for each should suffice:

Figure 10.18 – Steps 4 to 6; putting wires in the slots

4. For each side, first push the wire through the indicated slot shown in Figure 10.18.

5. Bend it around a little, pushing the two ends nearly together so that it doesn't just 
drop out.
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6. Prepare the other side the same way, so both sides are ready:

Figure 10.19 – Wrapping wire underneath the sensor

7. Put the sensor in place and bend the left wire coming from the top of the head 
around the sensor's front.

8. Now bend it under the big round element (the ultrasonic transducer) indicated by 
the white arrow in Figure 10.19.

9. Bend the wire sticking out underneath over the sensor:

Figure 10.20 – Twist the wire and repeat for the right

10. Wrap this wire around the top of the left transducer and bring the two wire ends 
together.

11. Twist the top and bottom ends together, as shown in Figure 10.20.

12. Repeat steps 8 to 11 for the wires on the right:
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Figure 10.21 – The sensor temporarily secured to the pan-and-tilt head

13. The sensor should now be temporarily secured to the pan-and-tilt head, as shown in 
Figure 10.21. You are now ready to wire it back in:

Figure 10.22 – Extend the wires and plug the wires in

You may need to extend the jumper wires, as shown in Figure 10.22. You are likely 
to have more male-female jumper cables left, so use four of those to extend the 
sensor. Be careful to ensure that you make the same connections through these  
to the sensor. It helps to use the same colors if you can.

14. Now make the wire connections to the sensor. Refer back to Chapter 8, Programming 
Distance Sensors with Python, for reference.

I suggest running the test_distance_sensor.py code from Chapter 8, 
Programming Distance Sensors with Python, and checking that the sensor is working 
before you continue.

Now that you have mounted the sensor on the head, it will move when we instruct the 
servo motors to move. Let's make sure that we have the right tools on the Raspberry Pi  
for the code first.
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Installing the library
The code will use the Python tool matplotlib to output the data. It makes a polar plot, 
a graph originating radially from a point, which will look like a sonar scan you may have 
seen in movies. To do this, you will need to install Matplotlib (and its dependencies) onto 
your Raspberry Pi.

SSH (putty) into the Raspberry Pi and type the following to get the packages that 
Matplotlib requires:

$ sudo apt update
$ sudo apt install libatlas3-base libgfortran5

The next thing you need is Matplotlib itself:

$ pip3 install matplotlib

Matplotlib may take a short time to install and install many helper packages along the way. 

With the library installed, you are ready to write the code.

Behavior code
To make our plot and get the data, the code will move the sensor to the full extent on 
one side, and then move back in steps (for example, 5 degrees), measuring at each. This 
example will show using a sensor and servo motor together and introduce other ways  
to view sensor data.

Create a file named sonar_scan.py and follow these steps for its content:

1. We'll start with some imports; the time import, with which we can give motor and 
sensors time to work, math to convert from degrees to radians, matplotlib to 
make the display, and robot to interface with the robot: 

import time
import math
import matplotlib.pyplot as plt
from robot import Robot
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2. We then have some setup parameters. We put these out here to encourage you to 
experiment with different turn speeds and extents:

start_scan =0
lower_bound = -90
upper_bound = 90
scan_step = 5

3. Next, let's initialize the Robot object and ensure the tilt is looking horizontally:

the_robot = Robot()
the_robot.set_tilt(0)

4. We need to prepare a place to store our scan data. We will use a dictionary mapping 
from a heading in degrees to the value sensed there:

scan_data = {}

5. The scan loop starts from the lower bound and increments by the scan step up to 
the upper bound; this gives us our range of facings:

for facing in range(lower_bound, upper_bound, scan_step):

6. For each facing in the loop, we need to point the sensor, and wait for the servo to 
move and for the sensor to get readings. We negate the facing here because the 
servo motor turns the opposite way to the polar plot:

    the_robot.set_pan(-facing)
    time.sleep(0.1)

7. We then store the sensor distance as centimeters in the scan data for each facing, 
using the facing as its key:

    scan_data[facing] = the_robot.left_distance_sensor.
distance * 100

8. The following loop converts the facings into radians. The servo works in degrees, 
but a quirk of Matplotlib is that the polar axis must be in radians:

axis = [math.radians(facing) for facing in scan_data.
keys()]
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9. Now we make our polar plot, telling Matplotlib the axis and the data, and that we 
want a green line with g-:

plt.polar(axis, list(scan_data.values()), 'g-')

10. The last line writes this plot out to a png image file, so we can use scp to download 
it from the Raspberry Pi and view the plot:

plt.savefig("scan.png")

Put this code on the Raspberry Pi, place the robot somewhere with a few obstacles less 
than a meter away, and run the code with python3 sonar_scan.py. You should see 
the servo motor make a sweep of the bounds.

When this runs, the scan.png output should look something like Figure 10.23:

Figure 10.23 – A sonar scan plot of my lab

Figure 10.23 shows the sonar scan output on a polar plot. It shows the measurements in 
degrees, with a green line tracing the contours of items detected in front of the sensor. In 
this image, my lower bound was -90, my upper bound 90, and my step at 2 degrees for 
slightly finer resolution.
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Choosing a finer resolution (less than 2 degrees) will make it slower. The sleep value  
could be tuned, but lower values risk the servo not settling or the sensor not producing 
further readings.

Troubleshooting
If you encounter problems while running this tool, please try the following:

• First, ensure the distance sensor works by following the troubleshooting and testing 
steps in Chapter 8, Programming Distance Sensors with Python. Verify the wiring 
and use the test code.

• Verify that the servo motors are working, as shown in the preceding Creating the 
pan and tilt code section. Follow the troubleshooting procedures there.

• If there are errors running the code, ensure that you have installed all the libraries 
needed.

• Check that there are no typos in the code you have entered. 

• Remember, the file output will be on the Raspberry Pi, so you will have to copy it 
back to view it.

• It can be helpful to print values before they go into the plt.polar method. Add 
the following:

print(axis)
print(scan_data.values())

You should now have been able to make a sonar scan and get a plot like the one above. 
I suggest you experiment with the values to create different plot resolutions and put 
different object combinations in front of the sensor. 

Let's summarize what we've seen in the chapter.

Summary
In this chapter, you have learned about servo motors, how to control them with your 
motor controller, and how they work. You've built a pan and tilt mechanism with them 
and added code to the Robot object to work with that mechanism. Finally, you've 
demonstrated all of the parts with the circling behavior.

You will be able to use the code you've seen to control other servo motor systems, such 
as robot arms. The animation style techniques can be useful for smooth movement and 
circular motions. I used a system a little like this when controlling the 18 motors in 
SpiderBot's legs.
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You've seen how to use a servo with a sensor on a head to make some kind of map of the 
world and related it to the LIDAR systems used on bigger and more expensive robots.

In the next chapter, we will look at another way to map and observe the world with 
encoders. These sensors will detect wheels turning on our robot to determine how our 
robot is moving.

Exercises
1. Consider how you might build other servo-based extensions. A robot arm needs at 

least four servos, but a simple gripper/grabber can use the two additional channels 
our robot has left.

2. Look around at kits for a gripper, a design with a pincer, and perhaps an  
up/down control. 

3. How would you write the code for this gripper? What would you add to the  
Robot object?

4. What demo behavior would you make for this gripper?

5. A gripper might move too violently when just given a different position to be in. 
How would you make a slower smooth movement?

Further reading
Please refer to the following links for more information:

• This servo motor control hat is based on the PCA9685 device. The PCA9685 
product data sheet (https://cdn-shop.adafruit.com/datasheets/
PCA9685.pdf) contains full information about operating this chip. I highly 
recommend referencing this.

• I also recommend looking at the SG90 servo motor data sheet (http://www.
ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.
pdf) for information about their operation.

• The AdaFruit guide to the pan and tilt mechanism (https://learn.
adafruit.com/mini-pan-tilt-kit-assembly) has a set of assembly 
instructions. They are in a slightly different order from mine but may give a 
different perspective if this is proving to be tricky.

https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
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Programming 
Encoders with 

Python
It is useful in robotics to sense the movements of motor shafts and wheels. We drove  
a robot along a path back in Chapter 7, Drive and Turn – Moving Motors with Python, but 
it's unlikely that it has stayed on course. Detecting this and traveling a specific distance is 
useful in creating behaviors. This chapter investigates the choice made by the sensor, as 
well as how to program the robot to move in a straight line and for a particular distance. 
We then look at how to make a specific turn. Please note that this chapter does contain 
math. But don't worry, you'll follow along easily. 

In this chapter, you will learn about the following topics:

• Measuring the distance traveled with encoders

• Attaching encoders to the robot

• Detecting the distance traveled in Python

• Driving in a straight line

• Driving a specific distance

• Making a specific turn
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Technical requirements
Before we get started, make sure you have the following parts:  

• The Raspberry Pi robot and the code from the previous chapter: https://
github.com/PacktPublishing/Learn-Robotics-Programming-
Second-Edition/tree/master/chapter10.

• Two slotted speed sensor encoders. Search for slotted speed sensor, Arduino speed 
sensor, LM393 speed sensor, or the Photo Interrupter sensor module. Include the 
term 3.3 V to ensure its compatible. See the The encoders we are using section for 
images of these. 

• Long male-to-female jumper cables.

• A ruler to measure the wheels' size on your robot – or better yet, calipers, if you can 
use them.

The code for this chapter is available on GitHub: https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition/
tree/master/chapter11.

Check out the following video to see the Code in Action: https://bit.ly/2XDFae0

Measuring the distance traveled with 
encoders
Encoders are sensors that change value based on the movement of a part. They detect 
where the shaft is or how many times an axle has turned. These can be rotating or sensing 
along a straight-line track.

Sensing how far something has traveled is also known as odometry, and the sensors can 
also be called tachometers, or tachos for short. The sensors suggested in the Technical 
requirements section may also show up as Arduino tacho in searches. 

Where machines use encoders
Our robots use electronic sensors. Cars and large commercial vehicles use electronic or 
mechanical sensors for speedometers and tachos.

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter10
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter10
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter10
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter11
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter11
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter11
https://bit.ly/2XDFae0
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Printers and scanners combine encoders with DC motors as an alternative to stepper 
motors. Sensing how much of an arc the robot has turned through is an essential component 
of servomechanisms, which we saw in Chapter 10, Using Python to Control Servo Motors. 
High-end audio or electrical test/measurement systems use these in control dials. These are 
self-contained modules that look like volume knobs but users can turn them indefinitely. 

With this basic understanding of what encoders are, let's now look at some of their types.

Types of encoders
Figure 11.1 shows four different encoder sensors, each of which uses different mechanisms 
to measure movement (1–3), along with an encoder wheel and strip in panel 4:

Figure 11.1 – Encoder sensors

These sensors fall into a few categories, as shown in Figure 11.1, and correspond to the 
points that follow:

1. This is a variable resistor. These analog devices can measure a turn but don't tend 
to allow continuous rotation. They have mechanical wipers on a metal or resistant 
track, which can wear down. This is not strictly an encoder but is handy. On the 
Raspberry Pi, they require analog-to-digital conversion, so they aren't suitable for 
this application. Servo motors also use these.
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2. This motor includes magnet-sensing encoders, highlighted by the white box, known 
as hall-effect sensors. Magnets on a wheel or strip pass next to the sensor, causing 
the sensor values to go high and low.

3. This is a standard optical sensor. Using a slot with an IR beam passing through, they 
sense when the beam is interrupted. Computer trackballs, printers, and robotics use 
these. These produce a chain of pulses. Due to the beam being interrupted, we call 
them photo interrupters, optical encoders, or opto-interrupters. We will be using 
this kind.

4. This shows a slotted wheel and a slotted strip for use with optical sensors. The 
ribbon is suitable for linear encoding and the wheel for encoding turns. They both 
have transparent and opaque sections. People make a variation using a light sensor 
and light/dark cells, but these are less common. 

Having seen some of the types of encoders, let's take a closer look at how they represent 
speed and movement.

Encoding absolute or relative position
Relative encoders can encode a relative change in position – that we have taken a 
certain number of steps clockwise or anticlockwise, or forward/backward along an axis, 
for example. They can only measure a position relative to the last time we measured by 
counting the number of slots that have passed. These can also be called incremental 
encoders. They are inexpensive and straightforward in hardware. Relative encoders  
are limited in that they memorize the previous position to create the next and  
accumulate errors.

Another type is absolute encoders. These can encode the position along or around an 
axis to an exact position. Absolute encoders do not need information about the previous 
position but may need calibrating to determine how an encoding matches a real-world 
location. 
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The following figure shows the types in comparison:

Figure 11.2 – Comparing absolute and relative sensing

The diagrams in Figure 11.2 illustrate this difference. The circle on the left represents a 
movement by 30 degrees, from a memorized position of 30 degrees. This

 works, assuming that the original memorized position is accurate. Every time it is 
measured, a movement is measured. The circle on the right shows a position at 60 degrees 
from a zero point. If a sensor can tell you where something is at, then it is absolute. If you 
can tell you how much it has moved by, it is relative.

In a crude form, a variable resistor can also be an absolute encoder, as used in servo 
motors to sense their position. Absolute position encoding can be done through optical 
or magnetic markers on a wheel or strip, allowing great precision in absolute positioning. 
These sensors can be bulky or expensive or require many inputs. An absolute encoder 
strip or wheel is also known as a scale.
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Encoding direction and speed
Basic relative encoding measures how many wheel slots pass the sensor. This gives the 
speed and distance. By using two sensors slightly apart, you can also encode the direction. 
Figure 11.3 shows how this works:

Figure 11.3 – Encoding speed and direction with multiple sensors

The system on the left encodes the speed. As the slots pass the sensors, they generate 
electronic pulses. Each pulse has a rising edge, where it goes up, and a falling edge, where 
it goes down. To count the number of pulses, we can count these edges. If you drive a 
motor with a direction, you can use a system with a single sensor like this, as we will do  
in our robot.

The wheel on the right encodes direction by adding a second sensor. The slot edges will 
make the sensor value change at different points in a cycle, with a sequence we've labeled 
1, 2, 3, 4. The direction of the sequence indicates the direction of the wheel, along with its 
speed. As there are four phases, this is known as quadrature encoding.

Industrial robots use a record-and-replay interface. The user will hit a record button and 
push a robot, such as an arm, through a set of movements, then press a stop button. The 
user has recorded this set of movements, and they could ask the robot to replay them. 
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To build a robot with this record-and-replay system, or a mouse/trackball, the direction  
is essential information, so the additional complexity needed to encode the directions  
is required. 

We will use the cheaper and simpler option in our robot, using a single sensor to measure 
relative speed only. In our code, we will assume that each wheel's speed sensor is going in 
the direction we drive.

The encoders we are using
We will use optical encoders in a slot shape that fits right above the encoder wheels we 
added in Chapter 6, Building Robot Basics – Wheels, Power, and Wiring. These encoders 
have digital outputs, and we can count the pulses from them in Python to sense how far  
a wheel has turned. Figure 11.4 shows two types of sensor that I recommend:

Figure 11.4 – The types of sensor we recommend

On the left is the FC-03 photo interrupter module, and on the right is the Waveshare 
photo interrupter module. Modules that have 3.3 V in their supply voltage specification 
are suitable. Using 5 V-only modules will require level shifters and additional wiring, as 
discussed in Chapter 8, Programming Distance Sensors with Python.

We are going to use encoder wheels that are attached to the motor shafts. These are in 
line with the wheels. If the encoder wheels are running at a different rate from the wheels, 
we need to account for this. There are conditions that they cannot account for, such as 
slipping, as well as wheel and tire sizes. Encoders attached to separate idler wheels give 
better data, but they are trickier to connect to a robot and keep in contact with the floor. 
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Now, you've seen what encoders can do, counting how much a wheel has turned to 
determine how far you've gone, and you've seen some of the types of encoders and which 
type to buy (3.3 V). You've also had a quick overview of how they work, by counting 
pulses. In the next section, we will build them into the robot.

Attaching encoders to the robot
Our robot is now getting quite busy, and our Raspberry Pi is above the encoder's slots. 
Due to the slots being under the Raspberry Pi, we should wire them in a little before 
returning the Raspberry Pi. After bolting in the Raspberry Pi, we wire the encoders to its 
GPIO, as well as the power and ground.

Figure 11.5 shows what the robot block diagram looks like after attaching the encoders:

Figure 11.5 – Robot block diagram with encoders

This block diagram adds a left and right encoder, each with an arrow for the information 
flow connecting them to the Raspberry Pi. The highlighted elements are the new ones.
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Before we start changing the robot and making it harder to see, we need to know the 
number of slots in the encoder wheel for later:

Figure 11.6 – Encoder wheel

My encoder wheels, shown in Figure 11.6, ended up having 20 slots. Ensure you use the 
number of spaces your encoder wheels have. 

Preparing the encoders
Before we can use the encoder sensors, we need to prepare and fit them. As the encoders 
are going under the Raspberry Pi, we should attach the male-to-female jump wires to  
the sensors now. I suggest covering any electrical contacts that are sticking up under  
the Raspberry Pi with a little insulation tape:

Figure 11.7 – The sensors with cable connections

Notably, the cables should be plugged into the ground (GND), voltage (3 V, Vin, or VCC), 
and digital output (D0/OUT), as shown in Figure 11.7. If it is present, do not connect the 
analog output (A0) pin. If possible, the ground pin should have the darkest color, or the 
voltage should be the lightest color. To help keep this clear, I suggest wrapping a small 
strip of insulation tape around the signal line's end. 

Important note
As these sensors' pin configurations can vary, get a reference photo of the 
sensor pin labels before putting it under the Raspberry Pi. 
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Lifting the Raspberry Pi
The encoder sensors need to go underneath the Raspberry Pi, so the Raspberry Pi needs 
to be gently lifted (without disrupting the wires) to accommodate them. The sequence of 
photos in Figure 11.8 shows how to raise it:

Figure 11.8 – Unscrewing and lifting off the Raspberry Pi

Refer to Figure 11.8 and carry out the following steps:

1. You need to unscrew the bolts holding the Raspberry Pi to the chassis carefully.  
Put the screws aside for replacing the Raspberry Pi on the robot so that it can  
gently lift away.

2. Gently lift the Raspberry Pi away from the robot without disrupting the cables. The 
photo shows how your robot should look.

Great! Now that the Raspberry Pi is lifted, there is space for fitting the encoders under it.

Fitting the encoders onto the chassis
Now that you have wired the encoders, you can fit them to the robot chassis. As a guide, 
Figure 11.9 shows a bare chassis with each of the sensor types fitted to show you where 
you push them in:

Figure 11.9 – Fitting the encoder sensors
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Refer to Figure 11.9 and complete these steps:

1. Gently push the encoders into the slots around the encoder wheel.
2. The sensors should friction fit into the slots above the encoder wheels and stay  

in place.

Once these are in place, you can replace the screws to attach the Raspberry Pi to the 
chassis. You may need different-sized standoffs to accommodate it.

Important note
At this point, check that all your connections are back in place. The motor 
wires are likely to have come loose.

With the encoders attached and the Raspberry Pi back in place, you are ready to wire 
them in.

Wiring the encoders to the Raspberry Pi
We can now start making wire connections for the sensors using the breadboard. We'll use 
a circuit diagram to guide our connections.
Figure 11.10 shows the connections for these sensors:

Figure 11.10 – Circuit for connecting the encoders to the Raspberry Pi
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Figure 11.10 shows the circuit for connecting the encoders to the Raspberry Pi. This 
diagram continues from the circuit seen in Chapter 8, Programming Distance Sensors  
with Python. The new connections have thicker wire lines. 

On the right of Figure 11.10 are the right and left encoder modules. The sensor will 
have a VCC, VIN, 3 V, or just V label. Connect this to the 3.3 V line. Find the GND pin 
labeled GND, 0V, or just G and connect it to the black/blue band on the breadboard. The 
encoders also have a pin labeled DO (digital out), SIG (signal), or just S, connected to  
a GPIO pin for the digital signal. We connect the digital outputs from the sensors to GPIO 
pins 4 for the left encoder and 26 for the right encoder.

Some encoder sensors have additional connections, such as Analog Out (AO), which we 
will not use and will leave unconnected. 

Let's perform the following steps:

1. Connect the sensor's pins to the breadboard. Pay attention to the labels on the 
sensor – some have a different pin ordering.

2. Connect the Raspberry Pi GPIO pins 4 and 26 to the breadboard.

3. Make the breadboard power connections using precut wires.

Important note
The number of wire-to-wire points on this robot makes it hard to add new 
connections or repair. Although beyond the scope of this book, making custom 
Printed Circuit Boards (PCBs) makes this thicket of cabling much neater. 
PCBs are also less fragile and takes up less space. Changing it does, however, 
come with a cost.

It is possible to shortcut the breadboard and wire the sensor into the Raspberry Pi; 
however, the breadboard helps distribute the power connections and groups the  
sensor connections. 

We make this circuit in the context of a busy robot with other connections. If the cables 
from the sensors to the robot are not long enough, use a further set of male-to-female 
cables, using the same technique seen for the sonar scan in Chapter 10, Using Python to 
Control Servo Motors. 
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In this section, you've learned how to connect the sensors and have made them ready 
to program. In the next section, we will write some code to test these sensors and then 
measure distances.

Detecting the distance traveled in Python
Using encoder sensor devices requires us to count pulses. In this section, we will create 
code to turn on the motors and count pulses for a while. The code validates that the 
sensors are connected correctly. We then take this code and make it part of the robot  
class as a behavior.

Introducing logging
So far in our Python code, we have been using print to output information to see 
what our robot is doing. This works, but prints can become overwhelming if we print 
everything we might want to inspect. Logging allows us to still display information, but 
we can control how much. By importing the logging module, we can take advantage  
of this.

First, there are logging levels, with debug, info, warning, and error. While fixing 
problems or initially developing, debug is useful – it can show everything – while info 
is used to show a little less than that. The warning and error levels are reserved 
only for those kinds of problems, so you can filter down to only this level when you are 
reasonably confident with some code. The logging.basicConfig function allows us 
to configure a logging level and other logging parameters; you need to configure logging 
to enable info and debug logging.

The other thing you can do with logging is to have differently named loggers using the 
logging.getLogger function. This lets you set different levels for different modules. 
Using named loggers helps to enable debug from a library module you are using while 
sticking to info on the main module. 

In this chapter's code, we will start using logging and controlling logging levels to get 
more detail on what an example is doing, turning the parts on and off at will. When we 
introduce the PID controller later, this will become very useful indeed. We can use this 
logging in the next section to show a sensor pulse count.
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Simple counting
This code counts the number of cycles up and down on each wheel's signal pin, printing 
the count as we test the sensors. Running this verifies that our sensor connections are 
working, letting us troubleshoot and move on. It also lays code foundations for tracking 
wheel movements. We run our motors for about 1 second. Note that this code assumes 
you are starting with the code from Chapter 10, Using Python to Control Servo Motors:

Important note
You can find the following code at https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-
Edition/blob/master/chapter11/test_encoders.py.

1. Let's make a file called test_encoders.py, starting with the usual robot classes, 
import and time, and adding logging:

from robot import Robot
import time
import logging
...

2. Next, we add an import for a GPIO Zero input device. We can use the pin it sets up 
to count our pulses:

...
from gpiozero import DigitalInputDevice
logger = logging.getLogger("test_encoders")
...

We've also set up a named logger for our system matching the filename.

3. The encoders generate pulses; we want to count them and track their state. We 
use more than one of them. Creating a class from the outset seems like the right 
strategy. From here, we can pass our I/O pin number to the constructor. The first 
thing it needs to do is to set up a pulse counter:

...
class EncoderCounter(object):
    def __init__(self, pin_number):
        self.pulse_count = 0
        ...

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/test_encoders.py
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4. Still in the constructor, we need to set up the device and how we count pulses with 
it. The device has a .pin object, which we set up using the pin number..pin has a 
when_changed event, which we can drop our handler into to be called every time 
the pin changes. The pin changes from up to down (rising and falling) for every slot:

      ...
      self.device = DigitalInputDevice(pin=pin_number)
      self.device.pin.when_changed = self.when_changed
  ...

5. We need to define a when_changed method for our class to add one to pulse_
count. This method must be as small/quick as possible, as GPIO Zero calls it in 
the background for every pulse change. It takes a time_ticks parameter and a 
state parameter. We will not use time_ticks, so mark this with an underscore:

    ...
    def when_changed(self, _, state):
        self.pulse_count += 1
...

6. We can set up our robot object and create an EncoderCounter for each side's 
sensor. We connected our devices to pins 4 and 26:

...
bot = Robot()
left_encoder = EncoderCounter(4)
right_encoder = EncoderCounter(26)
...

7. To display values, instead of just using sleep, we loop, checking against an end 
time. Before we log anything, logging.basicConfig sets logging parameters. 
We start the motors and go into the main loop:

...
stop_at_time = time.time() + 1

logging.basicConfig(level=logging.INFO)
bot.set_left(90)
bot.set_right(90)

while time.time() < stop_at_time:
    ...

In this loop, we log the readings on both sensors. 
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8. Since tight loops can cause things to break (such as GPIO Zero calling our code 
from a sensor thread), it should sleep a little too:

    ...
    logger.info(f"Left: {left_encoder.pulse_count} Right: 
{right_encoder.pulse_count}")
    time.sleep(0.05)

When the loop ends, the program is done, so our robot automatically stops. Notice 
we have used an f-string (format string), as we saw in Chapter 8, Programming 
Distance Sensors with Python. The f prefix lets us format variables into a string.

You can send this code to the robot and run it. You can now see the robot veering through 
the encoder's values. The output should look a little like this:

pi@myrobot:~ $ python3 test_encoders.py
INFO:test_encoders:Left: 0 Right: 0
INFO:test_encoders:Left: 0 Right: 1
INFO:test_encoders:Left: 2 Right: 2
INFO:test_encoders:Left: 3 Right: 4
INFO:test_encoders:Left: 5 Right: 7
INFO:test_encoders:Left: 8 Right: 10
INFO:test_encoders:Left: 10 Right: 14
...
INFO:test_encoders:Left: 56 Right: 74

The encoders are counting, and it shows that the robot moved less on the left wheel 
and more on the right wheel, and veered left. The INFO:test_encoders: part is 
introduced by the logging, showing the logging level and the logger name. The distances 
are in encoder ticks, a tick being each counted event.

You've now tried out this code, but refer to the troubleshooting section if you have  
any problems.

Troubleshooting
If you find problems when running this, try the following steps:

• Ensure you started from the Chapter 10, Using Python to Control Servo Motors, code. 
If you downloaded code from the current chapter, you will likely see GPIO conflicts 
with the code already set up for the encoders.
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• If the encoder values stay at zero, turn off the Raspberry Pi, then go back and 
carefully check your wiring and pin number usage.  

• Check your wiring – if anything is hot, immediately disconnect the power and 
verify your wiring.

You have tested the encoders on the robot, seeing feedback on your screen as they moved. 
This demonstrates that they are ready to be used in more interesting robot behaviors after 
adding them to the Robot object.

Adding encoders to the Robot object
To use this sensor in other code or behaviors, we should move it into the Robot object. 
We can then import our code into the Robot object and set up the two sides with the 
correct pins. You'll also need to add some cleanup code for the handlers.

Extracting the class
We've already made the EncoderCounter class, which you can copy from 
test_encoders.py to the encoder_counter.py (https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition/
blob/master/chapter11/encoder_counter.py) file. This code needs the import 
for DigitalInputDevice, the same constructor, and the when_changed handler: 

1. Let's start by adding the imports and class declaration. The EncoderCounter 
class starts the same way as the last section:

from gpiozero import DigitalInputDevice

class EncoderCounter:
    def __init__(self, pin_number):
        self.pulse_count = 0

2. I'm adding a direction member to account for reversing:

        self.direction = 1

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/encoder_counter.py
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3. The constructor (__init__) is finished by setting up the device and assigning  
a when_changed handler:

      self.device = DigitalInputDevice(pin=pin_number)
      self.device.pin.when_changed = self.when_changed

4. Our when_changed handler should add the direction instead of 1, so it can count 
up or down:

    def when_changed(self, time_ticks, state):
        self.pulse_count += self.direction

5. We should also have a method to set this direction, so we can assert to validate our 
setting, which throws an exception if it doesn't meet the condition with the given 
text – a cheap but brutal way of ensuring input values make sense:

    def set_direction(self, direction):
        """This should be -1 or 1."""
        assert abs(direction)==1, "Direction %s should be 
1 or -1" % direction
        self.direction = direction

6. A reset method means we can handle restarting counters between movements:

    def reset(self):
        self.pulse_count = 0

7. For cleanup, we need a way to stop the counters so that they don't call the  
handler again:

    def stop(self):
        self.device.close()

With the encoder library ready, we can use this in our code. The library means we can 
reuse our encoder counter in different places, and also that we can substitute a different 
device with similar properties. To make it available to many behaviors, it will be handy  
to import it into the robot library. 

Adding the device to the Robot object
We've used our Robot object as the main interface between code handling the hardware 
and the behavior code. 
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We will modify the robot.py code from Chapter 10, Using Python to Control Servo 
Motors (https://github.com/PacktPublishing/Learn-Robotics-
Programming-Second-Edition/blob/master/chapter10/robot.py)  
to add the sensors: 

1. Start by importing EncoderCounter:

...
import leds_led_shim
from servos import Servos
from encoder_counter import EncoderCounter
...

2. In the __init__ constructor method, we need to set up left and right encoders.  
I did this just after the distance sensors:

        ...
        # Setup The Distance Sensors
self.left_distance_sensor = DistanceSensor(echo=17, 
trigger=27, queue_len=2)
        self.right_distance_sensor = 
DistanceSensor(echo=5, trigger=6, queue_len=2)

        # Setup the Encoders
        self.left_encoder = EncoderCounter(4)
        self.right_encoder = EncoderCounter(26)
        ...

3. To make sure that the code cleans up encoder handlers when our Robot object has 
stopped, we call the encoder's stop methods in the stop_all method:

        ...
        # Clear the display
        self.leds.clear()
        self.leds.show()

        # Clear any sensor handlers
        self.left_encoder.stop()
        self.right_encoder.stop()
        ...

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter10/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter10/robot.py
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The finished code for robot.py with encoders is on GitHub (https://github.
com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/
blob/master/chapter11/robot.py). We can now use this to build a behavior to 
measure the distance in millimeters. To do so, we'll understand the relationship between 
encoder ticks and the distance moved in millimeters.

Turning ticks into millimeters
To calculate real distances, we need the sizes of the wheels. We cannot account for 
slipping, but we can find out how much a wheel has turned, which is the same as the 
encoders. Using the wheel's diameter, we can calculate how far it has turned. Using  
a ruler or caliper, measure the diameter across the wheel, as shown in Figure 11.11:

Figure 11.11 – Measuring the wheel

The measurements needed are shown in Figure 11.11:

1. You will need to measure the wheel's diameter, marked D in this figure, and the 
distance between the wheels, W. The distance W is equivalent to the width from 
midpoint to midpoint of the two motor-driven wheels on the robot. It is easier to 
measure, as shown here, the right side of one wheel, all the way across to the right 
side of the other wheel – which will be the same as midpoint to midpoint. Mine 
came to about 130 mm. 

2. You can measure D with calipers, as shown here, by fitting them around the widest 
part of the wheel. My wheel came to 70 mm, to the nearest mm.

We know how many slots are on the encoders, and we expect two ticks (the rising and 
falling) per slot, so we can take the number of slots times 2, which is the number of ticks 
per whole-turn of the wheel – in my case, this is 40.

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/robot.py
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The number pi, or 𝜋𝜋 , is the ratio of the diameter to the circumference of the wheel. To get 
the circumference, we multiply the diameter by pi, giving us πD , where D is the diameter. 
We can divide pi by the number of total ticks per revolution, and then when we multiply 
this by the number of ticks counted, T, and then the diameter, D, and we get a number for 
the distance, d, that the wheel has traveled:

𝑑𝑑 = 𝜋𝜋
40 × 𝐷𝐷 × 𝑇𝑇 

So, how do we turn this into code? Refer to the following steps:

1. Make a new file called test_distance_travelled.py. At the top of the file, 
we need to import math for the calculations, the Robot object, and time:

from robot import Robot
import time
import math
import logging
logger = logging.getLogger("test_distance_travelled")
...

2. Next, we define our constants – the wheel's diameter and the number of ticks per 
revolution. Please use the values you obtained, not the ones that I have shown here:

...
wheel_diameter_mm = 70.0
ticks_per_revolution = 40.0
...

3. Create a function to convert the ticks counted into a distance. It's converted 
into integers since fractions of a millimeter are just not appropriate for this 
measurement. Since part of the conversion doesn't change, we make that a  
constant, too:

...
ticks_to_mm_const = (math.pi / ticks_per_revolution) * 
wheel_diameter_mm

def ticks_to_mm(ticks):
    return int(ticks_to_mm_const * ticks)
...
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4. Next, we define our robot, set up a stop time, and start the motors:

...
bot = Robot()
stop_at_time = time.time() + 1

logging.basicConfig(level=logging.INFO)
bot.set_left(90)
bot.set_right(90)
...

5. In the loop, we display the distance by calling ticks_to_mm on the pulse counts:

...
while time.time() < stop_at_time:
    logger.info("Left: {} Right: {}".format(
        ticks_to_mm(bot.left_encoder.pulse_count),
        ticks_to_mm(bot.right_encoder.pulse_count)))    
time.sleep(0.05)

When uploaded to the robot and run, the output looks like this:

pi@myrobot:~ $ python3 test_distance_travelled.py
INFO:test_distance_travelled:Left: 0 Right: 0
INFO:test_distance_travelled:Left: 5 Right: 0
INFO:test_distance_travelled:Left: 16 Right: 10
INFO:test_distance_travelled:Left: 32 Right: 21
...
...
INFO:test_distance_travelled:Left: 368 Right: 384
INFO:test_distance_travelled:Left: 395 Right: 417

This output has shown a clear difference between the travel on the left and the right 
motors. The right motor is moving slightly quicker than the left. This difference 
accumulates, making the robot turn further. So, in the next section, let's use this 
information to straighten things up.

Driving in a straight line
By now, you have seen differences in the outputs – that is, a veer. In only 400 mm, my 
left side is around 20 mm behind the right, an error that is climbing. Depending on your 
motors, your robot may have some veer too. It is rare for a robot to have driven perfectly 
straight. We use the sensors to correct this. 
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Tip
This behavior works better on wooden flooring or MDF boards, and poorly on 
carpet.

This correction is still dead reckoning; slipping on surfaces or incorrect measurements can 
still set this off course. How can we use motors and encoders to correct our course and 
drive in a straight line?

Correcting veer with a PID
A behavior to self-correct steering and drive in a straight line needs to vary motor speeds 
until the wheels have turned the same amount. If the wheels turn the same amount soon 
enough, then they will account for major course deviations.

Our robot will use the encoder sensor to measure how much each wheel has turned. We 
can then consider the difference between these to adjust the motor control and try to keep 
the motors at the same speed.

A trick with this is working out how the difference in measurements relates to adjusting 
motor speeds. This leads us to look at a PID system designed to map errors into 
adjustment and output values.

Driving in a straight line needs a closed feedback loop. Figure 11.12 shows how this  
loop works:

Figure 11.12 – Closed-loop control of a motor's speed
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We start with an expected position or set point. The encoder position gives feedback data 
from the real world. We get a difference between the setpoint and the encoder position, 
which we call the error. The code feeds this into a controller, which generates a speed 
adjustment. The system will then apply that adjustment to the motor speed, making the 
motor turn more or less, changing the encoder's feedback.

To go straight, we take the left motor's value and subtract the right motor to get an 
encoder difference. Our expected position is 0. Our error is then the difference between  
the encoders. We can then adjust the speeds using the controller.

We use a PID controller to adjust the speed of the motors; this has three components:

• Proportional (P): The error value multiplied by a constant. This corrects for 
immediate errors.

• Integral (I): The sum of the error values so far, multiplied by a constant. This 
corrects for continuing errors.

• Derivative (D): This takes the difference between the last error value and now and 
multiplies by a constant. This is to push back a little against sudden changes.

By manipulating the constants, we tune how much each factor influences the outcome of 
the controller. We won't be using the derivative component for our behaviors, which is 
equivalent to having its constant set to zero. 

The integral can give the robot some self-tuning, but it needs to have a very small 
constant, as high values can make the robot start to wobble instead. We will add the 
adjustment onto one motor and subtract it from the other.

The right motor speed is as follows:

...
integral_sum = integral_sum  + error
right_motor_speed = speed + (error * proportional_constant) + 
(integral_sum * integral_constant)
...

We need an unused motor speed capacity to be able to speed up a bit. If the speed is too 
close to 100%, we get clipping. An integral behavior with clipping can make the robot 
behave quite strangely, so watch out for clipping at 100%! 
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Tip
Leave headroom for PID adjustments – use no more than 80% of motor speed.

Now that we have some idea how a PID controller works, let's build one in code.

Creating a Python PID controller object
The PID controller code is a fundamental robotics building block for making straight lines 
and we'll use it again in later camera-driven chapters. You will use the basic concepts here 
in many robotic systems:

1. We use this in a few places, so let's make a simplified PID control object. I put this 
in a file named pid_controller.py. Note that this is only a proportional-
integral (PI) controller; we can add a differential later if needed. Here is the class 
and its constructor:

import logging
logger = logging.getLogger("pid_controller")

class PIController:
    def __init__(self, proportional_constant=0, integral_
constant=0):
        self.proportional_constant = proportional_
constant
        self.integral_constant = integral_constant

        # Running sums
        self.integral_sum = 0
...

The constructor takes the constants. I've preloaded these with zero, so you can 
isolate the components. The class stores these values. Then, we set up a variable 
to store the integral sum, which grows with time. It is not unusual to abbreviate 
proportional_constant as pK and integral_constant as iK. You can  
do so if you wish. I've used the longer names in the code examples to make it easier  
to read.
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2. The following code handles the values for the two components. Handling the 
integral has the effect of increasing the integral sum:

...
    def handle_proportional(self, error):
        return self.proportional_constant * error

    def handle_integral(self, error):
        self.integral_sum += error
        return self.integral_constant * self.integral_sum
...

3. The following bit of code handles the error to generate the adjustment:

...
    def get_value(self, error):
        p = self.handle_proportional(error)
        i = self.handle_integral(error)
        logger.debug(f"P: {p}, I: {i:.2f}")
        return p + i

I've left the proportional and integral parts available here as p and i; since we log 
these values, we can configure logging to show them when debugging and tuning 
the controller.

With the PI code in place, we are ready to make a robot that can combine errors with 
previous values, scaling them to make them useful in the context of some movement.  
We will use this PID controller for our straight line adjusting in the next section. 

Writing code to go in a straight line
I called this straight_line_drive.py (https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition/
blob/master/chapter11/straight_line_drive.py): 

1. Let's import the Robot object, time, and our new PI controller. We'll set up 
logging to get debug from the PID controller. You can tune it back to INFO or  
take that line out if it's too much:

from robot import Robot
from pid_controller import PIController
import time
import logging

logger = logging.getLogger("straight_line ")

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/blob/master/chapter11/straight_line_drive.py
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logging.basicConfig(level=logging.INFO)
logging.getLogger("pid_controller").setLevel(logging.
DEBUG)

2. Set up the Robot object too, and set up a slightly longer stop_at_time value  
so that our robot drives a bit further:

bot = Robot()
stop_at_time = time.time() + 15
...

3. Start with a master speed value of 80, and set both motors to this:

...
speed = 80
bot.set_left(speed)
bot.set_right(speed)
...

4. Before going into our main loop, set up the controller. You may need to tune these 
constants. Note how small the integral constant is:

...
pid = PIController(proportional_constant=5, integral_
constant=0.3)
...

5. In the loop, we sleep a little so that our encoders have something to measure. It's 
also usually a bad idea to have a "tight" loop that doesn't use sleep to give other 
things a chance to run. Get the encoder values and compute the error:

...
while time.time() < stop_at_time:
    time.sleep(0.01)
    # Calculate the error
    left = bot.left_encoder.pulse_count
    right = bot.right_encoder.pulse_count
    error = left - right
    ...
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6. That error needs to be handled by the controller and used to make right_speed: 

    ...
    # Get the speed
    adjustment = pid.get_value(error)
    right_speed = int(speed + adjustment)
    left_speed = int(speed - adjustment)
    ...

7. We can then log debug information here. Notice we have two levels: debug for the 
error and adjustment and info for the speeds. With the current config set to INFO, 
we won't see the debug without modifying it:

    ...
    logger.debug(f"error: {error} adjustment: 
{adjustment:.2f}")
    logger.info(f"left: {left} right: {right}, left_
speed: {left_speed} right_speed: {right_speed}")
    ...

8. We then set the motor speeds to the adjusted values and finish the loop:

    ...
    bot.set_left(left_speed)
    bot.set_right(right_speed)

When we run this, the robot should be following a fairly straight course. It may start 
unstable, but should hone in on a constant adjustment:

pi@myrobot:~ $ python3 straight_line_drive.py
DEBUG:pid_controller:P: 0, I: 0.00
INFO:straight_line:left: 3 right: 3, left_speed: 80 right_
speed: 80
DEBUG:pid_controller:P: 0, I: 0.00
INFO:straight_line:left: 5 right: 5, left_speed: 80 right_
speed: 80
DEBUG:pid_controller:P: -4, I: -0.20
INFO:straight_line:left: 5 right: 6, left_speed: 84 right_
speed: 75
DEBUG:pid_controller:P: 0, I: -0.20
...
INFO:straight_line:left: 13 right: 15, left_speed: 89 right_
speed: 71
DEBUG:pid_controller:P: -8, I: -1.40
INFO:straight_line:left: 15 right: 17, left_speed: 89 right_
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speed: 70
DEBUG:pid_controller:P: -8, I: -1.80
INFO:straight_line:left: 17 right: 19, left_speed: 89 right_
speed: 70
DEBUG:pid_controller:P: -8, I: -2.20
INFO:straight_line:left: 19 right: 21, left_speed: 90 right_
speed: 69
...
DEBUG:pid_controller:P: 0, I: 0.60
INFO:straight_line:left: 217 right: 217, left_speed: 79 right_
speed: 80
DEBUG:pid_controller:P: 0, I: 0.60
INFO:straight_line:left: 219 right: 219, left_speed: 79 right_
speed: 80
DEBUG:pid_controller:P: 0, I: 0.60
INFO:straight_line:left: 221 right: 221, left_speed: 79 right_
speed: 80
DEBUG:pid_controller:P: 0, I: 0.60
INFO:straight_line:left: 223 right: 223, left_speed: 79 right_
speed: 80

The robot starts with no error as the motors engage, but the right goes faster. At 13 ticks, 
the controller pulls the adjustment pretty high. Notice how P jumps, but I settles for  
a constant value after a while, which will keep the robot straight.

Tuning of the P and I constants and the loop timing may result in earlier corrections – the 
initial encoder values are too small to be useful.

Note that this may still end up off course; it accounts for reducing the veer but can adjust 
too late to stop a small S shape or other error. It is, however, much straighter than driving 
without. Adjusting the PID can help with this.

Troubleshooting this behavior
Here are a few steps to take if the robot is wobbling or doesn't manage to travel in  
a straight line:

• If the robot takes too long to compensate, increase the proportional component.

• If the robot overshoots massively (that is, it swerves one way, then the other), reduce 
the size of both the proportional and integral PID components.
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• If the robot is making increasing wobbles, the integral is too high, and the right 
speed may be going above 100. Bring down the integral component, and perhaps 
the requested speed.

• You can set the straight_line logger or basicConfig to debug to see the 
error value too.

With the straight line working and driving, you have now corrected veer problems and 
differences between the sides. You can now build on this; let's take a known distance  
and drive to it, then stop.

Driving a specific distance
For driving a specific distance, we use the PI controller again and incorporate the 
distance measurements into our encoder object. We calculate how many ticks we want 
the left wheel to have turned for a given distance, and then use this instead of a timeout 
component.

Refactoring unit conversions into the EncoderCounter 
class
We want the conversions for our encoders in the EncoderCounter class to use them 
in these behaviors. Refactoring is the process of moving code or improving code while 
retaining its functionality. In this case, converting distances is one of the purposes of  
using encoders, so it makes sense to move this code in there:

1. Open up your encoder_counter.py class. First, we need the math import:

from gpiozero import DigitalInputDevice
import math
...

2. At the top of the class, add ticks_to_mm_const as a class variable (not an 
instance variable) to use it without any instances of the class. Set this to none 
initially so that we can calculate it:

...
class EncoderCounter:
    ticks_to_mm_const = None # you must set this up 
before using distance methods
     ...
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3. In our class, we want to retrieve the distance the wheel has traveled directly from 
the encoder, in mm. Add this to the end of the file:

    ...
    def distance_in_mm(self):
        return int(self.pulse_count * EncoderCounter.
ticks_to_mm_const)
    ...

This code assumes that all encoders have the same diameter wheels and the same 
number of slots. That is why we pull ticks_to_mm_const from the class and not 
self (the instance). 

4. We also want to calculate the opposite: the number of ticks from a distance in mm. 
To do that, divide the distance in mm by the same constant we multiplied by. This is 
set to staticmethod so that it does not require later code to use an instance:

    ...
    @staticmethod
    def mm_to_ticks(mm):
        return mm / EncoderCounter.ticks_to_mm_const
    ...

5. Add a way to set the constants in the file (for different robot configurations):

    ...
    @staticmethod
 def set_constants(wheel_diameter_mm, ticks_per_
revolution):
     EncoderCounter.ticks_to_mm_const = (math.pi / ticks_
per_revolution) * wheel_diameter_mm
    ...

When you have saved this, EncoderCounter can now convert between distance and 
encoder ticks. We now need to set up the wheel diameters for your particular robot.



272     Programming Encoders with Python

Setting the constants
So far, we can use our robot metrics in our behaviors. Now, we want the Robot object 
to store our measurements and register them with the encoders. We can do this in two 
simple steps:

1. In robot.py, just before the constructor, specify some of these numbers:

...
class Robot:
    wheel_diameter_mm = 70.0
    ticks_per_revolution = 40.0
    wheel_distance_mm = 140.0
    def __init__(self, motorhat_addr=0x6f):
        ...

2. Register these with the encoders:

        ...
        # Setup the Encoders
        EncoderCounter.set_constants(self.wheel_diameter_
mm, self.ticks_per_revolution)
        self.left_encoder = EncoderCounter(4)
        self.right_encoder = EncoderCounter(26)
        ....

With the constants ready, we've primed our encoders to measure distance. We can use this 
to make a behavior to drive a distance.

Creating the drive distance behavior
I'll put this code into drive_distance.py:

1. Start by importing EncoderCounter to use its metrics, PIController, and the 
Robot object, and set up a logger:

from robot import Robot, EncoderCounter
from pid_controller import PIController
import time
import logging
logger = logging.getLogger("drive_distance")
...
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2. Define the drive_distance function, which takes a robot instance, a distance 
in ticks, and an optional speed defaulting to 80. We start by making a primary and 
secondary motor and controller decision:

...
def drive_distance(bot, distance, speed=80):
    # Use left as "primary" motor; the right is keeping 
up
    set_primary = bot.set_left
    primary_encoder = bot.left_encoder
    set_secondary = bot.set_right
    secondary_encoder = bot.right_encoder
    ...

Note that we store the set_left and set_right functions in variables – we can 
just call the variables like functions. 

3. We now have a well-defined primary and secondary motor. Set up a 
PIController and start the two motors:

    ...
    controller = PIController(proportional_constant=5, 
integral_constant=0.3)

    # start the motors and start the loop
    set_primary(speed)
    set_secondary(speed)
    ...

4. Now, we are in the driving distance loop. We should continue the loop until both 
encoders reach the right distance. We need to sleep before the rest of the loop so 
that we have some data for our calculations:

    ...
    while primary_encoder.pulse_count < distance or 
secondary_encoder.pulse_count < distance:
        time.sleep(0.01)
        ...
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5. Get the error and feed it into the controller:

        ...
        # How far off are we?
        error = primary_encoder.pulse_count - secondary_
encoder.pulse_count
        adjustment = controller.get_value(error)
        ...

6. We can send this to the motors and debug the data too. Because the adjustment is  
a non-integer, we allow two decimal places by using {:.2f}:

        ... 
        # How fast should the motor move to get there?
        set_primary(int(speed - adjustment))
        set_secondary(int(speed + adjustment))
        # Some debug
        logger.debug(f"Encoders: primary: {primary_
encoder.pulse_count}, secondary: {secondary_encoder.
pulse_count}," 
                    f"e:{error} adjustment: 
{adjustment:.2f}")
        logger.info(f"Distances: primary: {primary_
encoder.distance_in_mm()} mm, secondary: {econdary_
encoder.distance_in_mm()} mm")
...

7. Set up the robot, let it calculate how far you want it to go, and get it moving:

...
logging.basicConfig(level=logging.INFO)
bot = Robot()
distance_to_drive = 1000 # in mm - this is a meter
distance_in_ticks = EncoderCounter.mm_to_ticks(distance_
to_drive)
drive_distance(bot, distance_in_ticks)

8. We let the robot cleanup (atexit) stop the motors. 
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When you run this, the robot drives a meter and stops. My robot, when stopping, looked 
like this: 

INFO:drive_distance:Distances: primary: 997 mm, secondary: 991 
mm
INFO:drive_distance:Distances: primary: 1002 mm, secondary: 
1002 mm

There is a 2 mm overshoot, which it can lose in rounding values and detection time. We 
can't make partial ticks.

You have now seen how to make the robot drive a specific distance (or pretty close to 
it) while trying to stay in a straight line. You've combined the measuring and the PID 
adjustment tools that you've built throughout this chapter. But what if we want to make 
turns and measure those? We'll cover this in the next section.

Making a specific turn
The next task we can use our encoders for is to make a specific turn. When turning  
a robot, each wheel is going through an arc. Figure 11.13 illustrates this:

Figure 11.13 – Illustrating wheel movement when turning through an arc
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The inner wheel drives a shorter distance than the outer wheel, and from the basics of 
differential steering, this is how we make the turn. To make an exact turn, we need to 
calculate these two distances or the ratio between them. Figure 11.14 shows how the 
wheels and the turn relate to each other:

Figure 11.14 – Relating wheels to turn radiuses

If we consider the turn radius as setting where the middle of the robot is, an inner  
wheel's turn radius is the difference between the turn radius and half the distance  
between the wheels:

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒_𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖_𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑡𝑡𝑟𝑟 =  𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖_𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑡𝑡𝑟𝑟 – 𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒_𝑟𝑟𝑖𝑖𝑟𝑟𝑡𝑡𝑟𝑟𝑖𝑖𝑑𝑑𝑖𝑖
2  

The outer wheel's turn radius is the turn radius added to half the distance:

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑒𝑒_𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡_𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡_𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟 + 𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑒𝑒_𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑡𝑡𝑑𝑑𝑜𝑜
2  

We convert our angle to turn into radians, and we can then multiply this angle by each 
wheel radius to get the distances that each wheel needs to move through:

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑒𝑒_𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑡𝑡𝑑𝑑𝑜𝑜 =  𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒𝑜𝑜_𝑑𝑑𝑡𝑡_𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 ∗  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑒𝑒_𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡_𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒_𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖_𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑒𝑒𝑖𝑖_𝑖𝑖𝑖𝑖_𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒_𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖_𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡𝑑𝑑 

Python has math functions to convert degrees into radians.
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Let's turn these functions into some code, demonstrating it by attempting to drive in  
a square, making measured 90-degree turns:

1. Start with a copy of drive_distance.py and call it drive_square.py. Add 
the math import, like so:

from robot import Robot, EncoderCounter
from pid_controller import PIController
import time
import math
import logging
logger = logging.getLogger("drive_square")
...

2. We can modify the end of this file to state what we want to do. It can help to name 
functions that you plan to have, and then implement them to fit. We make it  
a bit smaller than a meter, too. For a radius to test with, I've added 100 mm to the 
robot's wheel distance. Anything less than the wheel distance and the center of the 
turn is between the wheels instead of outside of them:

...
bot = Robot()

distance_to_drive = 300 # in mm
distance_in_ticks = EncoderCounter.mm_to_ticks(distance_
to_drive)
radius = bot.wheel_distance_mm + 100 # in mm
radius_in_ticks = EncoderCounter.mm_to_ticks(radius)
...

3. Since we are driving in a square, we want to drive four times. For straight lines, 
drive each wheel the same distance, then make 90-degree arcs of our radius. I've 
reduced the speed for the arc so that there is less of a slipping problem:

...
for n in range(4):
    drive_distances(bot, distance_in_ticks, distance_in_
ticks)
    drive_arc(bot, 90, radius_in_ticks, speed=50)
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4. Let's go back up in the file to upgrade our method for driving a distance to one 
distance to driving two distances, one for each wheel. I've renamed the drive_
distance function to drive_distances:

...
def drive_distances(bot, left_distance, right_distance, 
speed=80):
    ...

5. Depending on the angle we want to turn, either motor could be the outer motor 
and driving a longer distance. Since there is an upper limit to speed, we choose our 
primary and secondary motors based on the longer distance. Swap the code that set 
up the primary/secondary with this:

    ...
    # We always want the "primary" to be the longest 
distance, therefore the faster motor
    if abs(left_distance) >= abs(right_distance):
        logger.info("Left is primary")
        set_primary = bot.set_left
        primary_encoder = bot.left_encoder
        set_secondary = bot.set_right
        secondary_encoder = bot.right_encoder
        primary_distance = left_distance
        secondary_distance = right_distance
    else:
        logger.info("right is primary")
        set_primary = bot.set_right
        primary_encoder = bot.right_encoder
        set_secondary = bot.set_left
        secondary_encoder = bot.left_encoder
        primary_distance = right_distance
        secondary_distance = left_distance
    primary_to_secondary_ratio = secondary_distance / 
primary_distance
    secondary_speed = speed * primary_to_secondary_ratio
    logger.debug("Targets - primary: %d, secondary: %d, 
ratio: %.2f" % (primary_distance, secondary_distance, 
primary_to_secondary_ratio))
    ...
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The encoders and motors are as they were in the preceding code. However, the code 
uses abs, the absolute value, to decide, because a longer distance in reverse should 
still be the primary motor. So, to determine how far the secondary wheel should 
go, we compute a ratio – to multiply with speed now, and later the primary encoder 
output. 

6. Since we are using this method more than once, reset the encoder counts. I put this 
in before setting up PIController:

    ...
    primary_encoder.reset()
    secondary_encoder.reset()
    
    controller = PIController(proportional_constant=5, 
integral_constant=0.2)
    ...

7. Since we can be going in either direction, set the encoder direction. Python has a 
copysign method to determine the sign of a value. Then, start the motors:

...
    # Ensure that the encoder knows which way it is going
    primary_encoder.set_direction(math.copysign(1, 
speed))
    secondary_encoder.set_direction(math.copysign(1, 
secondary_speed))

    # start the motors, and start the loop
    set_primary(speed)
    set_secondary(int(secondary_speed))
...

8. When we start this loop, we again need to be aware that one or both motors could 
be going backward. We use abs again to take off the sign:

...
    while abs(primary_encoder.pulse_count) < abs(primary_
distance) or abs(secondary_encoder.pulse_count) < 
abs(secondary_distance):
        time.sleep(0.01)
...
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9. Calculating the error for the secondary depends on the ratio between the two 
distances:

...
        # How far off are we?
        secondary_target = primary_encoder.pulse_count * 
primary_to_secondary_ratio
        error = secondary_target - secondary_encoder.
pulse_count
        adjustment = controller.get_value(error)
        ...

10. This still goes into the same adjustment calculation through pid; however, this 
adjustment may also cause a change in direction here. Now, we set the secondary 
motor speed:

      ...
      # How fast should the motors move to get there?
      set_secondary(int(secondary_speed + adjustment))
      secondary_encoder.set_direction(math.copysign(1, 
secondary_speed+adjustment))

      # Some debug
      logger.debug(f"Encoders: primary: {primary_encoder.
pulse_count}, secondary: {secondary_encoder.pulse_count}, 
e:{error} adjustment: {adjustment:.2f}")
      logger.info(f"Distances: primary: {primary_encoder.
distance_in_mm()} mm, secondary: {secondary_encoder.
distance_in_mm()} mm")
      ...

11. You could expand the debug that we had to take into account for the secondary 
speed and targets. Now, because we are trying for precision, the primary motor may 
reach its goal before the secondary and isn't set up to reverse. So, stop this motor 
when it reaches its goal, and set the base speed of the secondary to zero, which 
means only adjustments apply, if any. Note that we still use the absolute values here:

        ...
        # Stop the primary if we need to
        if abs(primary_encoder.pulse_count) >= 
abs(primary_distance):
            logger.info("primary stop")
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            set_primary(0)
            secondary_speed = 0
        ...

And we are done with the driving distances function. We can use this to drive in a straight 
line or feed it a separate target distance for each wheel and use that to drive in an arc. We'll 
take advantage of that in the next section.

Writing the drive_arc function
Here is where we convert to radians, determine the inner radius, and set up the distances 
for each wheel to drive. Add this code in drive_square_behaviour.py, after the 
drive_distances function:

1. Start with a function definition and a helpful docstring:

...
def drive_arc(bot, turn_in_degrees, radius, speed=80):
    """ Turn is based on change in heading. """
    ...

2. We turn the robot's width into ticks, the internal measurement of distance, and use 
half of that to get the wheel radiuses. We also determine which is the inner wheel:

    ...
    # Get the bot width in ticks
    half_width_ticks = EncoderCounter.mm_to_ticks(bot.
wheel_distance_mm/2.0)
    if turn_in_degrees < 0:
        left_radius = radius - half_width_ticks
        right_radius = radius + half_width_ticks
    else:
        left_radius = radius + half_width_ticks
        right_radius = radius - half_width_ticks
    logger.info(f"Arc left radius {left_radius:.2f}, 
right_radius {right_radius:.2f}")
    ...
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3. We display the debug on what the radiuses are. Combine this with the turn in 
radians to get the distances. We convert the absolute value of the turn in degrees. 
We don't want to reverse into a turn, but to turn the other way:

    ...
    radians = math.radians(abs(turn_in_degrees))
    left_distance = int(left_radius * radians)
    right_distance = int(right_radius * radians)
    logger.info(f"Arc left distance {left_distance}, 
right_distance {right_distance}")
    ...

4. Finally, feed these distances into the drive_distances function:

    ...
    drive_distances(bot, left_distance, right_distance, 
speed=speed)
...

The robot should be able to drive in a square shape. It can still miss due to slipping or 
inaccuracies in the measurements. Tuning of the proportional and integral control values 
is required.

Examining the full code for drive_distances and drive_arc, it may become 
apparent that there is some repetition in determining the inner/outer and the primary/
secondary parts, which you could refactor if you choose.

This code may not behave correctly if reversing through a corner.

Summary
In this chapter, we saw how to incorporate wheel encoder sensors into our robot and used 
them to determine how far each wheel has turned. We saw how to use this to get the robot 
onto a straighter path using a reduced PID controller and then used this to drive a specific 
distance. We then took the calculations further to calculate turning a corner in terms of 
wheel movements and driving the robot in a square.

A PID controller can be used in many situations where you need to apply a difference 
between a measurement and expectation, and you have seen how to combine this with 
sensors. You could use the same system to control a heating element connected to  
a thermal sensor. You could also use encoders to move robots with some precision,  
where the restricted range of motion used in servo motors does not make sense.
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In the next couple of chapters, we will explore giving our robot even more interactive and 
intelligent behaviors, with chapters on visual processing using a Raspberry Pi camera, 
speech processing with Mycroft, and using a smartphone to drive or select modes on the 
robot remotely.

Exercises
1. Try experimenting with turning on different logging levels and differently named 

loggers, tuning how much output a robot behavior creates.
2. For the PID behaviors, tune the PIDs, try high values for the proportional or the 

integral, and observe how this makes the robot behave. Could you combine this 
with graphing in matplotlib to observe the PID behavior?

3. There are a few ways that the drive distance code could be improved. Applying a 
PID controller to the distance moved by the primary could make it close in more 
precisely on the exact distance to travel. Detecting no movement in either encoder 
could be used to make the code stop after a timeout so that it doesn't drive off 
without stopping. Try this out.

4. You could now use this code to make further geometric shapes or to follow paths 
without a line. Try adding high-level left turn/right turn 90-degree functions as 
building blocks for right-angled path construction, then use this to make paths.

5. Consider combining the encoding sensors here with distance sensors; it may be 
possible to start memorizing distances between walls.

Further reading
Please refer to the following for more information:

• PID control is a deep subject. It is a key area in self-balancing robots, drones, and 
other autonomous control systems. Here is a great video series so that you can 
explore these further:

YouTube: Brian Douglas – PID Control – A brief introduction: https://www.
youtube.com/watch?v=UR0hOmjaHp0

• I've greatly simplified some of the corner-turning algorithms. A very in-depth 
article on how this was used for a competition-winning LEGO Mindstorms robot 
holds a more detailed method:

GW Lucas – Using a PID-based Technique For Competitive Odometry and Dead-
Reckoning: http://www.seattlerobotics.org/encoder/200108/
using_a_pid.html

https://www.youtube.com/watch?v=UR0hOmjaHp0
https://www.youtube.com/watch?v=UR0hOmjaHp0
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
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with Python
Modern robots need to know their position relative to the world. In Chapter 11, 
Programming Encoders with Python, we looked at how encoders can get an idea of how 
much the robot has moved or turned. However, this turning was relative to where the 
robot was and had no absolute reference. Wheel slipping could lead to false readings. 
In this chapter, you will see more ways the robot can read changes in its position and 
measure its movements.

In principle, an inertial measurement unit (IMU) can give absolute position 
measurements and not slip. In practice, they are complicated. This chapter is a small 
practical tour of adding an IMU to your robot. I will introduce the components of an  
IMU in this chapter. You will also learn how to solder in order to add headers to a 
breakout, a skill that opens up a world of additional robot parts.

We'll write some code to try the various functions and see the kind of output the sensors 
provides. We will then make animated visualizations of the sensor data. By the end of 
this chapter, you will be able to work with these advanced sensors, have some soldering 
experience, and put together dashboards for monitoring sensors. As you investigate more 
in robotics, you'll learn that animated dashboards will be vital if you want to see what your 
robot can see.
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In this chapter, we're going to cover the following main topics:

• Learning more about inertial measurement units

• Soldering – attaching headers to the IMU

• Attaching the IMU to the robot

• Reading the temperature

• Reading the gyroscope

• Reading the accelerometer

• Reading the magnetometer

Technical requirements
For this chapter, you will need the following items:

• The robot from Chapter 7, Drive and Turn – Moving Motors with Python

• The robot code from Chapter 11, Programming Encoders with Python, which can be 
found at https://github.com/PacktPublishing/Learn-Robotics-
Programming-Second-Edition/tree/master/chapter11

• An ICM20948 breakout board with headers, such as the Pimoroni PIM448 module

• A soldering iron and stand

• A soldering iron tip-cleaning wire

• Solder – should be flux-cored solder for electronics

• A solder sucker

• A well-lit bench for soldering

• A ventilated space or extractor

• Safety goggles

• A breadboard

• A 2.5 mm standoff kit

• Female-to-female Dupont jumper wires

For the complete code for this chapter, please go to https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition/
tree/master/chapter12.

Check out the following video to see the Code in Action: https://bit.ly/38FJgsr

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter11
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter11
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter12
https://bit.ly/38FJgsr
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Learning more about IMUs
An IMU is a combination of sensors designed to sense a robot's movement in a 3D space. 
These devices are found in drones, useful in floor-based robots, and critical for balancing 
robots. The IMU is not a single sensor, but a collection designed to be used together and 
have their readings combined.

These devices are tiny but have their roots in flight hardware with large spinning 
gyroscopes. IMUs use the micro-electro-mechanical systems (MEMS) technology to 
put mechanical devices on micro-scale chips. They do have tiny moving parts and use 
electronic sensors to measure their movements.

Since some measurements are analog (see Chapter 2, Exploring Controllers and I/O, IMU 
modules often include an analog to digital converter (ADC) and communicate over I2C.

There are different combinations of sensors on an IMU. These sensors are as follows:

• A temperature sensor, to account for temperature effects on other sensors

• A gyroscope, which measures rates of rotation

• An accelerometer, which measures accelerations or forces

• A magnetometer, which measures magnetic fields and can act as a compass

As we work with each of these sensor types, we will learn more about them and  
their quirks.

Now that we know a little about IMUs, let's learn how to choose one.

Suggested IMU models
IMUs can be constructed with a separate accelerometer, gyroscope, and magnetometer, 
along with devices to convert the output of the sensor. To reduce the wiring and space this 
needs, I suggest using a board with all the devices or a single chip solution. For the same 
reason, I recommend I2C or serial IMUs.

IMU systems use degrees-of-freedom (DOF) to denote how many sensor axes are 
present. A 9-DOF system has three axes (X, Y, and Z) for each sensor.

BNO sensors are easier to code for but are incompatible with the Raspberry Pi due to the 
way they use the I2C bus, and they may require an intermediate interface chip.
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Another thing to consider is if there is documentation (readme files and manuals) and 
a supported library to control the device from Python. The following picture shows a 
suggested IMU breakout:

Figure 12.1 – Photo of the ICM20948

The preceding image is of the PIM448 breakout board for the ICM20948, a well-supported 
9-DOF sensor for Python libraries. It also has a temperature sensor. It is also well distributed. 
Since IMUs are complex devices, I strongly suggest choosing the PIM448 for this chapter.

Now that we've explored what IMU devices are and how to choose one, it's time to prepare 
a PIM448 for our robot with a new skill: soldering.

Soldering – attaching headers to the IMU
Most IMU breakouts, including the suggested PM448, are likely to come with headers in 
a bag, which you will need to solder onto the board. You are going to need a small bit of 
tuition if you want to solder on these headers:

Figure 12.2 – Bare PIM448 with headers

The preceding image shows the PIM448 as it comes out of the bag. On the left is the 
ICM20948 board with only holes and no headers. In the middle are the male headers, 
while the female headers are on the right. We will use the male headers since these are 
easier to hold in place when soldering.
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As we mentioned in the Technical requirements section, you need a soldering iron and 
solder, a soldering iron stand, safety goggles, an extractor or well-ventilated space, an 
additional breadboard, and a well-lit workspace. Soldering creates fumes that you do  
not want to breathe in.

Wear your safety goggles at this point. Heat the soldering iron; depending on the iron,  
this may take a few minutes. Pull out a bit of solder ready to use too.

Making a solder joint
You are now ready to make a solder joint.

The following image shows three of the stages of soldering the module:

 

Figure 12.3 – Stages of soldering the PIM448 

To make a solder joint, perform the follow steps while looking at the preceding image:

1. We need to ensure the part won't move while the solder dries. The preceding image 
shows the PIM448 lined up on the male headers, pushed into a breadboard on the 
bottom, with the female headers on the top. An excellent way to hold the part in 
place is to put the long side of the headers into the breadboard with our device on 
top. Since we are attaching male headers, we will use the female headers to prop up 
the other side.

2. The soldering iron tip should be hot at about 300°C and tinned. Melt a little solder 
on the tip to test that it's warm enough. Before you can solder, you need to tin the 
tip. Tinning is where you put a small layer of solder onto the iron to improve its heat 
conductivity and protect the tip from oxidizing (getting rusty when hot). To tin the 
tip, push a little solder into the iron's tip, and it will stick to it. The solder should 
melt freely.

3. Ensure the tip is clean – with the iron hot, push the tip of the iron into the brass 
cleaner, making a wiping motion with it in the wire.
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4. Heat the pin from the header and the pad (the ring that the pin goes through). We'll 
start on the pin that reads 2-6V. Heat both the pin and the pad to avoid a dry joint, 
where the solder will not flow properly over the pad. Dry joints are weak, both 
electrically and mechanically.

5. After a second or so, gently feed a little solder into the other side of the pin;  
when the pin is hot enough, the solder will melt and flow over the pad, making a 
rounded tent-like shape. This is just enough solder. You will see flux resin coming 
from the solder.

6. The preceding image shows the next step in the middle. Here, I've soldered two 
pins; things gets easier from here on out since the board can't move. Move on  
to the next pin and repeat – heat the pin and pad, then feed in the solder.

7. If you've added too much solder, use a solder sucker to remove the excess. Push 
down the plunger, bring the sucker up close to the joint, melt the solder, and press 
the release button of the plunger for it to suck any solder away. You can remake  
this joint with a bit less solder.

8. If you find you've connected two pins with a blob of solder (bridged them), you can 
draw the hot iron down between the pins to divide them again. You may also need 
to remove any excess solder, as mentioned in Step 7.

9. Repeat the preceding steps for the remaining pins. The right-hand side of the 
preceding image  shows what your IMU should look like once all the pins have  
been soldered.

Important Note
For the sake of safety, ensure that you return the soldering iron to its stand 
and switch the iron off before you do anything else. A soldering iron can be a 
dangerous device, leading to burns or fires if left unattended.

10. Once the part is cool, unplug it from the breadboard. Optionally, you can use 
isopropyl alcohol and a cotton bud to clean away flux residue for a better look.

Before we wire this, make the following checks:

• You have soldered all five pins in place.

• Each soldered pin is like a silver "tent" shape. A bubble/round or flat shape is not 
right, and you will need to make that connection again.

• No two pins have solder bridges – blobs of solder connecting the pins.
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Congratulations – you have soldered your first part! This is a skill you will need again as 
you build more robotic and electronic devices. Now that you have soldered the ICM20948 
module, let's attach it to your robot.

Attaching the IMU to the robot
Before we can use the IMU and write code for it, we must securely mount it on the robot 
and wire it so that the Raspberry Pi can talk to it.

Physical placement
The IMU magnetometer is sensitive to magnetic fields and needs to be away from the 
motors. For this reason, it should be on a stalk above the robot.

The orientation of the IMU is essential for other experiments to make sense:

Figure 12.4 – Lining up the IMU with the robot

There is a diagram on top of the IMU. The preceding diagram shows how this diagram 
should line up with the robot. The X-axis should face forward, while the Z-axis should 
face up, with the little square on the IMU pointing upward. Finally, the Y-axis should 
point to the left.

The sensor uses I2C. I2C is sensitive to wire distances, so we should mount it above the 
Raspberry Pi and motor control board where the wire distances are low. The following 
image shows the parts you will need to do this:

Figure 12.5 – Parts needed to attach the IMU
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For this step, you will need the parts shown in the preceding image:

• The IMU, with headers mounted

• Many long standoffs, M2.5

• 1x M2.5 nut

We will assemble these parts using the standoffs to make a long post, as the following 
image shows:

Figure 12.6 – Joining the standoff posts

The following steps are intended to be used with the preceding image to help you mount 
the IMU:

1. As shown in the preceding image, you just need to screw the thread of one post into 
the socket of the other to end up with a long post. This should give the IMU a little 
distance so that it can stand above the robot. Aim to be just under the cable length:

Figure 12.7 – Bolting the IMU to the post

2. As shown in the preceding image, push a post thread through the hole opposite the 
axis markers on the IMU (a). The headers (b) should be facing down into the post. 
The thread is quite a snug fit but should fit through. Use the nut on top (c) to secure 
it in place:
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Figure 12.8 – Bolting the IMU post to the Raspberry Pi

3. The preceding image shows the IMU post screwed onto a thread sticking up from 
the motor board. The motor board we suggested in Chapter 6, Robot Building Basics 
– Wheels, Power, and Wiring, has an I2C connector to the rear left of this board. We 
can bolt the IMU post to a hole near that:

Figure 12.9 – The IMU ready for wiring

4. The preceding image shows the ICM20948 attached to the post, which you bolt 
into the top of the motor board, with its pins ready for wiring. Adjust it so that the 
X-axis points forward and the Y-axis points to the left while tightening the top nut. 
The closer this is to square with the robot, the better your results will be!

You have now mounted the IMU on the robot. You've lined up its axes, so we know what 
to expect from our sensors. Now that we have fitted this IMU module, it's firmly in place, 
but could be unbolted if we need to do that. The module is now ready for wiring.
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Wiring the IMU to the Raspberry Pi
Next, you need to wire the IMU to the I2C pins on the Raspberry Pi. While this seems  
to be an easy job, you must watch out since some connections aren't straight through.

The motor board's handy I2C breakout should make this job a little easier:

Figure 12.10 – The wiring of ICM20948

As shown in the preceding diagram, the wiring is pretty straightforward: the GND from 
the IMU goes to the GND on the motor board I2C breakout, SDA goes to SDA, SCL  
goes to SCL, and 2-6V goes to 5V (in the 2-6V range). 

The GND goes from the left of the motor board to the right of the IMU. The four wires 
have a bend, with the 5V line crossing it.

In practice, we would use a jumper cable strip of four wires, which is shown by the dashed 
lines in the preceding diagram. The end going to the IMU would go straight through. The 
end going to the motor board has the power cable crossing the other wires:

Figure 12.11 – ICM20948 IMU wired to the motor board
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In the preceding image, I've used a short female-to-female jumper wire to make the 
connections. The IMU board is at 90 degrees from its intended orientation to make the 
wiring more visible; it should have X facing forward. Notice that there is a twist in the 
wire, so the GND line (white here) ends up on the GND pin on the other side. Perform 
the following steps to make these connections:

1. Carefully pull off a strip of four wires. Aim to find a darker color for GND and  
a bright/vivid color for the 5V line.

2. Plug one side directly into the IMU, ensuring you skip the INT pin.

3. As you bring the wire to the motor board below, put a small turn in so that the cable 
faces the other way.

4. Plug the GND in first, to set the orientation.

5. Plug the 5V line in next, which will need to cross the other two wires.

6. The final two wires should now be in the right orientation for SDA and SCL; plug  
in both.

7. Use the wire colors to ensure you've made the right connections.

We do not intend to use the INT pin. This pin is designed to send an interrupt to the Pi,  
to notify us that there is a motion for wake-on-motion type behavior. However, use of  
this is beyond the scope of this book.

Now that we have wired this sensor in and attached it to our robot, you are ready to write 
some code. We'll start easy by reading the temperature.

Reading the temperature
With the device wired and attached, you'll want to try some code on it to confirm we can 
talk to this device and get data out of it. Let's get some tools installed and make it work.

Installing the software
Before we can start interacting with this device, as with most devices, we will install a 
helper library to communicate with it. Pimoroni, the suppliers of the ICM20948 module 
I've suggested, have made a handy library for Python to talk to it. I recommend taking 
their latest version from GitHub.
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Perform the following steps to install it:

1. Boot up the Raspberry Pi on the robot. This Pi should have been used previously  
for the motor board and LED shim and have I2C enabled. If not, go back to  
Chapter 7, Drive and Turn – Moving Motors with Python, and follow the steps  
for preparing the I2C.

2. Type in i2cdetect -y 1 to check that you've installed the device correctly.  
The output should look like this:

pi@myrobot:~ $ i2cdetect -y 1
     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
00:          -- -- -- -- -- -- -- -- -- -- -- -- -- 
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- 6f 
70: 70 -- -- -- -- -- -- —             

3. The device at 0x68 is our new device. If you do not see this, please power down the 
Raspberry Pi and check your wiring. The other two devices (0x6f and 0x70) are the 
motor board and the LED shim.

4. Now, we can install the library:

pi@myrobot:~ $ git clone https://github.com/pimoroni/
icm20948-python
pi@myrobot:~ $ cd icm20948-python/
pi@myrobot:~ $ sudo ./install.sh
pi@myrobot:~ $ cd

5. You've now verified that the ICM20948 device is on the robot's I2C bus and 
installed the Pimoroni Python library so that it can talk with it. You are now  
ready to talk to it.

We also will add some new software to visualize our data in real time. There is a  
system called Visual Python (VPython) that's been designed to create graphs and  
3D representations in real time:

pi@myrobot:~ $ pip3 install git+https://github.com/orionrobots/
vpython-jupyter.git
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Now, the device and library should be installed. If this didn't work for you, try looking  
at the Troubleshooting section, which is next.

Troubleshooting
Things can go wrong at this early stage. If you've not made things work so far, please try 
following these steps:

1. It is vital that the i2cdetect stage works here and shows the device at 0x68. If not, 
check your wiring. Nothing should be hot here.

2. Ensure you have followed all the soldering checks.

3. If the libraries fail to install, ensure you get connected to the internet. You may need 
to have the most recent version of Raspbian for them to work.

Now that you have installed the device and checked for common issues, we can try our 
first experiment with it and read the temperature sensor.

Reading the temperature register
In this section, we are going to set up an interface for the IMU, and then add a real-time 
graph for the temperature data from the Raspberry Pi.

Creating the interface
As with other sensors and outputs, we must create an interface because there are many 
IMU devices on the market. However, the same interface allows us to change them out 
without rewriting other behaviors using that interface:

1. Create a file named robot_imu.py

2. Start by importing the Pimoroni device library – this will be different if you use 
another IMU device:

from icm20948 import ICM20948

3. We'll make an IMU class to represent our device. This sets up a single IMU:

class RobotImu:
    def __init__(self):
        self._imu = ICM20948()
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4.  For this exercise, we only need the temperature. Let's simply wrap that:

    def read_temperature(self):
        return self._imu.read_temperature()

With this, the interface is ready. Now, we can use it to read the device's temperature.

What is VPython?
VPython or Visual Python is a system designed to make visual – even 3D – displays in 
Python. It comes from a scientific community and will become very useful throughout 
this chapter. It serves output to a browser, and with the specific version installed here, it 
can be run on a Raspberry Pi while showing the output on a computer or smartphone.

It has a few quirks, with one of them being a slow startup time, but it is worth it for  
the results.

Graphing the temperature
A good way to observe temperature variations is by using a graph.

Let's use VPython and create a graph showing the temperature of our IMU module:

1. Create a file named plot_temperature.py.

2. Start by importing VPython and our robot IMU interface:

import vpython as vp
from robot_imu import RobotImu

Notice how we've abbreviated vpython by importing it as vp.

3. We are going to plot temperature versus time on a graph, so we will need a time 
reference. Also, we will use logging to see what is going on:

import time
import logging

4. Let's configure logging so that we can see all the INFO level logs:

logging.basicConfig(level=logging.INFO)
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5. Create our IMU instance:

imu = RobotImu()

6. We want a few things from the graph. Since the X-axis is time and is in seconds, 
setting the minimum to 0 and the maximum to 60 will show us a minute of data. 
We also want the graph to scroll so that it shows new data once we've recorded  
more than a minute:

vp.graph(xmin=0, xmax=60, scroll=True)
temp_graph = vp.gcurve()

7. Now that we have a time reference, let's record the start time before we get into  
the loop:

start = time.time()

8. The main loop is a while true type. However, we need to use vp.rate to let 
VPython know we are animating and set a frame/update rate for our system:

while True:
    vp.rate(100)

9. Now, we can capture our temperature, and while we are at it, we can log this:

    temperature = imu.read_temperature()
    logging.info("Temperature: {}".format(temperature))

10. To put this into the graph, we need to get the elapsed time for the X-axis. We can get 
this by subtracting the start time from the current time:

    elapsed = time.time() - start

11. Finally, we need to plot this in our temperature graph, with the elapsed time as x 
and the temperature as y:

    temp_graph.plot(elapsed, temperature)

The code for plotting the temperature is now live. Let's run this on the Raspberry Pi.
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Running the temperature plotter
There are a few steps we need to follow to run this once we've copied the files to the 
Raspberry Pi. Our Raspberry Pi is headless, so we will need to view VPython remotely. To 
do so, we need to let VPython know we are doing this, and use a network port to make its 
view available. We can then use a browser to look at this. Let's see how:

1. In an SSH session to the Raspberry Pi, type the following:

$ VPYTHON_PORT=9020 VPYTHON_NOBROWSER=true python3 plot_
temperature.py

We've chosen port 9020, which is somewhat arbitrary but should be above 1000. 
We will be using other web services later in this book on different ports, and this 
number is well clear of their ranges. When run, it should log a few messages to tell 
you it is ready:

INFO:vpython.no_notebook:Creating server
http://localhost:9020
INFO:vpython.no_notebook:Server created
INFO:vpython.no_notebook:Starting serve forever loop
INFO:vpython.no_notebook:Started

Note that it shows a localhost address. We intend to use it remotely. 

2. Next, point your browser (Chrome, Firefox, or Safari) from your desktop to the 
Raspberry Pi with the port number. In my case, based on my robot's hostname,  
this would be http://myrobot.local:9020.

3. Now, be prepared to wait a bit – it can take a bit of time for VPython to set up. After 
this, you will either see your graph or any errors/problems.

When it's running, you'll get a graph of the readings from the temperature sensor. You can 
experiment a little by carefully placing a finger on the sensor (the large black square on the 
PIM448) and watching the graph rise/fall in response to this. You could also find cold or 
hot objects, such as a hair dryer, to see how this manipulates it. However, be careful not  
to get the robot wet, and don't let metal touch the pins:
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Figure 12.12 – A temperature graph

The preceding image is a graph that's showing temperature in degrees (Y-axis) versus  
time in seconds (X-axis). The thick black line indicates the current temperature reading.  
It wiggles a lot – this is a noisy system.

I placed my finger over the sensor at about 25 seconds. As shown in the preceding graph, 
the ambient temperature was 31 and raised to just under 34. It takes a few seconds to 
warm up. Keeping my finger there longer would have made it increase more. I had a fan 
present, so there was a sharp drop-off – there can be far slower drop-offs depending on 
your conditions. The code also logs the temperatures to the console:

INFO:root:Temperature 32.43858387995327
INFO:root:Temperature 32.726120945278105
INFO:root:Temperature 32.726120945278105
INFO:root:Temperature 32.39066103573247
INFO:root:Temperature 32.39066103573247
INFO:root:Temperature 32.63027525683649

There is a lot of noise in the decimal places that you can ignore here. When you close this 
browser tab, the code will stop graphing.
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Important Note
A warning about testing temperatures: Do not put metal objects on the sensor 
– this may short out the pins and damage the robot. Also, do not put wet items 
on it. Very cold objects may have condensation on them. Water will even short 
pins and damage the sensor, and possibly the Raspberry Pi.

Troubleshooting
We are pulling two new components into our robot code here, so things may go wrong. 
Here are some things to check:

1. Be aware that VPython can be slow, so it may take a long time to start. Try 
refreshing the browser tab after 30 seconds.

2. With VPython, it may take a long time to show an error message. Patience is  
needed when trying new code here.

3. If you see I/O or communication errors, carefully check the wiring of the IMU. 
Please go back to the Installing Software Troubleshooting section for measures.  
I/O errors can also happen if you nudge a wire out while putting your finger on  
the sensor, or worse still if you try to cool it with a metal object and short the pins. 
DO NOT PUT A METAL OBJECT ON THE SENSOR!

4. Similarly, if you see import errors, check that you do not have typing errors in the 
imports and ensure you have checked the Installing software troubleshooting section.

5. If the temperature reading takes time to change, note that the IMU has some 
insulation/thermal resistance, so it takes a while to warm up (but it will) and cool 
down. The board also has a thermal mass, meaning it will all heat up or cool down, 
slowing the time it takes to reach the same temperature as the one you are measuring.

6. There can be a few reasons for the temperature reading not being accurate. For one, 
the IMU can produce some heat – we've already mentioned the thermal mass. It 
could have a calibration offset value applied to it to make it more accurate, but do 
not expect it to match a thermometer to a fraction of a degree perfectly. It should 
certainly be able to register a finger or palm as close to 37 degrees, but in practice, 
and with patience, I usually got to about 36 point something.

Our example is now working, but we could make it a bit easier to start our tests.
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Simplifying the VPython command line
We will be using VPython a lot in this chapter, and we don't want to type in a mouthful of 
settings to run each Python file. Let's create an alias (a command-line shortcut) to save us 
from having to type that stuff in every time:

1. Let's set it up for the current session. The alias command makes an alias  
we can reuse later. Here, it's named vpython. It contains the settings and  
the python3 command:

pi@myrobot:~ $ alias vpython="VPYTHON_PORT=9020 VPYTHON_
NOBROWSER=true python3"

2. So that we can use it again at some point, we will put it into the current user's 
.bashrc file – a file that Raspbian automatically runs when you ssh in:

pi@myrobot:~ $ echo 'alias vpython="VPYTHON_PORT=9020 
VPYTHON_NOBROWSER=true python3"' >>~/.bashrc

Wrapping something in echo will write text out instead of running a command.  
>> appends this to a file – in this case, .bashrc. The ~ mark picks the current 
user's home.

3. You can rerun the temperature demo with vpython plot_temperature.py.

In this section, you received data from the IMU device and saw how it responds to 
temperature. This confirms that the IMU is responding. You logged the data and graphed 
it and were introduced to the VPython system in the process, which can be used as a 
powerful graphics display system. We will use both the IMU and VPython to do far more 
throughout this chapter. Next, we will look at the gyroscope so that we can see how our 
robot is turning.

Reading the gyroscope in Python
In this section, we are going to use the gyroscope in the IMU. We will use it to approximate 
where the robot is facing in three dimensions.

But before we do that, let's understand it.
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Understanding the gyroscope
A gyroscope measures rotation as a rate of change in angle, perhaps in degrees per second. 
At each measurement, it can determine the speed of rotation around each axis:

Figure 12.13 – Illustration of a gyroscope

A gyroscope is traditionally a mechanical system, as shown in the preceding image. It has 
a gimbal – a set of concentric rings – connected by pivots so that they can pivot around 
the X-axis, Y-axis, and Z-axis. The middle has a spinning mass, known as a rotor. When 
the rotor is spinning, moving the handle (shown as a stand at the bottom of the image) 
does not affect the spinning mass, which keeps its orientation, with the gimbals allowing  
it to turn freely. 

In the case of a MEMS gyroscope, it moves a tiny mass back and forth (oscillates) very 
quickly. When the orientation of the gyroscope is changed, the mass will still be moving in 
another direction. This movement will change an electrical field that the sensor detects. In 
the original orientation, this movement appears to be a force, known as the Coriolis force.

Before we can write some code so that we can work with the gyroscope, we need to 
understand coordinate systems – on the robot and in VPython.

Representing coordinate and rotation systems
We are going to be using coordinate and rotation systems in this chapter. The following 
diagram should help you understand them:
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Figure 12.14 – The robot body coordinate system

The preceding diagram shows the different coordinate systems we will be using. Let's take 
a look at the different sections of it:

1. This is the robot's Body Coordinate System – a stylized 3D sketch of the robot 
with three axis arrows. First, there's the X-axis, which points toward the front of the 
robot. Rotating about this X-axis is known as roll. Then, there's the Y-axis, which 
indicates to the left of the robot (your right as you view the robot). Rotating about 
this axis is known as pitch. Finally, pointing up through the robot is the Z-axis. 
Rotating about this axis is known as heading or yaw.

The direction of rotation is important. There is a rule of thumb for this: take your 
right hand and put your thumb up. If your thumb is pointing along the axis, then 
the fingers on your fist have wrapped the way the rotation will go.

2. This is the VPython World Coordinate System. We display 3D images in VPython 
here. VPython's coordinate system is a rotation of the robot body system.

In the preceding diagram, the Y-axis is going up, the X-axis is going to the right,  
and the Z-axis is pointing forward.
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We will represent the coordinates in 3D as X, Y, and Z components – this is known as  
a vector.

When we apply our measurements to things in the VPython system, we will align our 
view with the robot coordinate system. When we're talking about a coordinate system 
relative to another, this is known as a pose. This is the robot's pose with respect to the 
VPython coordinate system.

Let's represent this with a bit of code to help us out:

1. Create a file named robot_pose.py.

2. We are manipulating the VPython view, so we need to import it, as follows:

import vpython as vp

3. We can then add our function to set the view up; I've called it robot_view:

def robot_view():

4. In this function, we need to set the two properties that VPython uses to control 
camera orientation:

Figure 12.15 – Camera direction
The preceding diagram shows the camera looking at a robot in the coordinate space. 
The camera will look in the defined forward direction toward zero. It also needs 
an up direction to constrain the camera's roll.
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We want it to look from the front of the robot, so forward should be pointed in a 
negative X direction. We also want the camera a little above and to the side:

    vp.scene.forward = vp.vector(-3, -1, -1) 

5. An axis tells us where to look along, but not which way up is. We need the camera  
to align its definition of up with the robot (which has Z pointing up); otherwise,  
the vectors could be upside down or to the side:

    vp.scene.up = vp.vector(0, 0, 1)

We will use this pose more in later sections; however, for now, it's useful to see that the 
Z-axis is now up, as well as where we rotate around the different axes.

Now, let's set up the gyroscope for reading.

Adding the gyroscope to the interface
Before we can read the gyroscope, we'll need to add it to our robot_imu.py interface:

1. We are going to be dealing with a few x, y, and z groups from our IMU. We will 
import a vector type to store these. I've highlighted the new code here:

from icm20948 import ICM20948
from vpython import vector

2. A vector is a representation of three component coordinate systems. Now, we need 
to fetch the gyroscope data from the underlying IMU library and store it in a vector: 

   def read_gyroscope(self):
        _, _, _, x, y, z = self._imu.read_accelerometer_
gyro_data()

The Pimoroni ICM20948 library we are using does not have a call to return  
only gyroscope data, but it does have one that returns both accelerometer and 
gyroscope data. 

This ICM20948 library returns the data as a list of six items. In Python, when 
unpacking return values, the underscore character, _, can denote things to ignore. 

3. We can now put the three gyroscope values into a body vector to return them:

        return vector(x, y, z)

The IMU library is now ready for us to read gyroscope data from it. Next, we are going to 
read it and plot the data on a graph.
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Plotting the gyroscope
As we mentioned previously, the gyroscope measures the rate of rotation. It does so in 
degrees per second on each axis.

Let's graph the output of this device:

1. Create a file named plot_gyroscope.py.

2. We'll start with the imports, setting up logging, and the IMU, as we did previously:

import vpython as vp
import logging
import time
from robot_imu import RobotImu

logging.basicConfig(level=logging.INFO)
imu = RobotImu()

3. We set up three graphs for the three axes that the gyroscope outputs – X rotation,  
Y rotation, and Z rotation. Note that we give each graph a different color:

vp.graph(xmin=0, xmax=60, scroll=True)
graph_x = vp.gcurve(color=vp.color.red)
graph_y = vp.gcurve(color=vp.color.green)
graph_z = vp.gcurve(color=vp.color.blue)

The three graphs will overlay on the same line.

4. Now, we need to set a start time, start a loop, and measure the elapsed time:

start = time.time()
while True:
    vp.rate(100)
    elapsed = time.time() – start

5. We can now read the IMU and put the three readings into the graphs:

    gyro = imu.read_gyroscope()
    graph_x.plot(elapsed, gyro.x)
    graph_y.plot(elapsed, gyro.y)
    graph_z.plot(elapsed, gyro.z)

6. Upload the files and run them with vpython plot_gyroscope.py.

7. Wait a minute or so and then point a browser at myrobot.local:9020 – it can 
take up to 1 minute for this to appear.
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8. Start to move the robot around – lift it and try tilting in each of the three axes. You 
should see something like the following graph:

Figure 12.16 – VPython plot of gyroscope data

The preceding graph contains three lines. The Y-axis shows a movement rate in degrees 
per second, while the X-axis shows the time in seconds since the program started. 
On-screen, the graphs are in red, green, and blue.

The graph spikes when you make movements, and then returns to zero. Try pushing 
the front of the robot (the nose) down; this is positive around the Y-axis. The green line 
should move up (shown at about 3 seconds in the preceding graph). If you keep it there, 
the line will flatten. When you return the robot to flat, there will be a negative green spike 
on the line. Now, try lifting the left-hand side by turning it around the X-axis, creating a 
positive red spike on your graph. When you return it flat, you'll get a negative peak. Next, 
try turning the robot to the left; this will create a positive blue spike. Now, if you turn it  
to the right, a negative blue spike will be created. Move around the axes to get a feel for 
these measurements.

Unless you are spinning a robot constantly, you'll likely find that it's reasonably hard to 
keep up any turning force; this shows that the gyroscope data is a rate of turn, and not a 
measure of direction. What would be more useful is to approximate the heading of the 
robot. When we dive deeper, we'll learn how to use gyroscope data for this.

In this section, you've seen the gyroscope and how it measures rotation rates via a graph 
demonstrating this principle. Now, let's move on to the accelerometer so that we can see 
the forces that are acting on our robot!
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Reading an accelerometer in Python
In this section, we will learn how to use an accelerometer to measure forces acting on the 
robot, and most often, which way is down. Let's find out more about it, then write some 
code to see how it works.

Understanding the accelerometer
An accelerometer measures acceleration or changes in speed, both in terms of size and 
direction. It does so by providing three values – one for each of the X, Y, and Z axes: 

Figure 12.17 – Accelerometer concept – mass with springs

The preceding diagram shows a conceptual view of an accelerometer. Let's take a look at it 
in more detail:

1. This shows a ball (a mass) suspended by six springs in a box. When there are no 
forces on the box, the ball stays in the middle.

2. This shows how this system behaves when the large arrow pushes it. The mass 
retains inertia by moving to the right, compressing the right spring and extending 
the left spring.

Measuring the position of the mass shows the direction and size of an acceleration. A 
MEMS accelerometer is similar to this device and is constructed with a tiny silicon mass 
and springs. This measures an electric field that changes as the mass moves.

While on Earth, a mass is pulled downward by gravity. This system behaves like a force is 
holding the box up, so an accelerometer will usually register an upward force. We can use 
this measurement to determine which way down is and sense the tilt of a robot.
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Adding the accelerometer to the interface
Let's start by adding the accelerometer measurement to our RobotImu library:

1. Open the robot_imu.py file.

2. Add the following code to do the reading:

    def read_accelerometer(self):
        accel_x, accel_y, accel_z, _, _, _ = self._imu.
read_accelerometer_gyro_data()
        return vector(accel_x, accel_y, accel_z)

This uses the same library call as the gyroscope; however, it now discards the last 
three data items instead of the first three.

Now that the accelerometer is ready to read, we can render this to make the data visible. 

Displaying the accelerometer as a vector
The acceleration is a vector; it points to a 3D space with a direction and size. A great way 
to show this is as an arrow in 3D. To clarify where this vector is, we can plot an indicator 
for each of the X, Y, and Z axes:

1. Create a file named accelerometer_vector.py. Start it with some simple 
imports, including the robot view, the logging setup, and initializing the IMU:

import vpython as vp
import logging
from robot_imu import RobotImu
from robot_pose import robot_view
logging.basicConfig(level=logging.INFO)
imu = RobotImu()

2. Let's look at this from the angle we tend to view the robot at:

robot_view()

3. Now, we want to define four arrows. VPython arrows point along an axis and can 
have their color and length set:

accel_arrow = vp.arrow(axis=vp.vector(0, 0, 0))
x_arrow = vp.arrow(axis=vp.vector(1, 0, 0),
                   color=vp.color.red)
y_arrow = vp.arrow(axis=vp.vector(0, 1, 0), 
                   color=vp.color.green)
z_arrow = vp.arrow(axis=vp.vector(0, 0, 1), 
                   color=vp.color.blue)



312     IMU Programming with Python

4. Now, we can start the main loop:

while True:
    vp.rate(100)

5. Read the accelerometer and log it:

    accel = imu.read_accelerometer()
    print(f"Accelerometer: {accel}")

6. Because bumps can knock our scale out, we will normalize the vector to so that its 
length is 1. We need to put this in the arrow axis:

    accel_arrow.axis = accel.norm()

7. Upload this to the Raspberry Pi and start it with vpython accelerometer_
vector.py. Point your browser to it to see the following output:

Figure 12.18 – The accelerometer vector
The preceding image shows the three colored arrows – red for the X-axis (pointing 
to the viewer), green for the Y-axis (pointing left), and blue for the Z-axis (pointing 
up). There is a gray arrow showing the accelerometer vector. The accelerometer 
points up, which shows what is holding it up against gravity.

8. Now, if you tilt the robot, the arrow will tilt to show you which way up is relative to 
the robot. You can tilt the robot a few ways to see how this feels.

This is exciting – you have now shown where up is, relative to your robot. To use this to 
rotate things, we need to turn this vector into pitch and roll angles, which we'll learn how 
to do when we dive deeper.

In this section, you have learned how to read data from the accelerometer component and 
how to display it as a vector. Now, we will move on to the next element of the IMU, known 
as the magnetometer, and read the magnetic fields that are acting on our system.
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Working with the magnetometer
A magnetometer reads magnetic field strengths in 3D to produce a vector. Code you write 
can use this to find the magnetic north, in the same way as a compass. In this section, we'll 
look closer at the device, learn how to get a reading from it, and see what vectors it produces.

It may be useful to have a space with very few magnets present. Let's understand the 
magnetometer more.

Understanding the magnetometer
A compass measures a heading from the Earth's magnetic field by using a magnetized 
needle or disk. The following image is of a compass:

Figure 12.19 – A traditional compass

The compass shown in the preceding image has a rotating magnetized disk balanced on  
a center pin. This variety is a small button compass, which is about 25 mm in diameter.

Our chosen IMU contains a device known as a magnetometer. This electronically senses 
a magnetic field and can be used as a compass.

Most magnetometers pass electricity through a material that creates a current when it's 
exposed to a magnetic field, as shown in the following diagram:

Figure 12.20 – A stylized picture of a Hall-effect sensor
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The preceding diagram shows an example of this in action:

1. This circuit passes an electric current from a battery (left) through a conducting 
plate (gray rectangle). The arrows demonstrate the electrons (negative charge 
carriers) that are moving around the circuit, from the top of the plate straight to the 
bottom. The small circle with a V inside it is a voltage (electric flow) sensor that's 
connected to the sides of the plate. The voltage sensor reads 0 since there's no flow 
to the sensor.

2. A magnet is above the plate, deflecting the electrons to one side. They give one side 
of the plate a negative charge, and the other side a positive charge. This difference in 
charge makes voltage flow through the sensor, as shown by the arrows. The reading 
below is now above zero.

3. Putting the magnet on the other side of the sensor changes the magnetic field; the 
electrons are deflected to the other side, causing reverse voltage to flow. The arrows 
going to the meter are going in the opposite direction, and the reading shows a 
voltage below zero.

This is known as the Hall effect. By measuring three plates, you can measure magnetic fields 
in three dimensions. Magnetometers are sensitive to magnetic fields and metal objects.

Another quirk is that on some IMUs, the magnetometer's axes are different from the  
other devices':

Figure 12.21 – The magnetometer's axes
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In the preceding diagram, the axes we looked at previously are shown on the left for the 
gyroscope and accelerometer. On the right, we can see the axes for the magnetometer. 
Here, we can see that the Z-axis points downward and that the Y-axis now points 
backward. It's like we've rotated 180 degrees around the X-axis.

Now, let's add some code so that we can read this information.

Adding the magnetometer interface
We'll wrap this the same way we wrapped the other readings; that is, by adding it to our 
interface library:

1. Open the robot_imu.py file.

2. In the RobotIMU class, after the read_gyroscope method, add the new  
read method:

    def read_magnetometer(self):

3. Unlike the accelerometer and gyroscope, this reads data from a separate call to 
the underlying device library. We wrap this up and return a vector. For a cheeky 
rotation by 180 degrees, we negate the Y and Z axes:

        mag_x, mag_y, mag_z = self._imu.read_
magnetometer_data()
        return vector(mag_x, -mag_y, -mag_z)

Now that this interface is ready to use, let's get some readings.

Displaying magnetometer readings
One way we can visualize this is to turn magnetometer output into a vector, like so:

1. Create a file named magnetometer_vector.py.

2. Add the familiar imports and setup:

import vpython as vp
import logging
from robot_imu import RobotImu
from robot_pose import robot_view
logging.basicConfig(level=logging.INFO)
imu = RobotImu()
robot_view()
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3. Now, we will create an arrow for the magnetometer reading, along with the 
reference X, Y, and Z axes:

mag_arrow = vp.arrow(pos=vp.vector(0, 0, 0))
x_arrow = vp.arrow(axis=vp.vector(1, 0, 0), color=vp.
color.red)
y_arrow = vp.arrow(axis=vp.vector(0, 1, 0), color=vp.
color.green)
z_arrow = vp.arrow(axis=vp.vector(0, 0, 1), color=vp.
color.blue)

4. Next, we start the main loop:

while True:
    vp.rate(100)

5. Now, we can read the magnetometer:

    mag = imu.read_magnetometer()

6. Finally, let's set an arrow's axis that will match this vector. We can use the .norm() 
method to normalize this vector. We also need to print the data:

    mag_arrow.axis = mag.norm()
    print(f"Magnetometer: {mag}")

7. Send this to the robot and run it with the usual VPython settings. You should see 
something like the following:

Figure 12.22 – The magnetometer's reading
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The preceding image shows a canvas with a red arrow for the X-axis pointing forward, a blue 
arrow for the Z-axis pointing up, and a green arrow for the Y-axis pointing right. There is a 
gray arrow showing the magnetometer vector (XZ only) pointing backward.

Yours may be pointing in a different direction compared to mine. This is because it is 
likely to be pointing to where the pin headers are on your IMU. Why is this?

Pin headers are usually made from magnetic metal. You can check this out for yourself by 
taking a magnet and seeing if it sticks to the headers (use some spares or do this when the 
power is off). You should also be able to observe what this does to the arrow. You could 
also take a bit of metal, such as a screwdriver, and wave it around the magnetometer. This 
should send the results all over the place.

Later, we will need to compensate for nearby metal as it may be creating a large offset, 
large enough to overwhelm Earth's relatively weak magnetic field completely.

Summary
In this chapter, you learned how to read four sensors on an inertial measurement unit, as 
well as how to display or graph data. You then had your first experience with soldering – a 
vital skill when it comes to making robots. You also learned about robot coordinate systems.

Later in this book, we will dive deeper into knitting the IMU sensors together to get an 
approximation of the robot's orientation.

In the next chapter, we will look at computer vision; that is, how to extract information 
from a camera and make the robot respond to what it can see.

Exercises
• In the temperature graph, you will notice a lot of noise in the graph and the output. 

The Python round function takes a number and the number of decimal places to 
keep, defaulting to 0. Use this to round off the temperature to a more reasonable value.

• Try putting the accelerometer values into an X, Y, and Z graph, as we did for the 
gyroscope. Observe the changes in the chart when you move the robot. Is it smooth, 
or is there noise? 

• Could the gyroscope values be shown as a vector?

• Are there other sensors that can be soldered that you might find interesting for your 
robot to use?
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Further reading
Please refer to the following links for more information regarding what was covered in 
this chapter:

• To learn more about VPython, take a look at the extensive help at  
https://www.glowscript.org/docs/VPythonDocs/index.html.

• Paul McWarter Arduino experiments with an IMU: https://toptechboy.
com/arduino-based-9-axis-inertial-measurement-unit-imu-
based-on-bno055-sensor/.

• Adafruit have guides on using IMUs with their libraries: https://learn.
adafruit.com/adafruit-sensorlab-magnetometer-calibration.

• This YouTube talk by Google contains excellent information on the subject  
of Sensor Fusion on Android Devices: A Revolution in Motion Processing:  
https://www.youtube.com/watch?v=C7JQ7Rpwn2k.

https://www.glowscript.org/docs/VPythonDocs/index.html
https://toptechboy.com/arduino-based-9-axis-inertial-measurement-unit-imu-based-on-bno055-sensor/
https://toptechboy.com/arduino-based-9-axis-inertial-measurement-unit-imu-based-on-bno055-sensor/
https://toptechboy.com/arduino-based-9-axis-inertial-measurement-unit-imu-based-on-bno055-sensor/
https://learn.adafruit.com/adafruit-sensorlab-magnetometer-calibration
https://learn.adafruit.com/adafruit-sensorlab-magnetometer-calibration
https://www.youtube.com/watch?v=C7JQ7Rpwn2k


Section 3:  
Hearing and Seeing 

– Giving a Robot 
Intelligent Sensors

In this section, you will use OpenCV and Mycroft along with a smartphone to make a 
robot feel intelligent and interactive.

This part of the book comprises the following chapters:

• Chapter 13, Robot Vision – Using a Pi Camera and OpenCV 

• Chapter 14, Line-Following with a Camera in Python 

• Chapter 15, Voice Communication with a Robot Using Mycroft 

• Chapter 16, Diving Deeper with the IMU

• Chapter 17, Controlling the Robot with a Phone and Python 





13
Robot Vision – Using 

a Pi Camera and 
OpenCV

Giving a robot the ability to see things allows it to behave in ways to which humans relate 
well. Computer vision is still actively being researched, but some of the basics are already 
available for use in our code, with a Pi Camera and a little work. 

In this chapter, we will use the robot and camera to drive to objects and follow faces with 
our pan-and-tilt mechanism. We'll be using the PID algorithm some more and streaming 
camera output to a web page, giving you a way to see what your robot is seeing. 

The following topics will be covered in this chapter:

• Setting up the Raspberry Pi camera

• Setting up computer vision software

• Building a Raspberry Pi camera stream app

• Running background tasks when streaming

• Following colored objects with Python

• Tracking faces with Python
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Technical requirements
For this chapter, you will need the following:

• The robot with the pan-and-tilt mechanism from Chapter 11, Programming 
Encoders with Python.

• Code for the robot up to Chapter 11, Programming Encoders with Python, which you 
can download from GitHub at https://github.com/PacktPublishing/
Learn-Robotics-Programming-Second-Edition/tree/master/
chapter11. We will be extending and modifying this for new functionality.

• A Raspberry Pi camera.

• A 300 mm-long Pi Camera cable, as the cable included with the camera is too short. 
Be sure that the cable is not for a Pi Zero (which has different connectors).

• Two M2 bolts and an M2 nut.

• A small square of thin cardboard—a cereal box will do.

• A small jeweler's screwdriver.

• A pencil.

• A kids' bowling set—the type with differently colored pins (plain, with no pictures).

• A well-lit space for the robot to drive in.

• Internet access.

The code for this chapter is on GitHub, available at https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition/
tree/master/chapter13.

Check out the following video to see the Code in Action: https://bit.ly/39xfDJ9

Setting up the Raspberry Pi camera
Before we can get into computer vision, we need to prepare the camera on your robot. 
There is hardware installation and software installation involved.

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter11
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter11
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter11
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter13
https://bit.ly/39xfDJ9


Setting up the Raspberry Pi camera     323

When we have completed this installation, our robot block diagram will look like  
Figure 13.1:

Figure 13.1 – Our robot block diagram with the camera added

Figure 13.1 continues the block diagrams we have shown throughout the book, with the 
camera's addition and its connection to the Raspberry Pi highlighted on the left.

We will first attach the camera to the pan-and-tilt assembly. We can then use a longer 
cable to wire the camera into the Pi. Let's start preparing the camera to be attached.

Attaching the camera to the pan-and-tilt mechanism
In Chapter 10, Using Python to Control Servo Motors, you added a pan-and-tilt mechanism 
to your robot. You will mount the camera onto the front plate of this mechanism. There 
are brackets and kits, but they are not universally available. Feel free to use one of these  
if you can adapt it to the pan-and-tilt mechanism; if not, I have a few plans.
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Building a robot requires creative thinking and being adaptable, as well as the necessary 
technical skills. I frequently look through the materials I have for possible solutions before 
I go and buy something. Sometimes, the first thing you attempt will not work, and you'll 
need a plan B. My plan A was to use a hook-and-loop fastener (such as Velcro) stuck 
directly to the camera, but it does not adhere well to the back of the camera. So I had  
to move to plan B, that is, using a square of cardboard, making holes for 2 mm screws 
in it, bolting the camera to the cardboard, and then using the hook-and-loop fastener to 
attach the camera assembly to the Pi. Another possibility is to drill additional holes in  
the pan-and-tilt mechanism to line up with the camera screw holes.

Tip
Could I glue this? Yes, like most of our robot build, some glue—even crazy 
glue—could be used to adhere the camera to the pan and tilt. It would probably 
be an easier build. However, I can easily foresee that you would need to replace 
or remove the camera at some point. Reasons for that might be to reverse 
the camera cable or swap the camera out for another sensor, or even a newer 
camera with better features. It is for this reason that I generally avoid glue in 
my robot builds, looking for modular and replaceable solutions.

The parts needed are shown in Figure 13.2:

Figure 13.2 – The parts needed for our plan to fit the camera module

Figure 13.2 shows the tools and materials laid out: some thin card, 2 mm bolts and screws, 
the Pi Camera module, some scissors, a small spanner (or pliers), hook-and-loop tape, 
and a small screwdriver. You will also need a pencil.
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While making this, please try not to touch the camera's lens. So let's begin. The following 
figure shows you the steps to attach the camera:

Figure 13.3 – Fitting the camera, steps 1–2

Here's how to use these parts to mount the camera:

1. First, cut a small amount for one side of the hook-and-loop fastener and adhere it to 
the pan-and-tilt mechanism, as shown in Figure 13.3.

2. Mark and cut out a small square of cardboard a little larger than the camera:

 

Figure 13.4 – Using a pen to mark the screw positions
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3. Then use a pen or pencil to poke through the camera screw holes to mark a dot, as 
shown in Figure 13.4. Then take a pointed tool (such as the point of a cross-headed 
jeweler's screwdriver or a math set compass), and on a firm surface, punch a hole 
where you made the mark:

Figure 13.5 – Bolting the camera to the cardboard

4. Use a couple of M2 bolts and nuts to fasten the camera onto the cardboard carrier, 
as shown in Figure 13.5. Note that the bolt-facing side is at the back—this is so any 
protruding threads won't interfere with the hook and loop:

 

Figure 13.6 – The back of the cardboard/camera assembly with our hook-and-loop fastener
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5. Now cut a small amount of the hook-and-loop fabric, to which the material on  
the pan-and-tilt mechanism will fasten, and stick it to the back of the cardboard,  
as shown in Figure 13.6.

Note that the camera may have a film covering the lens—please remove this.

The camera is ready to be stuck to the robot. Don't attach the camera just yet, as we need 
to wire in the cable first. Let's see how in the next section.

Wiring in the camera
With the camera ready to attach, we'll need to use the Raspberry Pi camera cable to 
connect it to the Pi. We'll need to move some parts to get to the Raspberry Pi connector 
and thread the ribbon connector through.

The sequence of images in Figure 13.7 shows how we will wire this:

Figure 13.7 – The camera connector slot and the motor board
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The steps in Figure 13.7 show how we'll prepare the cable connector:

1. The Raspberry Pi has a slot specifically for the camera—the camera cable fits into 
this. We will be wiring our camera into this slot, but the motor board covers the  
slot on our robot.

2. To get around the slot being covered, we will need to lift the other boards above 
the Pi. You'll temporarily need to unbolt the Inertial Measurement Unit (IMU), 
so the motor board isn't covered by it. Loosen the nut on top of the IMU; then you 
can turn the lower spacer post by hand to remove the IMU, leaving the IMU and 
standoff assembly complete.

3. Disconnect the motor wires (note how you'd previously connected them, or take  
a photo for later reference).

4. Now gently lift the motor board off the Raspberry Pi. 

5. When you connect the camera to the Pi, the long cable will need to pass through the 
motor board. Keep this in mind as you perform the next step.

I recommend following Connect ribbon cable to camera in The Official Raspberry Pi 
Camera Guide (https://magpi.raspberrypi.org/books/camera-guide) for 
attaching the camera using the long 300 mm cable. After following the guide, you should 
have the ribbon installed the correct way around in the camera, then going through the 
slot in the motor board and into the port the right way around on the Raspberry Pi. 

Double-checking that your connections are the right way around before replacing the 
motor board will save you a lot of time. 

https://magpi.raspberrypi.org/books/camera-guide
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To complete the reassembly, take a look at Figure 13.8:

Figure 13.8 – Completing the camera interface

Follow these steps, using Figure 13.8 as a reference:

1. Gently replace the motor board, pushing its header down onto the Raspberry Pi 
GPIO header and the holes onto spacers. 

2. Bolt the IMU back in.

3. Reconnect the motor cables based on your reference.

4. Push the camera onto the hook-and-loop attachment on the pan-and-tilt head, with 
the cable facing upward.

You've seen how to wire in Raspberry Pi cameras. This camera is now wired and ready to 
use. Next, we will start preparing the software to get images from the camera.
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Setting up computer vision software
Before we can start writing code, we'll need to set up drivers, tools, and libraries to interact 
with the camera and software to assist with computer vision.

In this section, we will activate the camera in Raspberry Pi OS Raspberry Pi OS and  
get a test picture. Then we will add the libraries to start interacting with the camera  
for visual processing.

We will then build our first app with the tool to demonstrate that the parts are in place 
and give us a starting point for the behaviors. Let's get into setting up the software.

Setting up the Pi Camera software
So that the camera is ready to use, we need to enable it:

1. Power up the Pi on external power (that is, plugged into a USB wall adapter) for this 
operation, leaving the motors powered down for now.

2. Log in via SSH. At the terminal, type the following:

pi@myrobot:~ $ sudo raspi-config

3. You should now see raspi-config. Select the Interfacing Options menu item  
by using the cursor keys and Enter.

4. Select P1 camera. raspi-config will then ask whether you would like the 
camera interface to be enabled. Select Yes and Ok, then Finish.

5. You will need to reboot for this to take effect:

pi@myrobot:~ $ sudo reboot

To verify that we can get pictures, we'll need the picamera package. At the time of 
writing, there is a copy of picamera already installed in Raspberry Pi OS.

Now that the camera is enabled, let's try getting our first picture.
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Getting a picture from the Raspberry Pi
The first thing we need to do, to confirm that our setup was successful, is to ask the Pi 
Camera to take a picture. If the camera isn't detected, please go back and check that the 
cable connection is correct, that you have installed picamera, and that you have enabled 
the Raspberry Pi camera in raspi-config:

1. Reconnect to the Raspberry Pi and type the following to get a picture:

pi@myrobot:~ $ raspistill -o test.jpg

The raspistill command takes a still image, and the -o parameter tells it to 
store that image in test.jpg. This command may take a while; taking a still can 
be slow if light conditions are poor.

2. You can then use your SFTP client (which we set up in Chapter 4, Preparing  
a Headless Raspberry Pi for a Robot) to download this image and verify it on your 
computer. You will notice that the picture is upside down, due to how the camera  
is mounted. Don't worry—we will correct this with our software.

With a picture taken, you know that the camera works. Now we can install the rest of the 
software needed to use the camera in visual processing applications.

Installing OpenCV and support libraries
We will need a few helper libraries to do the heavy lifting of visual processing and display 
the output in a useful way. Open Computer Vision (OpenCV) is a library with a collection 
of tools for manipulating pictures and extracting information. Code can use these OpenCV 
tools together to make useful behaviors and pipelines for processing images. 

To run our code on the Raspberry Pi, we will need to install the Python OpenCV  
library there: 

1. OpenCV has some dependencies that are needed first:

pi@myrobot:~ $ sudo apt install -y libavcodec58 
libilmbase23 libgtk-3-0 libatk1.0-0 libpango-1.0-0 
libavutil56 libavformat58 libjasper1 libopenexr23 
libswscale5 libpangocairo-1.0-0 libtiff5 libcairo2 
libwebp6 libgdk-pixbuf2.0-0 libcairo-gobject2 libhdf5-dev
pi@myrobot:~ $ sudo pip3 install "opencv_python_
headless<4.5" "opencv_contrib_python_headless<4.5"
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2. Raspberry Pi OS requires a library to be identified for OpenCV to work. This line 
identifies the library every time you log in to the Pi. We should also prepare it for 
this session:

pi@myrobot:~ $ echo export LD_PRELOAD=/usr/lib/arm-linux-
gnueabihf/libatomic.so.1 >>.bashrc
pi@myrobot:~ $ source .bashrc

3. Flask is a library for creating web servers that we'll use to stream the video data to  
a browser:

pi@myrobot:~ $ sudo pip3 install flask

4. NumPy, the numeric Python library, is excellent for the manipulation of large 
blocks of numbers. An image stored on a computer is essentially a large block of 
numbers, with each tiny dot having similar content to the three-color numbers  
we sent to the LEDs in Chapter 9, Programming RGB LED Strips in Python:

pi@myrobot:~ $ sudo apt install -y libgfortran5 
libatlas3-base
pi@myrobot:~ $ sudo pip3 install numpy

5. We will need to install the large array extension for picamera. This will help us 
convert it's data for use in NumPy and OpenCV:

pi@myrobot:~ $ sudo pip3 install picamera[array]

We will continue testing on external power for the next few operations.

You've now prepared the software libraries and verified that the camera can take pictures. 
Next, we'll build an app to stream video from the camera to your browser.

Building a Raspberry Pi camera stream app
Downloading one picture at a time is fine, but we need to do things with those pictures  
on our robot. We also need a handy way to see what the robot is doing with the camera 
data. For that, we will learn how to use a Flask web server to serve up our pictures so  
we can view the output on a phone or laptop. We can use the core of this app to make  
a few different behaviors. We'll keep the base app around for them.

A video or video stream is a sequence of images, usually known as frames.

Let's design our streaming server.
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Designing the OpenCV camera server
The diagram in Figure 13.9 shows an image data pipeline, going from the camera, through 
the processing, and out to our web browser: 

Figure 13.9 – The image server app

The image server app in Figure 13.9 starts with the camera. The camera feeds image 
data to a convert to OpenCV step, with the raw photo given. Image data needs some 
processing for OpenCV to be able to manipulate it.

convert to OpenCV feeds data to process a frame, which can be anything we require; 
for this example, we'll apply a color mask, which we explore in more depth in the next 
section. Above the process a frame step is an example of an image after using a red  
color mask.

The raw frame and processed frame go into the next step, join with original, which 
creates a compound image with both images. Above the step are the two images joined 
into a single longer frame.

The joined images go into the jpg encode step. We need to encode with jpeg, an image 
encoding that a browser can show, and importantly, display as a sequence of frames,  
a streaming movie. 

The encoded data goes to serve over HTTP, getting the data into a system you can view 
with a web browser. It uses a template (some layout and text for the browser) to serve this. 

The image output then goes from serve over HTTP, via the network, to the users, 
browser. Finally, the browser shows the image to the user. The browser could be on  
a laptop or a phone.

It's time to start building the code. We'll break it down into two major parts: first, a 
CameraStream object, which will send our frames to the second part of our code 
project, an image_server.py script.
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Writing the CameraStream object
As part of our system, we will create a helper library to set up the camera and get data 
streams from it: 

1. Start the camera_stream.py file with the following imports:

from picamera.array import PiRGBArray
from picamera import PiCamera
import numpy as np
import cv2

These imports give us the PiCamera code needed to access our camera. cv2 is 
OpenCV, the computer vision library used to process the images. Here, NumPy  
is aliased, or nicknamed, np. 

2. The next few lines set up parameters for the capture size and image quality:

size = (320, 240)
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 90]

We will keep the images we capture at a small resolution of 320 by 240—this means 
we are sending less data, so we will process less too, which will keep the system 
reasonably quick. Higher resolutions may also lead to more noise and edge defects, 
which require cleaning up with further filters. Converting the images to send to the 
browser will use the encode parameter. 

3. Add a function to set up the camera:

def setup_camera():
    camera = PiCamera()
    camera.resolution = size
    camera.rotation = 180
    return camera

After initializing the camera, we set its resolution to the size. I mentioned that  
the camera is the wrong way up, so we set its rotation to 180 degrees to turn the 
pictures around. 

4. We will need a function to start capturing a stream of images (a video, but a frame 
at a time):

def start_stream(camera):
    image_storage = PiRGBArray(camera, size=size)
    cam_stream = camera.capture_continuous(image_storage, 
format="bgr", use_video_port=True)
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To store our image, we need to make a PiRGBArray instance, a type for storing 
RGB images. We then set up the stream of data with capture_continuous, a 
picamera method to take photos repeatedly. We pass it to the image store and tell 
it to format the output data as bgr (blue, green, red), which is how OpenCV stores 
color data. The last parameter to this is use_video_port, which, when set to 
true, results in a reduction in image quality in exchange for faster production  
of frames. 

5. We can loop through cam_stream for frames until we choose to stop. Python has 
a concept of iterators—data structures for sequences such as lists and generators. 
Generators are sequences that produce the next bit of data just in time for when  
it's needed:

    for raw_frame in cam_stream:
        yield raw_frame.array
        image_storage.truncate(0)

This for loop is a generator. Every cycle will yield the raw .array from the frame 
that the stream captured. What this means is that a loop can use the output of the 
start_stream function, so when looped over, the code in this for loop will run 
just enough to produce one raw frame, then the next, and so on. Python generators 
are a way to construct processing pipelines.

The last line of the loop calls truncate to reset image_storage ready to hold 
another image. PiRGBArray can store many images in sequence, but we only want 
the latest one. More than one image may have arrived while we were processing  
a frame, so we must throw them away.

6. The final thing we add to the camera_stream.py script is a function to encode 
an image as jpeg and then into bytes for sending, as shown here:

def get_encoded_bytes_for_frame(frame):
    result, encoded_image = cv2.imencode('.jpg', frame, 
encode_param)
    return encoded_image.tostring()

We will use the camera_stream library for a few of our behaviors, giving us the ability 
to fetch and encode camera frames, both ready for input and encoded for display. With 
that ready, let's use it in a test app to serve frames in a browser.
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Writing the image server main app
This part of the app will set up Flask, start our camera stream, and link them together.  
We will put this in a new script named image_server.py: 

1. We need to import all of these components and set up a Flask app:

from flask import Flask, render_template, Response
import camera_stream
import time

app = Flask(__name__)

We import a few services from Flask: the Flask app object, which handles routing; 
a way to render templates into output; and a way to make our web app response.  
We import the camera_stream library we've just made, and we import time  
so we can limit the frame rate to something sensible. After the imports, we create  
a Flask app object for us to register everything with.

2. Flask works in routes, which are links between an address you hit a web server at 
and a registered handler function. A matching address asked for at our server app 
will run the corresponding function. Let's set up the most basic route:

@app.route('/')
def index():
    return render_template('image_server.html')

The '/' route will be the index page, what you get by default if you just land  
on the robot's app server. Our function renders a template, which we'll write in  
the next section. 

3. Now we get to the tricky bit, the video feed. Although camera_stream does 
some of the encoding, we need to turn the frames into an HTTP stream of data, 
that is, data that your browser expects to be continuous. I'll put this in a frame_
generator function, which we'll need to break down a little. Let's start by setting 
up the camera stream:

def frame_generator():
    camera = camera_stream.setup_camera()
    time.sleep(0.1)

time.sleep is here because we need to let the camera warm up after turning it 
on. Otherwise, we may not get usable frames from it. 
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4. Next, we need to loop over the frames from camera_stream:

    for frame in camera_stream.start_stream(camera):
        encoded_bytes =camera_stream.get_encoded_bytes_
for_frame(frame)

This function is another Python generator looping over every frame coming from 
start_stream, encoding each frame to JPG. 

5. To send the encoded frame bytes back to the browser, we use another generator with 
yield, so Flask considers this a multipart stream—a response made of multiple 
chunks of data, with parts deferred for later—which many frames of the same video 
would be. Note that HTTP content declarations prefix the encoded bytes:

        yield (b'--frame\r\n'
                b'Content-Type: image/jpeg\r\n\r\n' + 
encoded_bytes + b'\r\n')

We place b in front of this string to tell Python to treat this as raw bytes and not 
perform further encoding on the information. The \r and \n items are raw  
line-ending characters. That completes the frame_generator function. 

6. The next function, named display, routes from Flask to a loopable stream  
of HTTP frames from frame_generator:

@app.route('/display')
def display():
    return Response(frame_generator(),
        mimetype='multipart/x-mixed-replace; 
boundary=frame')

The Flask display route generates a response from frame_generator. As that 
is a generator, Flask will keep consuming items from that generator and sending 
those parts to the browser. 

The response also specifies a content type with a boundary between items. This 
boundary must be a string of characters. We have used frame. The boundary must 
match in mimetype and the boundary (--frame) in the content (step 5).

7. Now we can just add the code to start Flask. I've put this app on port 5001:

app.run(host="0.0.0.0", debug=True, port=5001)

The app is nearly ready, but we mentioned a template—let's use this to describe what will 
go on the web page with the camera stream.
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Building a template
Flask makes web pages using HTML templates, which route functions render into the 
output, replacing some elements at runtime if necessary. Create a templates folder, 
then make a file in that folder named image_server.html:

1. Our template starts with the HTML tag, with a title and a level 1 heading:

<html>
    <head>
        <title>Robot Image Server</title>
    </head>
    <body>
        <h1>Robot Image Server</h1>

2. Now, we add the image link that will display the output of our server:

        <img src="{{ url_for('display') }}">

Note url_for here. Flask can use a template renderer, Jinja, to insert the URL 
from a route in Flask by its function name.

3. Finally, we just close the tags in the template:

    </body>
</html>

We can serve this template up in our main server app.

Now we can upload all three of these parts, ensuring that you upload the template into the 
templates directory on the Pi. 

With the server code and templates ready, you should be able to run the image server.

Running the server
Start the app with python3 image_server.py.

Point your browser at the app by going to http://myrobot.local:5001 (or your 
robot's address), and you should see a video served, as shown in Figure 13.10:
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Figure 13.10 – Screen capture of the robot image server

The screenshot in Figure 13.10 shows our robot image server output in a browser. The 
top shows the browser search bar, with the myrobot.local:5001 address in it. Below 
this is the Robot Image Server heading from the template. Below the heading is an image 
capture of a kids' red bowling pin taken from a robot camera—served up with the video 
stream code.

Troubleshooting
If you have problems running the server and seeing the picture, try the following steps:

• If you see errors while running the code, do the following:

a) Ensure you can capture images with raspistill.

b) Ensure you have installed all the required dependencies.

c)  If it's about libatomic, please ensure that you have performed the previous 
LD_PRELOAD exports.

d) Check that the code is correct.
• If the image is black, check your lighting. The Raspberry Pi camera is susceptible 

to light conditions and needs a well-lit space to operate. Note that none of the 
following tracking will work if the camera is not getting enough light.

• Expect the rate to be slow—this is not a fast or high-quality capture.

Now you can stream images from a Raspberry Pi into a browser. Next, we will add  
a background worker task and control mechanism to the app, as this whole server 
depends on the slow browser request cycle.
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Running background tasks when streaming
Our image service works but has a significant flaw. Currently it will wait between requests 
before taking each action, but what if we want our robot to be doing something? To do 
this, we need to be able to run a behavior in parallel with the server. That behavior and  
the server both need access to the image data.

We will approach this by making the Flask web app a secondary process, with the  
behavior as the primary process for the robot when it is running. Python has a handy  
tool for precisely this kind of structure, called multiprocessing. Find out more at 
https://docs.python.org/3/library/multiprocessing.html.

Communicating between multiple processes is tricky. If two processes try to access 
(read or write) the same data simultaneously, the results can be unpredictable and cause 
strange behavior. So, to save them trying to access data simultaneously, we will use the 
multiprocessing queue object. A queue allows one process to put data in at one end and 
another process to consume it safely at the other—it is a one-way flow of information. We 
will use one queue to send images to the server and another to get control data from user 
interactions in the browser.

The diagram in Figure 13.11 shows the way data will flow through these behaviors:

Figure 13.11 – Data flow between a browser, server process, and robot behavior

In Figure 13.11, we abridge some of the sections in Figure 13.9. First, there is data from 
the camera going into a visual processing behavior (for example, tracking an object). 
This behavior will output image frames to an image queue. The output will be the fully 
processed and joined image. 

A server process, the web app, will take the images from the image queue to serve them  
to a browser via the network. However, the web app will also handle commands from user 
interaction in the browser. The app puts them in the control queue as messages. The visual 
processing behavior will read any messages from the control queue and act on them.

https://docs.python.org/3/library/multiprocessing.html
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A few caveats: the visual processing behavior will only place images in the image queue 
when it's empty, so the queue will only ever contain one image. Allowing only one 
prevents the visual processing behavior from trying to overwrite an image in shared 
memory when a server tries to output it. The control queue has no such restriction; 
we'll just expect that user interactions will not produce control messages faster than the 
behavior loop can consume them.

We will separate the web app as a core and then write a behavior based on it. We can use 
the web app core multiple times. Let's write this code.

Writing a web app core
In this design, the web app core will handle setting up the queues, running the server 
process, and the Flask-based routing. We will write the library in Flask style, using plain 
Python functions in a module. 

As an interface to the core, our other behaviors will be able to do the following:

• start_server_process(template_name) will start the web app server, 
using the named template.

• put_output_image(encoded_bytes) will put images into the display queue.

• get_control_instruction() is used to check and return instructions from 
the control queue. This function returns a dictionary of instruction data.

The Flask/web server part of the app is slightly independent of the behavior, allowing the 
user to tune in to see its display, but it should not stop the app running when a user is not 
present or a browser stalls:

1. Let's start with some imports. We'll put this code in image_app_core.py:

import time
from multiprocessing import Process, Queue

from flask import Flask, render_template, Response

We import Queue and Process to create the process and communicate  
with it. We then use the same imports for Flask that we used previously.  
Note—we are not importing any of the camera parts in this module.
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2. Next, we define our Flask app and the queues. We only really want one frame 
queued, but we put in one in case of hiccups while transmitting—although we can 
check whether a Queue instance is empty, this is not 100% reliable, and we don't 
want one part of the app waiting for the other:

app = Flask(__name__)
control_queue = Queue()
display_queue = Queue(maxsize=2)

3. We will also define a global display_template here, in which we'll store the 
main app template:

display_template = 'image_server.html'

4. Now we add routes for this Flask app. The index route is only different in that it uses 
display_template:

@app.route('/')
def index():
    return render_template(display_template)

5. Next, we will create the loop for getting frames: a modified version of frame_
generator. This function is our main video feed. So that it doesn't spin (that is, 
run very quickly in a tight loop), we put in a sleep of 0.05 to limit the frame rate to 
20 frames per second:

def frame_generator():
    while True:
        time.sleep(0.05)

6. After the sleep, we should try to get data from display_queue (we'll put frames 
into the queue later). Like we did in image_server, this loop also turns our data 
into multi-part data:

        encoded_bytes = display_queue.get()
        yield (b'--frame\r\n'
                b'Content-Type: image/jpeg\r\n\r\n' + 
encoded_bytes + b'\r\n')

7. Now make that available through a display block:

@app.route('/display')
def display():
    return Response(frame_generator(),
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        mimetype='multipart/x-mixed-replace; 
boundary=frame')

8. We need a way to post control messages to our app. The control route accepts 
these, takes their form data (a dictionary with instructions), and uses control_
queue.put to pass that along to the robot behavior:

@app.route('/control', methods=['POST'])
def control():
    control_queue.put(request.form)
    return Response('queued')

9. That gives us all the core internals, but we also need to start the server process. The 
part of the app from earlier that started our server, we've now put into a function 
named start_server_process:

def start_server_process(template_name):
    global display_template
    display_template = template_name
    server = Process(target=app.run, kwargs={"host": 
"0.0.0.0", "port": 5001})
    server.start()
    return server

We intend for a behavior to start this function, passing in a custom template name. 
It stores template_name in the global display_template. The preceding 
index route uses the template. Instead of calling app.run, we create a Process 
object. The Process parameter target is a function to run (app.run), and 
some parameters need to be given to that function (the host and port settings).  
We then start the server process and return the process handle so our code can  
stop it later.

10. The next interface task is putting an image into the queue we created in step 1. To 
ensure that we don't run up a lot of memory, we only intend the queue to have a 
length of one. That means that the first frame will be stale, but the next frame will 
arrive soon enough for it not to affect the user:

def put_output_image(encoded_bytes):
    if display_queue.empty():
        display_queue.put(encoded_bytes)
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11. Finally, for this interface, we need a function to get the control messages out.  
This function will not wait and will return a message if there is one or None  
for no message:

def get_control_instruction():
    if control_queue.empty():
        return None
    else:
        return control_queue.get()

The image_app_core.py file establishes a controllable base for us to build visual 
processing robot behaviors with, or indeed any behavior with a web interface, control 
instructions, an output stream, and background process. Next, let's test this core with  
a simple behavior.

Making a behavior controllable
We can try out our core with a behavior that sends images to the web service and accepts  
a simple exit control message:

1. Let's make a new file called control_image_behavior.py, starting with 
imports for the image_app_core interface and camera_stream:

import time

from image_app_core import start_server_process, get_
control_instruction, put_output_image
import camera_stream

2. We then add a function that runs our simple behavior with the main loop.  
I've broken this function down as it's a little complicated. First, we'll set up the 
camera and use a sleep to give the camera warm-up time: 

def controlled_image_server_behavior():
    camera = camera_stream.setup_camera()
    time.sleep(0.1)

3. Next, we get frames from a camera stream in a for loop and put those as encoded 
bytes on the output queue:

    for frame in camera_stream.start_stream(camera):
        encoded_bytes = camera_stream.get_encoded_bytes_
for_frame(frame)
        put_output_image(encoded_bytes)
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4. While still in the loop, we will try accepting a control instruction to exit. Normally 
the instruction will be None, signalling there are no control instructions waiting. 
But if we have a message, we should match the command in it to exit:

        instruction = get_control_instruction()
        if instruction and instruction['command'] == 
"exit":
            print("Stopping")
            return

This handler uses return to stop the behavior when it receives the exit 
instruction from the control queue. 

5. We then need to start the server and start our behavior. We always want to stop the 
web server process. By surrounding the behavior with try and finally, it will 
always run anything in the finally part, in this case, making sure the process is 
terminated (stopped):

process = start_server_process('control_image_behavior.
html')
try:
    controlled_image_server_behavior()
finally:
    process.terminate()

We now have a simple controllable behavior; however, it mentions the control_
image_behavior.html template. We need to provide that.

Making the control template
This template, in templates/control_image_behavior.html, is the same as the 
one before, but with two important differences, shown here in bold:

<html>
    <head>
        <script src="https://code.jquery.com/jquery-3.3.1.min.
js"></script>
        <title>Robot Image Server</title>
    </head>
    <body>
        <h1>Robot Image Server</h1>
        <img src="{{ url_for('display') }}"><br>
        <a href="#" onclick="$.post('/control', {'command': 
'exit'}); ">Exit</a>
    </body>
</html>
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The differences are as follows:

• In this template, we load a library in our browser called jquery, which is handy for 
interactive web pages. There is great documentation for jQuery at https://api.
jquery.com/. 

• We have the image and header that we saw before, but new to this code is an  
a tag (for anchor), which when clicked will post the exit command to the  
'/control' route on our web app. <br> just creates a line break to show  
the exit link below the image.

If you wanted to run this where internet access is difficult, you would need the server to 
serve the jquery library. This template tells the browser to download jquery directly 
from the internet. 

Now we have the components, we should try running our controllable behavior.

Running the controllable image server
Now we have the components, let's get this running and try out the commands:

1. To run the image server, you need to upload all three files: 

a) image_app_core.py

b) control_image_behavior.py

c) templates/control_image_behavior.html. 

2. On your Pi, use python3 control_image_behavior.py to start the process.

3. Point your browser at http://myrobot.local:5001 (or the address of your 
robot). You will see the pictures again. 

4. If you click on the Exit link below the image, this will send a control instruction  
to your app, which should gracefully quit.

You've now seen how to get image data from a behavior while sending control data back to 
the behavior. With the control and streaming technique tested and ready, and a framework 
to use for it, we can build a more interesting behavior. In the next section, we'll make the 
robot follow an object with a specific color.

https://api.jquery.com/
https://api.jquery.com/
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Following colored objects with Python
Now we have some basics ready; we can use this to build some more interesting behaviors. 

We will create a behavior that will chase, but not get too close to, a colored object. This 
behavior will make the robot seem very intelligent. We will revisit color models, covered 
in Chapter 9, Programming RGB Strips in Python. We'll add color masking and filtering 
and use the OpenCV contours tools to detect the largest blob of color in an image and 
point the robot at it.

Building the color-chasing behavior requires a few steps. Let's start with a diagram 
showing an overview of this whole behavior in Figure 13.12:

Figure 13.12 – The color-tracking behavior
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The flow of data in Figure 13.12 starts from camera images. These go through visual 
processing to get object info from image. get object info from image outputs the object's 
size (based on the radius of a circle around it) and the object's position (the middle of the 
enclosing circle) and puts frames on the image queue for the web app/browser.

The object size goes into a speed Proportional Integral Derivative (PID) controller, 
which also has an object size reference as its set point. Depending on the difference 
between the expected size and actual size, this PID will output a speed for the motors, 
optimizing the radius to be the same as the reference size. That way, the robot will 
maintain a distance from an object of a known size. This is a base speed for both motors.

The object position has an x component and a y component. This behavior will turn to 
center the object, so we are interested in the x coordinate. The x coordinate goes into 
a PID for controlling the direction/heading. This PID takes a reference position—the 
center of the camera viewport. This direction PID will produce an output to try and get 
the difference between these coordinates to zero. By adding to one motor's speed and 
reducing the other's speed, the robot will turn to face the object (or, if you swap them  
for fun, it'll turn away!).

The images are sent, via an image queue using the app core, to the browser. A detail not 
shown in the diagram is the control queue with messages to start the motors, stop the 
motors, and exit the behavior.

The final part of this system, and probably the most interesting, is the color tracking.  
The box labeled get object info from image performs the tracking. Let's see how that 
works next.

Turning a picture into information
We are using colored pins from a kids' bowling set. They come in nice, bright, primary 
colors. I will use green as an example. We start with just a picture. However, a set of 
transformations to the data is needed to turn the picture into information the robot  
can use to make decisions. 

A pipeline is a good way to design a set of transformations. Let's look at the color tracking 
as an image processing pipeline in Figure 13.13:
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Figure 13.13 – Getting color object information from a camera

As with other pipelines, Figure 13.13 starts from the camera. This is converted to a low 
resolution to keep things fast. The figure shows a camera image above the step.

The process converts the output from the image capture to HSV, the colorspace  
we mentioned in Chapter 9, Programming RGB Strips in Python. We use HSV because  
it means the process can filter colors in a specific range of hues, by their light (very dark 
objects may confuse us), and by saturation, so it won't include almost-gray objects. RGB 
(or BGR) images are tricky to filter, as getting the different light and saturation levels of 
a particular hue (say, the blues) is not viable. The figure shows the hue color wheel above 
this step.

OpenCV has a function, cv2.cvtColor, to convert whole images between colorspaces. 
Note that OpenCV uses 0–179 for the hue range, instead of 0–359. This is so it fits in a 
byte (0–255), but you can convert hue values by simply dividing by 2 if you know the 
value you want.
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After converting to HSV, we then filter the colors in the image with a mask, highlighting 
pixels in a particular range. It will output white if the object is in the range, or black if it's 
not. Above this step, the unshaded region on the hue color wheel shows the range, with 
the masked output next to it. There is a function in OpenCV to do this: cv2.inRange. 
This gives us a very easy binary output, a masked image, to draw around for our system.

Our pipeline then uses the contours system to draw around our masked image. The 
contour specifies only the boundary points of our object. OpenCV provides a cv2.
findContours function to do exactly this, which returns a list of shapes, each defined 
by its outlines. The preceding figure shows the contours (taken from the mask) drawn 
onto the raw image. Note how light and shade have made the bottom of the bowling pin  
a bit rough as it doesn't quite fit the mask.

The processing pipeline then takes the contours (outlines) and uses cv2.
minEnclosingCircle to draw circles around them. We will then have some circles, 
described by a center x, y coordinate, and radius. The preceding figure shows these circles 
projected on the raw image.

Our object may have highlights, producing more than one circle, and other objects may 
also produce smaller circles. We are only interested in one, the largest of these, so we can 
loop through the circles, and keep only the largest. Above the get the largest circle step is 
the raw image with only the largest circle drawn.

This largest circle's coordinates and radius give us enough information for our robot  
to start chasing an object. Above this last step is just the circle, with crosshairs showing  
its position.

Important note
A caveat about red objects: we will use green because red is slightly tricky, as it 
requires two masks. The hues for red cross a boundary between 179 (the upper 
limit of our hue range) and 0 (the lower limit), so we would have to mask the 
image twice and then combine these with an or operation. You could use the 
cv2.bitwise_or function to try masking red.

Now we have examined how the pipeline will work and its caveats. We've seen how this 
pipeline will fit with PID controllers to create an interesting behavior. Let's build this code.
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Enhancing the PID controller
We are going to be using more PID controllers. We still don't require the differential 
component, but we will develop an issue with our integral component building up while 
the motors take time to move. The integral has a sum that starts to grow if there is  
a constant error. It is good to correct for that error but it can result in a large overshoot. 
This overshoot, due to the integral still growing after the robot has started to react, albeit 
slowly, is called integral windup.

We can prevent this sum from getting too large by introducing a windup limit to our PID:

1. Open up the pid_controller.py file and make the changes in bold in the 
following snippet. First, add the windup_limit parameter, which defaults to 
None if you don't set a limit:

class PIController(object):
    def __init__(self, proportional_constant=0, integral_
constant=0, windup_limit=None):
        self.proportional_constant = proportional_
constant
        self.integral_constant = integral_constant
        self.windup_limit = windup_limit
        self.integral_sum = 0

2. We want to prevent our integral growth if we have a limit and hit it. Our integral 
will change if any of the following occurs:

a) There is no windup limit (you set it to None).

b) The absolute value of the sum is below the windup limit.

c) The sign of the error would reduce the sum (by being opposed to it).

This prevents us from going above the limit if there is one.

Let's see this in code—this code will replace the previous handle_integral 
method:

    def handle_integral(self, error):
        if self.windup_limit is None or \
                (abs(self.integral_sum) < self.windup_
limit) or \
                ((error > 0) != (self.integral_sum > 0)):
            self.integral_sum += error
        return self.integral_constant * self.integral_sum
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3. We can start and stop this behavior from the web page. If we start moving 
again, we won't want the PIDs to carry old values. Let's add a reset function  
to zero out the integral sum:

    def reset(self):
        self.integral_sum = 0

The PID controller is now able to reset and has a windup limit to stop big overshoots.  
Let's build the other behavior components that use it.

Writing the behavior components
This behavior has two files—a template to pass to our app core with the control buttons, 
and then the main behavior code. Let's start by writing the template.

Writing the control template
This template is for the stream app, with some different controls:

1. Copy the template from templates/control_image_behavior.html to 
templates/color_track_behavior.html. 

2. We will add two further controls to this, start and stop, displayed here in bold:

        <img src="{{ url_for('display') }}"><br>
        <a href="#" onclick="$.post('/control', 
{'command': 'start'});">Start</a>
        <a href="#" onclick="$.post('/control', 
{'command': 'stop'})">Stop</a><br>
        <a href="#" onclick="$.post('/control', 
{'command': 'exit'});">Exit</a>

We intend to run the program with the robot stopped first, so we can tune in with 
our phone or browser, see what the robot is detecting, and click the Start button  
to get it moving.

With the template modified, we will need to write the behavior code next.
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Writing the behavior code
We'll put this new behavior in a file called color_track_behavior.py: 

1. It's no surprise that we start with the imports. Because we are bringing together 
many elements, there are quite a few, but we have seen them all before:

import time

from image_app_core import start_server_process, get_
control_instruction, put_output_image

import cv2
import numpy as np

import camera_stream
from pid_controller import PIController
from robot import Robot

2. Now, we add the Behavior class to find and get close to a colored object. We pass 
this the robot object:

class ColorTrackingBehavior:
    def __init__(self, robot):
        self.robot = robot

3. These values are intended to be tuned for the color mask and object size:

        self.low_range = (25, 70, 25)
        self.high_range = (80, 255, 255)
        self.correct_radius = 120
        self.center = 160

We use the low_range and high_range values for the color filter (as seen in 
Figure 13.13). Colors that lie between these HSV ranges would be white in the 
masked image. Our hue is 25 to 80, which correspond to 50 to 160 degrees on a hue 
wheel. Saturation is 70 to 255—any lower and we'd start to detect washed out or 
gray colors. Light is 25 (very dark) to 255 (fully lit).

The correct_radius value sets the size we intend to keep the object at and 
behaves as a distance setting. center should be half the horizontal resolution  
of the pictures we capture.
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4. The last member variable set here is running. This will be set to True when  
we want the robot to be moving. When set to False, the processing still occurs,  
but the motors and PIDs will stop:

        self.running = False

5. The next bit of code is to process any control instructions from the web app:

    def process_control(self):
        instruction = get_control_instruction()
        if instruction:
            command = instruction['command']
            if command == "start":
                self.running = True
            elif command == "stop":
                self.running = False
            if command == "exit":
                print("Stopping")
                exit()

This services the start, stop, and exit buttons. It uses the running variable  
to start or stop the robot moving. 

6. Next, we have the code that will find an object from a frame. This implements the 
pipeline shown in Figure 13.13. We'll break this function down a bit, though:

    def find_object(self, original_frame):
        """Find the largest enclosing circle for all 
contours in a masked image.
        Returns: the masked image, the object 
coordinates, the object radius"""

Because this code is complex, we have a documentation string or docstring 
explaining what it does and what it returns.

7. Next, the method converts the frame to HSV, so it can be filtered using inRange  
to leave only the masked pixels from our frame:

        frame_hsv = cv2.cvtColor(original_frame, cv2.
COLOR_BGR2HSV)
        masked = cv2.inRange(frame_hsv, self.low_range, 
self.high_range)
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8. Now that we have the masked image, we can draw contours (outline points)  
around it:

        contours, _ = cv2.findContours(masked, cv2.RETR_
LIST, cv2.CHAIN_APPROX_SIMPLE)

When you find contours, first you specify the image to find them in. You then 
state how the contours are retrieved; in our case, we've specified a simple list using 
RETR_LIST. OpenCV is capable of more detailed types, but they take more time  
to process. 

The last parameter is the method used to find the contours. We use the CHAIN_
APPROX_SIMPLE method to simplify the outline to an approximate chain of 
points, such as four points for a rectangle. Note the _ in the return values; there is 
optionally a hierarchy returned here, but we neither want nor use it. The _ means 
ignore the hierarchy return value.

9. The next thing is to find all the enclosing circles for each contour. We use a tiny  
loop to do this. The minEnclosingCircle method gets the smallest circle  
that entirely encloses all points in a contour:

        circles = [cv2.minEnclosingCircle(cnt) for cnt in 
contours]

cv2 returns each circle as a radius and coordinates—exactly what we want. 

10. However, we only want the biggest one. Let's filter for it:

        largest = (0, 0), 0
        for (x, y), radius in circles:
            if radius > largest[1]:
                largest = (int(x), int(y)), int(radius)

We store a largest value of 0, and then we loop through the circles. If the circle 
has a radius larger than the circle we last stored, we replace the stored circle with the 
current circle. We also convert the values to int here, as minEnclosingCircle 
produces non-integer floating-point numbers.

11. We end this method by returning the masked image, the largest coordinates,  
and the largest radius:

        return masked, largest[0], largest[1]
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12. Our next method will take an original frame and processed frame, then turn 
them into a dual-screen display (two images of the same scale joined together 
horizontally) on the output queue through to the web app:

    def make_display(self, frame, processed):
        display_frame = np.concatenate((frame, 
processed), axis=1)
        encoded_bytes = camera_stream.get_encoded_bytes_
for_frame(display_frame)
        put_output_image(encoded_bytes)

The method uses the np.concatenate function to join the two images, which 
are equivalent to NumPy arrays. You could change the axis parameter to 0 if you 
wanted screens stacked vertically instead of horizontally.

13. The next method processes a frame of data through the preceding functions, finding 
the objects and setting the display. It then returns the object info as follows:

    def process_frame(self, frame):
        masked, coordinates, radius = self.find_
object(frame)
        processed = cv2.cvtColor(masked, cv2.COLOR_
GRAY2BGR)
        cv2.circle(frame, coordinates, radius, [255, 0, 
0])
        self.make_display(frame, processed)
        return coordinates, radius

Note we use cvtColor to change the masked image to a three-channel image—the 
original frame and processed frame must use the same color system to join them 
into a display. We use cv2.circle to draw a circle around the tracked object on 
the original frame so we can see what our robot has tracked on the web app, too.

14. The next method is the actual behavior, turning the preceding coordinates and 
radius into robot movements. When we start our behavior, the pan-and-tilt 
mechanism may not be pointing straight forward. We should ensure that the 
mechanism is facing forward by setting both servos to 0, then start the camera:

    def run(self):
        self.robot.set_pan(0)
        self.robot.set_tilt(0)
        camera = camera_stream.setup_camera()
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15. While the servos are moving and the camera is warming up, we can prepare the 
two PID controllers we need for speed (based on radius) and direction (based on 
distance from the horizontal middle):

        speed_pid = PIController(proportional_
constant=0.8, 
            integral_constant=0.1, windup_limit=100)
        direction_pid = PIController(proportional_
constant=0.25, 
            integral_constant=0.05, windup_limit=400)

These values I arrived at through much tuning; you may find you need to tune  
these further. The Tuning the PID controller settings section will cover how to tune 
the PIDs.

16. Now we wait a little while for the camera and pan-and-tilt servos to settle, and then 
we turn off the servos in the center position:

        time.sleep(0.1)
        self.robot.servos.stop_all()

17. We let the user know, with a print statement, and output some debug headers:

        print("Setup Complete")
        print('Radius, Radius error, speed value, 
direction error, direction value')

18. We can then enter the main loop. First, we get the processed data from the frame. 
Notice we use brackets to unpack coordinates into x and y:

        for frame in camera_stream.start_stream(camera):
            (x, y), radius = self.process_frame(frame)

19. We should check our control messages at this point. We then check whether we are 
allowed to move, or whether there is any object big enough to be worth looking for. 
If there is, we can start as follows:

            self.process_control()
            if self.running and radius > 20:
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20. Now we know the robot should be moving, so let's calculate error values to feed  
the PID controllers. We get the size error and feed it into the speed PID to get  
speed values:

               radius_error = self.correct_radius - 
radius
                speed_value = speed_pid.get_value(radius_
error)

21. We use the center coordinate and current object, x, to calculate a direction error, 
feeding that into the direction PID:

                direction_error = self.center - x
                direction_value = direction_pid.get_
value(direction_error)

22. So we can debug this; we print a debug message here matching with the headers 
shown before:

                print(f"{radius}, {radius_error}, {speed_
value:.2f}, {direction_error}, {direction_value:.2f}")

23. We can use the speed and direction values to produce left and right motor speeds:

                self.robot.set_left(speed_value - 
direction_value)
                self.robot.set_right(speed_value + 
direction_value)

24. We've handled what to do when the motors are running. If they are not, or there is 
no object worth examining, then we should stop the motors. If we have hit the Stop 
button, we should also reset the PIDs, so they do not accumulate odd values:

            else:
                self.robot.stop_motors()
                if not self.running:
                    speed_pid.reset()
                    direction_pid.reset()
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25. We have now finished that function and the ColorTrackingBehavior class. 
Now, all that is left is to set up our behavior and web app core, then start them:

print("Setting up")
behavior = ColorTrackingBehavior(Robot())
process = start_server_process('color_track_behavior.
html')
try:
    behavior.run()
finally:
    process.terminate()

This behavior code is built and ready to run. You've seen how to convert the image, then 
mask it for a particular color, and how to draw around the blobs in the mask, and then 
find the largest one. I've also shown you how to turn this visual processing into robot 
moving behavior by feeding this data through PIDs and using their output to control 
motor movements. Let's try it out!

Running the behavior
I'm sure you are keen to see this working and fix any problems that there are. Let's get  
into it:

1. To run this behavior, you will need to upload color_track_behavior.py, the 
modified pid_controller.py file, and the template at templates/color_
track_behavior.html. I'll assume that you already have robot.py and the 
other supporting files uploaded.

2. Start the app with python3 color_track_behavior.py, which will start the 
web server and wait. 

3. At this point, you should use your browser to connect to http://myrobot.
local:5001, and you should be able to see your robot's image feed.
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You can see the object and its circle, along with links to control the robot, as shown 
in the screenshot in Figure 13.14:

Figure 13.14 – The color-tracking web app
Figure 13.14 shows a screenshot of our app server running the code to track  
a colored object. Under the address bar and heading is a dual-screen type output. 
The left has the direct feed from the camera, with a kids' green bowling pin close  
to the middle and a blue circle outlining the pin, generated by the behavior to show  
it's tracking the largest matching object. On the right is the mask's output, so we can 
see what aspects of the image match and tune the mask values if we need to. Under 
this are Start, Stop, and Exit links, to start the motors, stop the motors, and exit the 
program.

4. To make the robot start moving, press the Start button on the web page.

When the robot starts moving, you will see the PID debug output in the console 
(PuTTY). This will only show when the robot is running. 

5. You can press the Stop button on the web page to stop the robot moving or the Exit 
button to exit the behavior.

The robot won't be moving quite right; the movements may be understeering or 
overshooting. You'll need to tune the PID controllers to get this right, as shown in  
the next section.
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Tuning the PID controller settings

I start with a proportional constant of 0.1, and raise it, using nano to make quick edits on 
the Pi, until the robot starts to overshoot—that is, it goes past its target, then returns far 
back—then I halve this proportional constant value.

It may then have a constant error, so I start raising the integral constant by about 0.01  
to counter this error. Tuning PIDs is a slow process: start by getting the object close to 
dead center and tuning direction_pid until it's pretty good, then come back for 
speed_pid.

Important note
Do not try to tweak all the values at once—rather, change one thing and retry.

For a deeper look at this, see Tuning a PID controller in the Further reading section.

Troubleshooting
Color tracking is a tricky behavior, and there are some things that can go wrong:

• If the motors stop or slow down, the simplest fix is to use fresh batteries. 

• If there are syntax errors, please check your code carefully.

• Ensure that the web app examples work with the camera and that you troubleshoot 
any problems there.

• You will need good lighting, as the mask may not pick up poorly lit objects.  

• Beware of other objects in the view that may match; the mask may pick up things 
other than your intended items.

• Use the web app to check your object is in view and that the mask shows your object 
mostly in white. If not, then you may need to tune the upper and lower HSV ranges. 
The hue is the factor most likely to cause problems, as the saturation and value 
ranges are quite permissive.

• If the robot starts weaving from side to side, you may need to tune the direction 
PID. Reduce the proportional element somewhat. 

• If the robot barely turns, you can increase the proportional element a little.

• If the robot is stopped but not facing the detected object, then increase the integral 
element for the direction PID by about 0.01. If you see the same problems moving 
back and forward, try applying the same tweaks.
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You've seen how to track a brightly colored object with a camera, a technique you can use 
to spot objects in a room, or by industrial robots to detect ripe fruit. It is quite impressive 
to watch. However, some objects are more subtle than just a color, for example, a human 
face. In the next section, we look at how to use cascading feature matches to pick  
out objects.

Tracking faces with Python
Detecting faces (or other objects) by features is a smart behavior. Once our robot is 
detecting faces, it will point the pan-and-tilt mechanism at the nearest (well, largest) face.

Using Haar cascades is a common technique, well documented in a paper by Paul Viola 
and Michael Jones (known as Viola Jones). In essence, it means using a cascade of feature 
matches to search for a matching object. We will give an overview of this technique, then 
put it into use on our robot to create a fun behavior. Using different cascade model files, 
we could pick out faces or other objects. 

Finding objects in an image
We will be using an algorithm implemented in OpenCV as a single and useful function, 
which makes it very easy to use. It provides a simple way to detect objects. More advanced 
and complex methods involve machine learning, but many systems use Haar cascades, 
including camera apps on phones. Our code will convert the images into grayscale (black 
through gray to white) for this detection method. Each pixel here holds a number for  
the intensity of light.

First, let's dig into a way of representing these images: integral images. 

Converting to integral images
There are two stages applied in the function. The first is to produce an integral image, or 
summed-area table, as shown in Figure 13.15:
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Figure 13.15 – Integral images and summed-area tables

The left side of Figure 13.15 shows a smiling face type image, with numeric pixels 
representing shades, with larger numbers making for a lighter color. Every shade has  
a number. 

On the right of Figure 13.15 is the integral image. Each pixel in the integral image is the 
sum or integral of the previous pixels. It adds itself to the original pixels above and left of 
it. The coordinate 2,2 is circled. It is the last in a 3x3 grid. The cell here has the value 44. 44 
is the sum of the pixels in the highlighted box (9 + 9 + 5 + 9 + 5 + 1 + 5 + 1 + 0). 

When the code sums the pixels, the integral process can use a shortcut and use the 
previous sums. The new sum is equal to the pixel to the left plus the pixel above. For 
example, for a pixel much further down (8,8), also circled in the image, we could add all 
the numbers, but it will be faster to reuse the results we already have. We can take the pixel 
value (1), add the sum above (166), and add the sum to the left (164). This sum will have 
included the middle pixels twice, so we need to subtract those, so take away the value up 
and to the left (146). The sum for this would be 1 + 164 + 166 – 146 = 185. The computer 
can do this pretty quickly.

This creates an array of numbers with the same dimensions as the image. Each coordinate 
is the sum of all the pixels' intensities between the current coordinate and 0,0.
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Code can use the integral image to quickly find the intensity sum of any rectangle in 
it, of any size. You can start with the bottom-right pixel of the image, then subtract the 
top-right one, leaving the sum of pixels below the top-right pixel. We also then want to 
subtract the bottom-left pixel. This nearly constrains the sum to only the rectangle's pixels, 
but we would have taken away sections above the top-left pixel twice. To correct this, add 
back the value of the top-left pixel:

The equation works for a small rectangle of 2x2 or a large 300x200 rectangle. See the Viola 
Jones paper in the Further reading section for more details. The good news is, you don't 
need to write this code as it's already part of the OpenCV classifier. The cascade stage can 
use this integral image to perform its next potent trick quickly.

Scanning for basic features
The next part of this puzzle is scanning the image for features. The features are extremely 
simple, involving looking for the difference between two rectangles, so they are quick to 
apply. Figure 13.16 shows a selection of these basic features:

Figure 13.16 – Simple rectangular feature types

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜_𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎 =  𝑏𝑏𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜𝑏𝑏_𝑎𝑎𝑟𝑟𝑟𝑟ℎ𝑟𝑟 –  𝑟𝑟𝑜𝑜𝑡𝑡_𝑎𝑎𝑟𝑟𝑟𝑟ℎ𝑟𝑟 –  𝑏𝑏𝑜𝑜𝑟𝑟𝑟𝑟𝑜𝑜𝑏𝑏_𝑟𝑟𝑎𝑎𝑜𝑜𝑟𝑟 +  𝑟𝑟𝑜𝑜𝑡𝑡_𝑟𝑟𝑎𝑎𝑜𝑜𝑟𝑟 
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The top left of Figure 13.16 shows a left/right feature, where the left pixels are set to 1 and 
the right set to 0 (and shaded). This will match a vertical contrast feature. The figure's top 
right has two rows of 0s (shaded), two rows of 1s, and then two further rows of shaded 
0s; this will match a horizontal bar feature. The middle left has the top three rows set to 1s 
and the lower three rows shaded and set to 0s, matching a horizontal contrast feature. The 
figure's middle right has two columns of shaded 0s, followed by two columns of 1s, and 
then two further rows of shaded 0s; this will match a vertical bar feature. 

The bottom image shows a feature with the first few rows as three 1s followed by three 
0s. It follows these rows with three rows of three 0s andt three 1s. This makes a small 
checkerboard pattern that will match a feature with diagonal contrast.

The algorithm will apply rectangles like those from Figure 13.16 in a particular order and 
relative locations, then each match will cascade to a further attempt to match another 
feature. Files describe objects as a set of features. There are face cascades with 16,000 
features to apply. Applying every single one to every part of an image would take a long 
time. So they are applied in groups, starting perhaps with just one. If a feature check fails, 
that part of the image is not subject to further feature tests. Instead, they cascade into  
later group tests. The groups include weighting and applying groups of these features  
at different angles.

If all the feature checks pass, then the checked region is taken as a match. For this to work, 
we need to find the feature cascade that will identify our object. Luckily, OpenCV has such 
a file designed for face recognition, and we have already installed it on our Raspberry Pi.

This whole operation of applying the summed area, then using the cascade file to look for 
potential matches, is all available through two OpenCV operations:

• cv2.CascadeClassifier(cascade_filename) will open the given 
cascade file, which describes the features to test. The file only needs to be loaded 
once and can be used on all the frames. This is a constructor and returns a 
CascadeClassifier object.

• CascadeClassifier.detectMultiScale(image) applies the classifier 
check to an image.

You now have a basic understanding of a common face (and object) recognition 
technique. Let's use cascade classifier visual processing with our existing behavior 
experience to plan the face-tracking behavior. 
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Planning our behavior
We can use code fairly similar to our color-tracking behavior to track faces. We'll set our 
robot up to use the pan-and-tilt mechanism to follow the largest face seen in the camera. 
The block diagram in Figure 13.17 shows an overview of the face behavior:

Figure 13.17 – The face-tracking behavior

The flow in Figure 13.17 will look very familiar. We have the same camera to visual 
behavior to image queue we've seen before. This time, the visual processing is get object 
coordinates from image, which outputs an x and y coordinate for the item. We feed 
position x into a PID with center x to get a pan position, which is then used by the pan 
servo motor. Position y is fed to a PID with center y and outputs a tilt position to the tilt 
servos. The servos move the camera, creating a feedback loop where the view moves.

The differences are in the data we are sending to the PID controllers, and that each PID 
controls a different servo motor.

Now we have a plan; let's write the code.
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Writing face-tracking code
The code for this behavior will seem very familiar—adapting the previous behavior code 
for this purpose. It's possible that refactoring could yield more common code, but it is 
currently simpler to work with a copy for now. This code will go into the face_track_
behavior.py file. I've not even created a new template, as the color track template will 
work just fine for this:

1. The imports are nearly the same as our color_track_behavior:

import time

from image_app_core import start_server_process, get_
control_instruction, put_output_image

import cv2
import os

import camera_stream
from pid_controller import PIController
from robot import Robot

2. The init function for the behavior class is slightly different, starting with loading 
the Haar cascade. There are many other cascade files in the same directory, with 
which you could try to track things other than a face. This code uses assert to 
verify that the file exists at the location here because OpenCV will instead return 
cryptic errors in detectMultiscale if it cannot find it:

class FaceTrackBehavior:
    def __init__(self, robot):
        self.robot = robot
        cascade_path = "/usr/local/lib/python3.7/dist-
packages/cv2/data/haarcascade_frontalface_default.xml"
        assert os.path.exists(cascade_path), f"File 
{cascade_path} not found"
        self.cascade = cv2.CascadeClassifier(cascade_
path)
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3. The tuning parameters have center positions and a minimum face size. I've also 
brought the PID controllers out to the class, so they can be tuned here, and then 
reset in the control handler (you could add the reset to the previous behavior too):

        self.center_x = 160
        self.center_y = 120
        self.min_size = 20
        self.pan_pid = PIController(proportional_
constant=0.1, integral_constant=0.03)
        self.tilt_pid = PIController(proportional_
constant=-0.1, integral_constant=-0.03)

4. Our constructor still tracks whether the behavior is running motors or not:

        self.running = False

5. The process control here differs; when the stop instruction is received, it stops the 
motors and resets the PIDs:

    def process_control(self):
        instruction = get_control_instruction()
        if instruction:
            command = instruction['command']
            if command == "start":
                self.running = True
            elif command == "stop":
                self.running = False
                self.pan_pid.reset()
                self.tilt_pid.reset()
                self.robot.servos.stop_all()
            elif command == "exit":
                print("Stopping")
                exit()

6. This behavior still has a find_object method, taking the original frame. First,  
we convert the image to grayscale to reduce the amount of data to search:

    def find_object(self, original_frame):
        gray_img = cv2.cvtColor(original_frame, cv2.
COLOR_BGR2GRAY)
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7. Next, we use the grayscale image with the cascade detectMultiScale method 
to get a list of matches:

        objects = self.cascade.detectMultiScale(gray_img)

The detectMultiScale method creates the integral image and applies the Haar 
cascade algorithm. It will return several objects as rectangles, with x, y, width, and 
height values. 

8. We can use a loop similar to the color-tracking behavior to find the largest  
rectangle by area. First, we need to set up a store for the current largest rectangle,  
in a data structure holding the area, then a sub-list containing the x, y, width,  
and height:

        largest = 0, (0, 0, 0, 0) 
        for (x, y, w, h) in objects:
            item_area = w * h
            if item_area > largest[0]:
                largest = item_area, (x, y, w, h)

9. We return the position and dimensions of that largest rectangle:

        return largest[1]

10. The make_display method is simpler than the color-tracking behavior, as there is 
only one image. It must still encode the image, though:

    def make_display(self, display_frame):
        encoded_bytes = camera_stream.get_encoded_bytes_
for_frame(display_frame)
        put_output_image(encoded_bytes)

11. The process_frame method finds the object and then draws a rectangle on the 
frame for output. The cv2.rectangle function takes two coordinates: a starting 
x,y and an ending x,y, along with a color value. To get the ending coordinates, we 
need to add the width and height back in:

    def process_frame(self, frame):
        (x, y, w, h) = self.find_object(frame)
        cv2.rectangle(frame, (x, y), (x + w, y + w), 
[255, 0, 0])
        self.make_display(frame)
        return x, y, w, h
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12. Now comes the run function. We start with the camera setup and warm-up time:

    def run(self):
        camera = camera_stream.setup_camera()
        time.sleep(0.1)
        print("Setup Complete")

13. Like the color-tracking behavior, we start the main loop by processing the frame 
and checking for control instructions:

        for frame in camera_stream.start_stream(camera):
            (x, y, w, h) = self.process_frame(frame)
            self.process_control()

14. We only want to be moving if we've detected a large enough object (using height,  
as faces tend to be bigger in this dimension) and if the robot is running:

            if self.running and h > self.min_size:

15. When we know the robot is running, we feed the PIDs and send the output values 
straight to the servo motors for both pan and tilt. Note that to find the middle of  
the object, we take the coordinate and add half its width or height:

                pan_error = self.center_x - (x + (w / 2))
                pan_value = self.pan_pid.get_value(pan_
error)
                self.robot.set_pan(int(pan_value))
                tilt_error = self.center_y - (y + (h /2))
                tilt_value = self.tilt_pid.get_
value(tilt_error)
                self.robot.set_tilt(int(tilt_value))

16. So that we can track what is going on here, a debug print statement is 
recommended:

                print(f"x: {x}, y: {y}, pan_error: 
{pan_error}, tilt_error: {tilt_error}, pan_value: {pan_
value:.2f}, tilt_value: {tilt_value:.2f}")



Tracking faces with Python     371

17. Finally, we need to add the code to set up and run our behavior. Notice that we still 
use the color-tracking template:

print("Setting up")
behavior = FaceTrackBehavior(Robot())
process = start_server_process('color_track_behavior.
html')
try:
    behavior.run()
finally:
    process.terminate()

With the code ready, including the setup functions, we can try it out and see the behavior 
running.

Running the face-tracking behavior
To run this behavior, you will need to have uploaded the color-tracking behavior files 
already: 

1. Upload the face_track_behavior.py file.

2. Start using $ python3 face_track_behavior.py.

3. Send your browser to http://myrobot.local:5001. You should see a single 
frame of the camera, with a rectangular outline around the largest face.

4. You must press the Start button for the robot to move.

The servo motors on the pan-and-tilt mechanism should move to try and put your face in 
the middle of the screen, which will mean the camera is pointed right at you. If you move 
your head around, the camera will (slowly) follow you. If you have someone stand behind 
you, the behavior won't pick them up, but if you cover half your face with your hand,  
it will stop recognizing you, and turn to their face instead.
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Troubleshooting
Start with the troubleshooting steps that we covered for the previous behavior—that 
should get you most of the way—then try these if you need to:

• If the app fails to find the Haar cascade file, check the location for the files there. 
These files have moved between OpenCV packaging versions and may do so again. 
Check that you haven't mistyped it. If not, then try the following command:

$ find /usr/ -iname "haarcas*"

This command should show the location of the files on the Raspberry Pi.
• If the camera fails to detect faces in the picture, try making sure the area is well lit. 

• The detection algorithm is only for faces that face the camera head-on, and anything 
obscuring a part of the face will fool it. It is a little picky, so glasses and hats may 
confuse it.

• Faces only partially in the frame are also likely to be missed. Faces that are too far 
away or small are filtered. Reducing the minimum parameter will pick up more 
objects but generate false positives from tiny face-like objects.

• Please check the indentation matches, as this can change the meaning of where 
things happen in Python.

You have now made code that will detect and track faces in a camera view. Face-tracking 
behavior is sure to be impressive. Let's summarize what we've seen in this chapter.

Summary
In this chapter, you saw how to set up the Raspberry Pi Camera module. You then used  
it to see what your robot sees—the robot's view of the world.

You got the robot to display its camera as a web app on a phone or desktop, and then used 
the camera to drive smart color- and face-tracking behaviors. I've suggested ways the 
behaviors could be enhanced and hopefully given you a taste of what computer vision  
can do.

In the next chapter, we will extend our object-tracking visual processing to follow lines 
with the camera, seeing further ways to use the camera.
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Exercises
This code is fun, but there are many ways you could improve the behaviors. Here are some 
suggested ways to extend this code and deepen your learning:

• Use the control pipeline to allow a user to tune the color filters, correct radius, and 
PID values from the web page. Perhaps the initial PID values should be close to the 
other tunable values?

• There is quite a lot of setup code. Could you put this into a function/method?

• Could the queues to the web page be used to send the debug data to the page, 
instead of printing them in the console? Could the data be plotted in a graph?

• The field of view for tracking with the Pi Camera is pretty narrow. A wide-angle lens 
would improve the field of view a lot, letting the robot see more.

• The camera doesn't perform too well when it's dark. The robot has an LED strip, 
but it's not illuminating much. Could you add a bright LED as a headlamp for the 
camera?

• You could track other objects by trying the other cascade files found in the /usr/
share/opencv/haarcascades folder on the Raspberry Pi. 

• Perhaps you could try swapping features of the two behaviors to use the servo 
motors to track the colored object, or chase the faces?

• Could you combine the pan-and-tilt mechanism with the main wheels to track  
an object, then engage the main wheels to chase the matching face and aim to  
center the pan while keeping the object in view? This may require some fancy  
PID controller thinking.

With these ideas, you should have plenty of ways to dig further into this type of visual 
processing.

Further reading
Visual processing is a deep topic, so this is only a small selection of places where you can 
read more about using a camera for visual processing:

• The Official Raspberry Pi Camera Guide at https://magpi.raspberrypi.
org/books/camera-guide is an excellent resource for getting to know the 
camera, with many practical projects for it.

• To delve in far greater depth into using the Raspberry Pi Camera, I recommend the 
PiCamera documentation, available at https://picamera.readthedocs.io/.

https://magpi.raspberrypi.org/books/camera-guide
https://magpi.raspberrypi.org/books/camera-guide
https://picamera.readthedocs.io/
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• To gain insight into further techniques, the PyImageSearch website, at  
https://www.pyimagesearch.com, has great resources.

• OpenCV and visual processing is a complex topic, only briefly covered here.  
I recommend OpenCV 3 Computer Vision with Python Cookbook, by Alexey 
Spizhevoy and Aleksandr Rybnikov, from Packt Publishing, available at https://
www.packtpub.com/application-development/opencv-3-
computer-vision-python-cookbook, for more information.

• Streaming video through Flask is a neat trick and is explored further in Video 
Streaming with Flask, at https://blog.miguelgrinberg.com/post/
video-streaming-with-flask.

• I recommend https://flaskbook.com/ for other neat ways to use Flask to 
manage your robot from your phone or laptop.

• Tuning a PID controller—we touched on this in Chapter 11, Programming Encoders 
with Python, and needed more in this chapter. Robots For Roboticists | PID Control, 
available at http://robotsforroboticists.com/pid-control/, is a 
little heavy on the math but has an excellent section on manually tuning a PID.

• Rapid Object Detection Using a Boosted Cascade of Simple Features, by Paul 
Viola and Michael Jones, available at https://www.cs.cmu.edu/~efros/
courses/LBMV07/Papers/viola-cvpr-01.pdf. This paper, from 2001, 
discusses in more detail the Haar cascade object-finding technique that we used.

• A good video introducing face tracking is Detecting Faces (Viola Jones 
Algorithm) – Computerphile, available at https://www.youtube.com/
watch?v=uEJ71VlUmMQ, which dives into the combination of techniques used.

• The cascade classification OpenCV documentation, at https://docs.opencv.
org/2.4/modules/objdetect/doc/cascade_classification.html, 
gives a reference for the library functions used in the face-tracking behavior.

• OpenCV also has a tutorial on face tracking (for version 3.0), called OpenCV: Face 
Detection using Haar Cascades, which is available at https://docs.opencv.
org/3.3.0/d7/d8b/tutorial_py_face_detection.html.

https://www.pyimagesearch.com
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://flaskbook.com/
http://robotsforroboticists.com/pid-control/
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html


14
Line-Following with 
a Camera in Python

In the last chapter, we saw how to use a camera to follow and track objects. In this chapter, 
we will be extending the camera code to create line-sensing behavior.

We will look at where robots use line following and how it is useful. We will also learn 
about some of the different approaches taken to following paths in different robots,  
along with their trade-offs. You will see how to build a simple line-following track.

We will learn about some different algorithms to use and then choose a simple one. We 
will make a data flow diagram to see how it works, collect sample images to test it with, 
and then tune its performance based on the sample images. Along the way, we'll see more 
ways to approach computer vision and extract useful data from it. 

We will enhance our PID code, build our line detection algorithm into robot driving 
behavior, and see the robot running with this. The chapter closes with ideas on how  
you can take this further.

In this chapter, we're going to cover the following main topics:

• Introduction to line following

• Making a line-follower test track

• A line-following computer vision pipeline
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• Trying computer vision with test images

• Line following with the PID algorithm

• Finding a line again

Technical requirements
For this chapter, you will need the following:

• The robot and code from Chapter 13, Robot Vision – Using a Pi Camera and 
OpenCV

• Some white or some black insulating tape

• Some A2 paper or boards – the opposite color to the insulating tape

• A pair of scissors

• Good lighting

The code for this section can be found at https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition/
tree/master/chapter14.

Check out the following video to see the Code in Action: https://bit.ly/3slLzbQ

Introduction to line following
Before we start building code, let's find out about line-following robot behaviors, where 
and how systems use them, and the different techniques for doing so.

What is line following?
Some robots are required to stay on specific paths within their tasks. It is simpler for  
a robot to navigate a line than to plan and map whole rooms or buildings. 

In simple terms, line following is being able to follow a marked path autonomously.  
These can be visual markers, such as blue tape or a white line on a black road. As the  
robot drives along the line, it will continually be looking for where the line ahead is  
and correcting its course to follow that line.

In robot competitions, racing on lines is a common challenge, with speed being critical 
after accuracy.

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter14
https://bit.ly/3slLzbQ
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Usage in industry
By far the most common usage of line-following behavior is in industry. Robots known 
as automated guided vehicles (AGVs) need to follow set paths for many reasons. These 
tasks can be warehouse robots staying on tracks between aisles of stacked products or 
factory robots staying on paths clear of other work areas. The line may mark a route 
between a storage shelf and a loading bay or a robot charging station and the robot's  
work area:

Figure 14.1 – IntellCart – a line-following industrial robot by Mukeshhrs [Public domain]

IntelliCart, shown in Figure 14.1, uses bright blue guide tape, although, in most industrial 
applications, robots use under-floor magnetic tracks.

The route may include choice points, with multiple lines coming from a particular 
location. Depending on their task, the robot may need extra clues to sense that it has 
reached these points. An engineer can set up a repeated path for a fully automated system. 

Having these demarcated means that you can set safety boundaries and be clear on where 
humans and robots do or do not interact; this means that robots will rarely operate 
outside of well-understood areas.
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Types of line following
There are a few major branches of line following and related systems. 

Visual line following is by far the most commonly practiced and easy-to-set-up line 
following technique. It consists of a painted, drawn, or taped visual line that robots detect. 
Optical lines are simple, but surface dirt and light conditions can make this unreliable. 
How it is detected falls into a couple of major categories:

• Detected with light sensors: In this case, we'd attach small sensors to a robot's 
underside close to the line. They are tuned to output a binary on/off signal or analog 
signal. They usually have lights to shine off the surface. These are small and cheap 
but require extra I/O.

• Detected with a camera: This will save space if you already use a camera, along 
with I/O pins. It saves complexity in mounting them and wiring them. However, 
it comes at a trade-off cost of software complexity, as your robot needs computer 
vision algorithms to analyze this.

Magnetic line following is used when the line needs to be protected against the elements. 
Also, for some variations of this, you can guide a robot on multiple paths. There are the 
following variants:

• Running a magnetic strip along a floor allows Hall-effect sensors (such as the 
magnetometer in Chapter 12, IMU Programming with Python) to detect where the 
strip is. A series of these sensors can determine the direction of a line and follow it. 
This can be easier to alter than painting a line but can be a trip hazard.

• Running a wire with some current through it along or under a floor will achieve the 
same effect. With multiple wires and some different circuits for them, systems can 
steer a robot onto different paths.

• Concealing the line under a floor removes the trip hazard but means that you need 
to paint warnings for humans on paths that industrial robots follow.

Now, you have seen the two major types of line following; it's worth giving an honorable 
mention to some other ways to determine a robot's path in the real world:

• Beacons: Ultrasonic, light-emitting, or radio-emitting beacons can be placed 
around an environment to determine the path of a robot. These could just be 
reflectors for laser or other light. 

• Visual clues: If you place QR codes or other visible markers on walls and posts, they 
can encode an exact position.
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You've seen how a robot can perform line sensing with visible lines and hidden lines, such 
as wires under a floor and magnetic sensors. Because it is easier, we will use visible lines. 

The simple optical sensors require additional wiring, but if we already have a camera 
capable of this, why not make use of it?

In this chapter, we will be focusing on using the camera we already have with a visual 
track and following the lines there. We will accept the code complexity while simplifying 
the hardware aspects of our robot.

Now that you have some idea of the different types of line following and where to use 
them, let's create a test track that our robot can follow.

Making a line-follower test track
Since you will be making your robot follow a line, we need to start with a section of line to 
follow. The track will be used at the beginning to test our line detection algorithm and can 
then be extended to more exciting tracks when we turn on the motors and start driving 
along the line. What I will show you in this section is easy to make and extendable. It allows 
you to experiment with different line shapes and curves and see how the robot responds.

You can even experiment with different color and contrast options.

Getting the test track materials in place
The following photo shows the main materials required:

Figure 14.2 – Materials for making a test track
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The photo in Figure 14.2 shows a roll of black electrical tape on a large sheet of white 
paper. For this section, you'll need the following:

• Some A2 plain white paper or board.

• Some black electrical insulation tape or painter's tape. Make sure this tape is opaque.

• A pair of scissors.

You could replace the paper with boards if they are white-painted.

You can also swap things around by using dark or black paper and white tape. This tape 
must not be see-through so that it makes a good strong contrast against the background. 

Making a line
Lay the sheet of paper flat. Then, make a line along the middle of the paper with the tape:

Figure 14.3 – Smoothing the tape on the paper

The photos in Figure 14.3 show the paper with the tape line and me smoothing the  
tape with my finger. Be sure to smooth the tape down. You do not need to worry about 
making it perfectly straight, as the whole point of this system is to follow lines even  
when they curve.

Once you have a few lengths of this tape on sheet, why not make a few interesting pieces, 
such as the ones in the following figure:

Figure 14.4 – Some different shapes adjoining a straight line
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As Figure 14.4 shows, you can experiment with curves and intentionally not-quite-straight 
lines. You can join these together with the straight lines to make whole sections, like  
a robotic train set! These will be fun to test with later as you further tune and play with  
the line-following code. 

Now that we have a test track ready, we can think about how we can visually process  
the line.

Line-following computer vision pipeline
As we did with the previous computer vision tasks, we will visualize this as a pipeline. 
Before we do, there are many methods for tracking a line with computer vision. 

Camera line-tracking algorithms
It is in our interests to pick one of the simplest ones, but as always, there is a trade-off, in 
that others will cope with more tricky situations or anticipate curves better than ours.

Here is a small selection of methods we could use:

• Using edge detection: An edge detection algorithm, such as the Canny edge 
detector, can be run across the image, turning any transitions it finds into edges. 
OpenCV has a built-in edge detection system if we wanted to use this. The system 
can detect dark-to-light and light-to-dark edges. It is more tolerant of less sharp 
edges.

• Finding differences along lines: This is like cheeky edge detection, but only on 
a particular row. By finding the difference between each pixel along a row in the 
image, any edges will show significant differences. It's simpler and cheaper than 
the Canny algorithm; it can cope with edges going either way but requires sharp 
contrasts.

• Finding brightness and using a region over an absolute brightness as the line: 
This is very cheap but a little too simplistic to give good results. It's not tolerant  
to inversions but isn't tracking edges, so doesn't need sharp contrasts. 

Using one of the preceding three methods, you can find the line in one picture area and 
simply aim at that. This means you won't be able to pre-empt course changes. It is the 
easiest way. The chosen area could be a single row near the bottom of the screen.

Alternatively, you can use the preceding methods to detect the line throughout the camera 
image and make a trajectory for it. This is more complex but better able to cope with 
steeper turns.
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It's worth noting that we could make a more efficient but more complicated algorithm 
using the raw YUV data from the Pi Camera. For simplicity, we will stick to the simple 
one. As you trade further up in complexity and understanding, you can find far faster  
and more accurate methods for this.

Another major limitation of our system is the view width of the camera. You could use 
lenses to let a camera take in a wide visual field so that the robot will not lose the line  
so often.

The method we will use is finding the differences along lines due to its simplicity and 
ability to cope with different line colors. We are also going to simply look along a single 
column, which results in more straightforward math.

The pipeline
We can visualize the way we process data as a pipeline. Before we can, let's quickly explain 
discrete differences. The brightness of each pixel is a number between 0 (black) and 255 
(white). To get the difference, you subtract each pixel from the pixel to the right of it:

Figure 14.5 – Discrete differences between pixels

In Figure 14.5, there are six sets of pixels in varying shades:

1. The first shows two white pixels. There is no difference between them. 

2. Where there is a gray pixel followed by a white one, it produces a small difference. 

3. A black pixel followed by a white pixel produces a large difference.

4. A white pixel followed by a black pixel produces a large negative difference.

5. A black pixel followed by a black pixel will produce no difference.

6. A gray pixel followed by a black pixel will produce a small negative difference.



Line-following computer vision pipeline     383

It should be easy to see that a contrasting line edge will produce the largest differences, 
positive or negative. Our code will look for these.

The following diagram shows how we process camera data for this method:

Figure 14.6 – Image processing pipeline for finding a line

In Figure 14.6, we show the process of finding a line to follow. It starts with the camera, 
from which we capture images at a 320-by-240-pixel resolution. The next step in the 
pipeline is to convert to grayscale – we are only interested in brightness right now.

Because images can have noise or grain, we blur it; this is not strictly necessary and 
depends on how clear the environment you are taking pictures from is. 

We take that image and slice out a candidate row; this shouldn't be too high in the 
picture, as that line may be too far away or there may be random things above the horizon 
depending on the camera position. The row shouldn't be too low as it will then be too 
close to the robot for it to react in time. Above the slice out candidate row box is an 
example showing the sliced-out row and the image it came from.

We then treat this row as a set of numbers and get the discrete difference across them. 
The graph above the discrete difference box shows a large negative spike as the row goes 
from light gray to black, followed by a large positive spike as the row goes from black to 
light gray again. Notice that much of the graph shows a line along zero as patches of color 
have no difference.
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The next step is to find the maximum and minimum positions, specifically where in the 
row they are. We want the position/index of the highest point above zero and the lowest 
point below zero. We now know where the boundaries of our line probably are.

We can find the position between these boundaries to find the center of the line, by 
adding them together and dividing by 2; this would be an X position of the line relative  
to the middle of the camera image.

Now, you've seen the pipeline with some test images. It's time to get some test images of 
your own and try this algorithm out with some code.

Trying computer vision with test images
In this section, we will look out how and why to use test images. We will write our first 
chunk of code for this behavior and try it on test images from our robot's camera. These 
tests will prepare us for using the code to drive the robot.

Why use test images?
So far, our computer vision work has been written directly with robot behaviors; this is the 
end goal of them, but sometimes, you want to try the visual processing code in isolation. 

Perhaps you want to get it working or work out bugs in it, or you may want to see whether 
you can make the code faster and time it. To do this, it makes sense to run that particular 
code away from the robot control systems. 

It also makes sense to use test images. So, instead of running the camera and needing 
light conditions, you can run with test images you've already captured and compare them 
against the result you expected from them.

For performance testing, trying the same image 100 times or the same set of images will 
give consistent results for performance measures to be meaningful. Avoid using new data 
every time, as these could result in unexpected or potentially noisy results. However, 
adding new test images to see what would happen is fascinating.

So now that we know why we use them, let's try capturing some test images.

Capturing test images
You may recall, from the previous chapter, using raspistill to capture an image. We 
are going to do the same here. First, we want to put our camera into a new position, facing 
down, so we are looking down onto the line.
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This section requires the setup from the chapter Chapter 13, Robot Vision – Using a Pi 
Camera and OpenCV and code from Chapter 9, Programming RGB Strips in Python.

Turn the motor power on to the Raspberry Pi, then with an ssh session into the 
Raspberry Pi on the robot, type the following:

1. We start Python by typing python3:

pi@myrobot:~ $ python3
Python 3.7.3 (default, Dec 20 2019, 18:57:59) 
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more 
information.
>>> 

2. Now, we need to import our robot object and create it so that we can interact with it:

>>> import robot

3. Let's create the robot object:

>>> r = robot.Robot()

4. Now, use this to set the pan servo to the middle:

>>> r.set_pan(0)

The pan servo should center the camera.

5. Next, we set the tilt servo to face down to look at the line: 

>>> r.set_tilt(90)

The servo should look straight down here. It should not be straining or clicking.

6. Now, you can exit Python (and release the motors) by pressing Ctrl + D.

The camera is facing downward. You can now turn off the motor switch and put 
this robot onto your test track. Try to position the robot so that the camera is right 
above the line.

7. In the ssh terminal, type the following to capture a test image:

$ raspistill -o line1.jpg
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You can now download this image to your PC using FileZilla, as discussed in the book's 
earlier chapters. The next figure shows a test image, also used for the preceding examples:

Figure 14.7 – A test image of a line

Figure 14.7 shows one of my test images. Note that the line is roughly starting in the 
middle of the picture, but it isn't exact and doesn't need to be. Note also that the lighting 
is a bit rough and is creating shadows. These are worth watching out for as they could 
confuse the system.

Capture a few images of the line at different angles to the robot and slightly left or slightly 
right of the camera.

Now that we have test images, we can write code to test them with!

Writing Python to find the edges of the line
We are ready to start writing code, using our test images and the preceding pipeline 
diagram. We can make the results quite visual so that we can see what the algorithm  
is doing.

Tip
In computer vision, it's useful to use the lowest resolution you can to do the 
job. Every additional pixel adds more memory and processing to cope with. At 
320*200, this is 76,800 pixels. The Raspberry Pi camera can record at 1920 x 
1080 – 2,073,600 pixels – 27 times as much data! We need this to be quick, so 
we keep the resolution low.
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The code in this section will run on the Raspberry Pi, but you can also run it on a PC with 
Python 3, NumPy, Matplotlib, and Python OpenCV installed:

1. Create a file called test_line_find.py.

2. We will need to import NumPy to process the image numerically, OpenCV to 
manipulate the image, and Matplotlib to graph the results:

import cv2
import numpy as np
from matplotlib import pyplot as plt

3. Now, we load the image. OpenCV can load jpg images, but if there is a problem 
in doing so, it produces an empty image. So, we need to check that it loaded 
something:

image = cv2.imread("line1.jpg")
assert image is not None, "Unable to read file"

I am assuming the image is called line1.jpg and is in the same directory that we 
will run this file from.

4. The captured image will be at the large default resolution of the camera. To keep this 
fast, we resize it to a smaller image:

resized = cv2.resize(image, (320, 240))

5. We also only want grayscale; we aren't interested in the other colors for this exercise:

gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)

6. Now, we'll pick out the row; for now, we'll use 180 as that is fairly low on an image 
with a height of 240. The images are stored such that row 0 is the top. Note that we 
are telling NumPy to convert this into an int32 type:

row = gray[180].astype(np.int32)

We convert to int32 with a sign (plus or minus) so that our differences can be 
negative.

7. We can get a list of differences for every pixel of this row. NumPy makes this easy:

diff = np.diff(row)
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8. We are going to plot this diff list. We will need the x-axis to be the pixel number; 
let's create a NumPy range from 0 to that range:

x = np.arange(len(diff))

9. Let's plot the diff variable against the pixel index (x), and save the result:

plt.plot(x, diff)
plt.savefig("not_blurred.png")

You'll note that I've called this file not_blurred. This is because we've not added 
the optional blurring step. With the graph, we'll be able to see the difference. 

Pointing at my test picture, I get the following graph:

Figure 14.8 – Graph of differences without blurring

The graph in Figure 14.8 has the column number as the x axis and the difference as the y 
axis. The line has a lot of noise in it. There are two distinct peaks – one below the zero line 
at around column 145 and one above the line at around 240. The noise here doesn't affect 
this too much as the peaks are very distinct:

1. Let's try adding the blurring to see how that changes things. Make the following 
change to the code. The bold areas show changed sections:

gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
blurred = cv2.blur(gray, (5, 5))
row = blurred[180].astype(np.int32)
diff = np.diff(row)
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In this code, we add the additional blurring step, blurring 5-by-5 chunks a little. 

2. So that we can see different graphs, let's change the name of our output file:

plt.savefig("blurred.png")

Blurring a little should reduce noise without affecting our sharp peaks too much. Indeed, 
the following figure shows how effective this is:

Figure 14.9 – The diff graph after blurring

The graph in Figure 14.9 is similar to Figure 14.8. The axes are the same, and it has the 
same peaks. However, there is far less noise around the line at 0, showing that blurring 
makes the difference clearer. The question about this will be whether it changes the 
outcome. Looking at the position and size of the peaks, I would say not so much. So,  
we can leave it out of the final follow for a little extra speed. Every operation will cost  
a little time.

Now that we have the two peaks, let's use them to find the location of the line.
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Locating the line from the edges
Those peaks are markers of our line edges. To find the middle of something, you add its 
left and right coordinates, then divide them by 2:

1. First, we must pick up the coordinates. Let's write code to ask for the maximum and 
minimum. We'll add this code between the analysis code and the chart output code:

diff = np.diff(row)
max_d = np.amax(diff, 0)
min_d = np.amin(diff, 0)

This code finds the values of the array maximum and minimum. I've called them 
min_d and max_d, abbreviating the difference as d. Note that they cannot be  
called min and max as those names already belong to Python.

2. These are values, but not locations. We now need to find the index of the locations. 
NumPy has an np.where function to get indexes from arrays:

highest = np.where(diff == max_d)[0][0]
lowest = np.where(diff == min_d)[0][0]

NumPy's where function returns an array of answers for each dimension – so, 
although diff is a one-dimensional array, we will still get a list of lists. The first 
[0] selects this first dimension's results list, and the second [0] selects the first 
item in the results. Multiple results mean it's found more than one peak, but we 
assume that there's only one for now.

3. To find the middle, we need to add these together and divide them by 2:

middle = (highest + lowest) // 2

4. Now that we have found it, we should display it in some way. We can plot this on 
our graph with three lines. Matplotlib can specify the color and style for a plot.  
Let's start with the middle line:

plt.plot([middle, middle], [max_d, min_d], "r-")

The line is specified as a pair of X coordinates and a pair of Y coordinates, namely 
because Matplotlib expects data series. We use max_d and min_d for the Y 
coordinates, so the line draws from the highest peak to the lowest. The r- style 
specifier means to draw a solid red line.
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5. We can do the same for the highest and lowest locations, this time using  
g-- for a green dashed line: 

plt.plot([lowest, lowest], [max_d, min_d], "g--")
plt.plot([highest, highest], [max_d, min_d], "g--")

6. As we did for blurring, let's change the name of the output graph so that we can 
compare them:

plt.savefig("located_lines.png")

Running this should output the following figure:

Figure 14.10 – Graph showing the highest, lowest, and middle line

The graph in Figure 14.10 shows that we have found the middle line and the two nice clear 
peaks. This code looks usable for our robot.

However, what happens when things are not so clear?

Trying test pictures without a clear line
Let's see what our line-finding code does with a very different test picture. We will see 
what happens here, so we aren't so surprised by how the robot will behave and weed out 
some simple bugs.
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For example, what about putting our line on a very noisy surface, such as a carpet? Or 
how about the paper without a line, or the carpet without a line?

Figure 14.11 – diff graphs under noisier conditions

With a set of graphs such as those in Figure 14.11, we learn much about our system. 

The top three images show the original photos. The next three graphs show what those 
images look like when finding the difference and middles without blurring. The bottom 
three graphs show what happens when enabling the blur.

First, when things get as noisy as the first image (and this is pushing it past what line 
following should cope with), the blur makes the difference between finding the line 
and a random artifact; although, in the second graph, a random artifact with a similar 
downward peak size was a close contender. In this case, making a larger Y blur might 
smooth out that artifact, leaving only the line.

Looking closely, the scale of those graphs is also not the same. The plain paper graph 
measures a difference with peaks of +10/-10 without blurring, and +1/-1 with blurring. 
So, when the differences are that low, should we even be looking for a peak? The story is 
similar in the carpet-only graphs.

We can make a few changes to our system to make it consider these as not-lines. The 
simplest is to add a condition that filters out a minimum above -5 and a maximum below 
10. I say -5 since this would otherwise filter out the line in the first graph completely. 
However, a larger blur area might help with that.

Depending on the noisiness of the conditions, we will want to enable the blur. On a nicely 
lit track, the blur is probably not needed.
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The next figure shows our line on the carpet, with a blur set to (5, 40), blurring further 
between rows and filtering out noise further:

Figure 14.12 – The line on carpet with a larger blur

The graph in Figure 14.12 has far less noise than before, with the blur smoothing out noise 
spikes a lot, while the actual line spikes remain. We would only want to do this in a noisy 
environment, as it risks being slower.

As you can see, testing the code on test images has allowed us to learn a lot about the 
system. By taking the same pictures and trying different parameters and pipeline changes, 
you can optimize this for different scenarios. As you experiment more with computer 
vision, make this a habit.

Now we have tried our visual processing code on test images, it's time to put it on a  
robot behavior!

Line following with the PID algorithm
In this section, we will combine the visual processing seen previously with the PID control 
loops and camera streaming seen in Chapter 13, Robot Vision – Using a Pi Camera and 
OpenCV. Please start from the code in that chapter.

The files you will need are as follows:

• pid_controller.py

• robot.py

• servos.py
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• camera_stream.py

• image_app_core.py

• leds_led_shim.py

• encoder_counter.py

• The templates folder

We will use the same template for displaying this, but we are going to add a quick and 
cheeky way of rendering the diff graphs in OpenCV onto our output frame. Matplotlib 
would be too slow for this.

Creating the behavior flow diagram
Before we build a new behavior, creating a data flow diagram will help us get a picture of 
what happens to the data after we've processed it.

The system will look familiar, as it is very similar to those we made in Chapter 13, Robot 
Vision – Using a Pi Camera and OpenCV. Take a look at the following figure:

Figure 14.13 – The line-following behavior
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In Figure 14.13, we have camera images going through to the get line from image block. 
This block outputs an object's X position (the middle of the line), which goes to our PID. 
Note that image data also goes from the get line to the image queue so that you can see 
these in a browser.

The PID control also takes a reference middle point, where the middle of the camera 
should be. It uses the error between these to calculate the offset and uses that to drive  
the motors.

The figure shows the motors with a feedback line to the camera, as the indirect effects of 
moving those are that the view changes, so we will see a different line.

Before that, we are going to make our PID controller a little smarter again.

Adding time to our PID controller
Our robot behaviors have involved processing frames, then sending error data to the PID 
whenever the process has completed a cycle. There is much going on in a cycle, and that 
timing might vary. When we create the integral, we have been adding the data as if the 
time was constant. For a somewhat more accurate picture, we should be multiplying that 
by the time:

1. Open up the pid_controller.py file.

2. In the handle_integral method, change the parameters to take delta_time:

    def handle_integral(self, error, delta_time):

3. We will then use this when adding in the integral term:

            self.integral_sum += error * delta_time

4. We usually update the PID with the get_value method; however, since we 
already have code using this, we should make it behave as it did before for them.  
To do this, we will add a delta_time parameter but with a default value of 1:

    def get_value(self, error, delta_time=1):

5. When this get_value method calls handle_integral, it should always pass 
the new delta_time parameter:

        p = self.handle_proportional(error)
        i = self.handle_integral(error, delta_time)
        logger.debug(f"P: {p}, I: {i:.2f}")
        return p + i
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While this was not a big change, it will mean we can account for time variations between 
updates to the PID code.

We can now use this in our behavior.

Writing the initial behavior
We can take all the elements we have and combine them to create our line-following 
behavior: 

1. Create a file named line_follow_behavior.py.

2. Start this with imports for image_app_core, NumPy, OpenCV, the camera 
stream, the PID controller, and the robot. We also have time, so we can later 
compute the delta time:

import time
from image_app_core import start_server_process, get_
control_instruction, put_output_image
import cv2
import numpy as np
import camera_stream
from pid_controller import PIController
from robot import Robot

3. Let's make the behavior class. The constructor, as before, takes the robot:

class LineFollowingBehavior:
    def __init__(self, robot):
        self.robot = robot

4. Now, we need variables in the constructor to track our behavior. First, we should set 
the row we will look for the differences in and a threshold (under which we will not 
consider it a line):

        self.check_row = 180
        self.diff_threshold = 10

5. As with our previous camera behaviors, we have a set point for the center, a variable 
to say whether the motors should be running, and a speed to go forward at:

        self.center = 160
        self.running = False
        self.speed = 60
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6. We are going to make some interesting displays. We will store the colors we plan to 
use here too – a green crosshair, red for the middle line, and light blue for the graph. 
These are BGR as OpenCV expects that:

        self.crosshair_color = [0, 255, 0]
        self.line_middle_color = [128, 128, 255]
        self.graph_color = [255, 128, 128]

That is the constructor complete for the behavior.

7. Now, we need the control to say whether the system is running or should exit. This 
code should be familiar as it is similar to the other camera control behaviors:

    def process_control(self):
        instruction = get_control_instruction()
        if instruction:
            command = instruction['command']
            if command == "start":
                self.running = True
            elif command == "stop":
                self.running = False
            if command == "exit":
                print("Stopping")
                exit()

8. Next, we'll make the run method, which will perform the main PID loop and drive 
the robot. We are setting the tilt servo to 90 and the pan servo to 0, so it is looking 
straight down. We'll set up the camera too:

    def run(self):
        self.robot.set_pan(0)
        self.robot.set_tilt(90)
        camera = camera_stream.setup_camera()

9. Now, we set up the PID for the direction. These values aren't final and may need 
tuning. We have a low proportional value as the directional error can be quite large 
compared with the motor speeds:

        direction_pid = PIController( proportional_
constant=0.4, integral_constant=0.01, windup_limit=400)
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10. We sleep for a second so that the camera can initialize and the servos reach their 
position: 

        time.sleep(1)
        self.robot.servos.stop_all()
        print("Setup Complete")

We stop the servos so that they won't be pulling further power once they've reached 
position.

11. Since we are going to be keeping track of time, we store the last time value here.  
The time is a floating-point number in seconds:

        last_time = time.time()

12. We start the camera loop and feed the frame to a process_frame method  
(which we'll write shortly). We can also process a control instruction:

        for frame in camera_stream.start_stream(camera):
            x, magnitude = self.process_frame(frame)
            self.process_control()

From processing a frame, we expect to get an X value, and the magnitude is the 
difference between the highest and lowest value in the differences. The gap between 
the peaks helps detect whether it's actually a line and not just noise.

13. Now, for the movement, we need to check that the robot is running and that the 
magnitude we found was bigger than the threshold:

            if self.running and magnitude > self.diff_
threshold:

14. If so, we start the PID behavior:

                direction_error = self.center – x
                new_time = time.time()
                dt = new_time - last_time
                direction_value = direction_pid.get_
value(direction_error, delta_time=dt)
                last_time = new_time

We calculate a direction error by subtracting what we got from the middle of the 
camera. We then get a new time so that we can calculate the difference in time, dt. 
This error and time delta are fed to the PID, getting a new value. So, we are ready  
for the next calculation: last_time now gets the new_time value.
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15. We now log this and use the value to change the heading of the robot. We set the 
motor speeds to our base speed, and then add/subtract the motors' PID output:

                print(f"Error: {direction_error}, 
Value:{direction_value:2f}, t: {new_time}")
                self.robot.set_left(self.speed - 
direction_value)
                self.robot.set_right(self.speed + 
direction_value)

16. Now we've handled what happens when we have detected a line. What about 
when we don't? else stops the motors running and resets the PID, so it doesn't 
accumulate odd values:

            else:
                self.robot.stop_motors()
                if not self.running:
                    direction_pid.reset()
                last_time = time.time()

Notice how we are still keeping the last time up to date here. Otherwise, there would 
be a big gap between stops and starts, which would feed odd values into the PID.

17. Next, we need to fill in what happens when we process a frame. Let's add our 
process_frame method:

    def process_frame(self, frame):
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        blur = cv2.blur(gray, (5, 5))
        row = blur[self.check_row].astype(np.int32)
        diff = np.diff(row)
        max_d = np.amax(diff, 0)
        min_d = np.amin(diff, 0)

This code should all look familiar; it is the code we made previously for our  
test code. 

18. We should test to see that our readings have put us on either side of the zero line, 
and that we found two different locations. The maximum should not be below zero, 
and the minimum should not be above it. If they fail this, stop here – the main loop 
will consider this not a line:

        if max_d < 0 or min_d > 0:
            return 0, 0
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19. We will find the locations on the row as we did before, along with their midpoint:

        highest = np.where(diff == max_d)[0][0]
        lowest = np.where(diff == min_d)[0][0]
        middle = (highest + lowest) // 2

20. So that we can use it to determine that we've got a positive match, we'll calculate 
the magnitude of the difference between the min and max, making sure we aren't 
picking up something faint:

        mag = max_d - min_d

21. We will want to display something useful to the user here. So, this method calls a 
make_display method, just like the other camera behaviors. We pass it some 
variables to plot onto that display:

        self.make_display(frame, middle, lowest, highest, 
diff)

22. We then return the middle point and the magnitude:

        return middle, mag

23. This code will drive our robot, but we'll have a hard time tuning it if we can't see 
what is going on. So, let's create the make_display method to handle that:

    def make_display(self, frame, middle, lowest, 
highest, diff):

The parameters here are the original frame, the middle position for the line, the 
lowest difference position in the line, the highest difference position, and diff 
as the whole difference row.

24. The first thing we want in the display is the center reference. Let's make a crosshair 
about the center and the chosen row: 

        cv2.line(frame, (self.center - 4, self.check_
row), (self.center + 4, self.check_row), self.crosshair_
color)
        cv2.line(frame, (self.center, self.check_row - 
4), (self.center, self.check_row + 4), self.crosshair_
color)
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25. Next, we show where we found the middle in another color:

        cv2.line(frame, (middle, self.check_row - 8), 
(middle, self.check_row + 8), self.line_middle_color)

26. So that we can find it, we also plot the bars for the lowest and highest around 
it, in a different color again: 

        cv2.line(frame, (lowest, self.check_row - 4), 
(lowest, self.check_row + 4), self.line_middle_color)
        cv2.line(frame, (highest, self.check_row - 4), 
(highest, self.check_row + 4), self.line_middle_color)

27. Now, we are going to graph diff across a new empty frame. Let's make an empty 
frame – this is just a NumPy array:

        graph_frame = np.zeros((camera_stream.size[1], 
camera_stream.size[0], 3), np.uint8)

The array dimensions are rows then columns, so we swap the camera size X and  
Y values.

28. We will then use a method to make a simple graph. We'll implement this further 
down. Its parameters are the frame to draw the graph into and the Y values for the 
graph. The simple graph method implies the X values as column numbers:

        self.make_cv2_simple_graph(graph_frame, diff)

29. Now that we have the frame and the graph frame, we need to concatenate these,  
as we did for our frames in the color-detecting code:

        display_frame = np.concatenate((frame, graph_
frame), axis=1)

30. We can now encode these bytes and put them on the output queue:

        encoded_bytes = camera_stream.get_encoded_bytes_
for_frame(display_frame)
        put_output_image(encoded_bytes)

31. The next thing we will need to implement is this make_cv2_simple_graph 
method. It's a bit cheeky but draws lines between Y points along an x axis:

    def make_cv2_simple_graph(self, frame, data):
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32. We need to store the last value we were at, so the code plots the next value relative 
to this – giving a line graph. We start with item 0. We also set a slightly arbitrary 
middle Y point for the graph. Remember that we know the diff values can be 
negative:

        last = data[0]
        graph_middle = 100

33. Next, we should enumerate the data to plot each item:

        for x, item in enumerate(data):

34. Now, we can plot a line from the last item Y position to the current position on the 
next X location. Notice how we offset each item by that graph middle:

            cv2.line(frame, (x, last + graph_middle), (x 
+ 1, item + graph_middle), self.graph_color)

35. We then need to update the last item to this current one:

            last = item

Okay – nearly there; that will plot the graph on our frame. 

36. Our behavior is complete; we just need the outer code to run it! This code should 
also be similar to the previous camera examples:

print("Setting up")
behavior = LineFollowingBehavior(Robot())
process = start_server_process('color_track_behavior.
html')
try:
    behavior.run()
finally:
    process.terminate()

Notice that we still use the color_track_behavior.html template here.
You can now upload this to your robot. Then, switch the motors on and run it. Because 
this is web-based, point a browser at http://myrobot.local:5001.
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You should see the following:

Figure 14.14 – Screenshot of the line-following behavior output

The screenshot in Figure 14.14 shows the title above two pictures. On the left is the camera 
picture of the line. Drawn onto this frame is a green crosshair showing where the center 
point is. Also, there is a large red bar showing the middle of the line, and either side of 
this, two shorter red bars showing the sides of it. To the right is the graph plotting the 
intensity differences after blurring. The up peak and down peak are visible in the graph.

Below this are the Start, Stop, and Exit buttons.

Place the robot onto the line, with good lighting. If it looks like the preceding display, 
press the Start button to see it go. It should start shakily driving along the line.

Tuning the PID
You can get a little bolder with trying to track curved lines and find its limit. The robot 
will sometimes overshoot or understeer, which is where the PID tuning comes in: 

• If it seems to be turning far too slowly, try increasing the proportional constant  
a little. Conversely, if it is oversteering, try lowering the proportional constant  
a fraction.

• If it had a slight continuous error, try increasing the integral constant. 

PID tuning is a repeating process and requires a lot of patience and testing.
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Troubleshooting
If the behavior isn't quite working, please try the following steps:

• If the tilt servo doesn't look straight down when set to 90 degrees, it may not be 
calibrated correctly. Change the deflect_90_in_ms value parameter to the 
Servos object – increase in 0.1 increments to get this to 90 degrees.

• If it is having trouble getting a clear line, ensure that the lighting is adequate, that 
the surface it is on is plain, such as paper, and the line is well contrasting.

• If it is still struggling to find a line, increase the vertical blurring amount in steps  
of 5.

• If it's struggling to turn in time for the line, try reducing the speed in increments  
of 10.

• If you find the camera is wobbling horizontally, you can remove the self.robot.
servos.stop_all() line from line_follow_behavior. Beware: this comes 
at the cost of motor battery life.

• If the robot is finding too much other random junk that isn't the line, try increasing 
the vertical blurring. Also, try increasing the threshold in steps of 1 or 2. The 
sharper the contrast in brightness, the less you should need to do this.

• Ensure that you double-check the code and that you have got the previous examples 
here and from Chapter 13, Robot Vision – Using a Pi Camera and OpenCV, to work.

Finding a line again
An important thing to consider is what the robot should do if it has lost the line. Coming 
back to our examples of an industrial setting, this could be a safety measure. 

Our current robot stops. That requires you to put it back on the line. However, when you 
do so, the robot immediately starts moving again. This behavior is fine for our little robot, 
but it could be a dangerous hazard for a large robot.

Another behavior that you could consider is to spin until the robot finds the line again. 
Losing a line can be because the robot has under/oversteered off the line and couldn't find 
it again, or it could be because the robot has gone past the end of a line. This behavior is 
suitable perhaps for small robot competitions.  
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We need to consider things like this carefully and where you would use the robot. Note 
that for competition-type robots, or industrial robots, they will have either multiple 
sensors at different angles or a wider angled sensor – so, they are far less likely to lose 
the line like ours. Also, spinning for a larger robot, even slowly, could be very hazardous 
behavior. For this reason, let's implement a simple additional safety-type feature. 

When it fails to find the line, it doesn't just stop the motors; it will set the running flag  
to false, so you need to start it manually again:

1. Open the line_follow_behavior.py file again.

2. Go to the run method and find the else: statement.

3. Now, we can modify the content of this statement:

            else:
                self.robot.stop_motors()
                self.running = False
                direction_pid.reset()
                last_time = time.time()

We have made two small changes here. Instead of resetting the PID if running is 
false, we now set running to False every time. We also reset the PID every time.

Save the code to the robot, and run it until it loses the line. This could be by going off 
course or by reaching the end of the line. The robot should stop. It should wait for you  
to press the start button before trying to move again. Notice that you'll need to place it 
back on the line and press start for it to go again.

This robot now handles a lost line condition more predictably.

Summary
In this chapter, you saw how to use the camera to detect a line and how to plot data 
showing what it found. You then saw how to take this data and put it into driving behavior 
so that the robot follows the line. You added to your OpenCV knowledge, and I showed 
you a sneaky way to put graphs into frames rendered on the camera stream output. You 
saw how to tune the PID to make the line following more accurate and how to ensure the 
robot stops predictably when it has lost the line. 

In the next chapter, we will see how to communicate with our robot via a voice agent, 
Mycroft. You will add a microphone and speakers to a Raspberry Pi, then add speech 
recognition software. This will let us speak commands to a Raspberry Pi to send to the 
robot, and Mycroft will respond to let us know what it has done. 
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Exercises
Now that we've got this to work, there are ways we could enhance the system and make it 
more interesting:

• Could you use cv2.putText to draw values such as the PID data onto the frames 
in the make_display method?

• Consider writing the PID and error data versus time to a file, then loading it into 
another Python file, using Matplotlib to show what happened. This change might 
make the under/oversteer clearer in retrospect.

• You could modify the motor handling code to go faster when the line is closer to the 
middle and slow down when it is further.

• A significant enhancement would be to check two rows and find the angle between 
them. You then know how far the line is from the middle, but you also know which 
way the line is headed and could use that to guide your steering further.

These exercises should give you some interesting ways to play and experiment with the 
things you've built and learned in this chapter.

Further reading
The following should help you look further into line following:

• Read about an alternative approach for line processing in the Go language on the 
Raspberry Pi from Pi Wars legend Brian Starkey at https://blog.usedbytes.
com/2019/02/autonomous-challenge-blast-off/.

• Here is another line-following robot, using an approach like ours but more 
sophisticated: https://www.raspberrypi.org/blog/an-image-
processing-robot-for-robocup-junior/.

https://blog.usedbytes.com/2019/02/autonomous-challenge-blast-off/
https://blog.usedbytes.com/2019/02/autonomous-challenge-blast-off/
https://www.raspberrypi.org/blog/an-image-processing-robot-for-robocup-junior/
https://www.raspberrypi.org/blog/an-image-processing-robot-for-robocup-junior/
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Voice 

Communication 
with a Robot Using 

Mycroft
Using our voice to ask a robot to do something and receiving a voice response has been 
seen as a sign of intelligence for a long time. Devices around us, such as those using Alexa 
and Google Assistant, have these tools. Being able to program our system to integrate with 
these tools gives us access to a powerful voice assistant system. Mycroft is a Python-based 
open source voice system. We will get this running on the Raspberry Pi by connecting it 
to a speaker and microphone, and then we will run instructions on our robot based on  
the words we speak.

In this chapter, we will have an overview of Mycroft and then learn how to add a speaker/
microphone board to a Raspberry Pi. We will then install and configure a Raspberry Pi  
to run Mycroft.

We'll also extend our use of Flask programming, building a Flask API with more  
control points.
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Toward the end of the chapter, we will create our own skills code to connect a voice 
assistant to our robot. You will be able to take this knowledge and use it to create  
further voice agent skills.

The following topics are covered in this chapter:

• Introducing Mycroft – understanding voice agent terminology

• Limitations of listening for speech on a robot

• How to add a speaker/microphone board to a Raspberry Pi

• How to install and configure a Raspberry Pi to run Mycroft

• Programming a Flask control API

• How to create our own skills code to connect a voice assistant to our robot

Technical requirements
You will require the following hardware for this chapter:

• An additional Raspberry Pi 4 (model B).

• An SD card (at least 8 GB).

• A PC that can write the card (with the balenaEtcher software).

• The ReSpeaker 2-Mics Pi HAT.

• Mini Audio Magnet Raspberry Pi Speaker—a tiny speaker with a JST connector or  
a speaker with a 3.5 mm jack.

• It may be helpful to have a Micro-HDMI to HDMI cable for troubleshooting.

• Micro USB power supply.

• The robot from the previous chapters (after all, we intend to get this moving).

The code for this chapter is available on GitHub at https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition/
tree/master/chapter15.

Check out the following video to see the Code in Action: https://bit.ly/2N5bXqr

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter15
https://bit.ly/2N5bXqr
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Introducing Mycroft – understanding voice 
agent terminology
Mycroft is a software suite known as a voice assistant. Mycroft listens for voice 
commands and takes actions based on those commands. Mycroft code is written in 
Python and is open source and free. It performs most of its voice processing in the cloud. 
After the commands are processed, Mycroft will use a voice to respond to the human.

Mycroft is documented online and has a community of users. There are alternatives 
that you could consider after you've experimented with Mycroft – for example, Jasper, 
Melissa-AI, and Google Assistant.

So, what are the concepts of a voice assistant? Let's look at them in the following 
subsections.

Speech to text
Speech to text (STT) describes systems that take audio containing human speech and 
turn it into a series of words that a computer can then process.

These can run locally, or they can run in the cloud on far more powerful machines.

Wake words
Voice assistants usually have a wake word – a phrase or word that is spoken before the 
rest of a command to get the attention of the voice assistant. Examples are the Hey Siri, Hi 
Google, and Alexa utterances. Mycroft uses the word Mycroft or the phrase Hey Mycroft, 
but that can be changed.

A voice assistant is usually only listening for wake words and ignores all other audio input 
until woken. The wake word is recognized locally on the device. The sounds it samples 
after the wake word are sent to a speech-to-text system for recognition.

Utterances
An utterance is a term for something a user says. Voice assistants use vocabulary you 
define to match an utterance to a skill. The specific vocabulary will cause Mycroft to 
invoke the intent handler.

The vocabulary in Mycroft comprises lists of interchangeable phrases in a file.

A good example of an utterance is asking Mycroft about the weather: Hey Mycroft, what is 
the weather?
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Intent
An intent is a task that the voice assistant can do, such as finding out what today's weather 
is. We will build intents to interact with our robot. An intent is part of a skill, defining the 
handler code for what it does and choosing a dialog to respond.

Using the weather skill as an example, the utterance What is the weather? triggers an intent 
to fetch the current weather for the configured location and then speak the details of this 
back to the user. An example for our robot is ask the robot to test LEDs, with an intent that 
starts the LED rainbow behavior (from Chapter 9, Programming RGB Strips in Python) on 
the robot.

Dialog
In Mycroft terminology, dialogs are phrases that Mycroft speaks to the user. An example 
would be OK, the robot has been started, or Today, the weather is clear.

A skill has a collection of dialogs. These have sets of synonymous words to say and can use 
different languages.

Vocabulary
Utterances you speak, once converted into text, are matched to vocabulary. Vocabulary 
files, like dialogs, are parts of an intent, matching utterances to action. The vocabulary files 
contain synonymous phrases and can be organized into language sets to make your skill 
multi-lingual.

This would make phrases like what is the weather?, is it sunny?, do I need an umbrella? or 
will it rain? synonymous. You may have things split – for example, ask the robot to as one 
vocabulary item and drive forward as another.

Skills
Skills are containers for a whole set of vocabulary for utterances, dialogs to speak, and 
intents. A skill for alarms might contain intents such as setting an alarm, listing the 
alarms, deleting an alarm, or changing an alarm. It would contain a dialog to say the  
alarm setting is complete or to confirm each alarm.

Later in this chapter, we will build a MyRobot skill with intents to make it move and stop.

Now you've learned a bit about the terminology and parts of a voice agent. We next need 
to consider what we will build. Where would we put a speaker and microphone?
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Limitations of listening for speech on a robot
Before we start to build this, we should consider what we are going to make. Should the 
speaker and microphone be on the robot or somewhere else? Will the processing be local 
or in the cloud?

Here are some considerations to keep in mind:

• Noise: A robot with motors is a noisy environment. Having a microphone anywhere 
near the motors will make it close to useless.

• Power: The voice assistant is continuously listening. The robot has many demands 
for power already with the other sensors that are running on it. This power demand 
applies both in terms of battery power and the CPU power needed.

• Size and physical location: The speaker and voice HAT would add height and 
wiring complications to an already busy robot.

A microphone and speaker combination could be on a stalk for a large robot – a tall 
standoff with a second Raspberry Pi there. But this is unsuitable for this small and simple 
robot. We will create a separate voice assistant board that will communicate with our 
robot, but we won't be putting it directly on the robot. The voice assistant will be a second 
Raspberry Pi.

We will also be using a system that goes to the cloud to process the speech. While a fully 
local system would have better privacy and could respond quicker, at the time of writing, 
there is not a complete packaged voice assistant that works this way for a Raspberry 
Pi. The Mycroft software gives us flexibility in using our own skills and has a pluggable 
backend for voice processing, so that one day it may run locally.

Now we've chosen how we will make our voice agent with Mycroft and a second 
Raspberry Pi, it's time to start building it.

Adding sound input and output to the 
Raspberry Pi
Before we can use a voice processing/voice assistant, we need to give the Raspberry 
Pi some speakers and a microphone. A few Raspberry Pi add-ons provide this. My 
recommendation, with a microphone array (for better recognition) and a connection to 
speakers, is the ReSpeaker 2-Mics Pi HAT, which is widely available.
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The next photograph shows the ReSpeaker 2-Mics Pi HAT:

Figure 15.1 – The ReSpeaker 2-Mics Pi HAT

Figure 15.1 shows a photo of a ReSpeaker 2-Mics Pi HAT mounted on a Raspberry Pi. 
On the left, I've labeled the left microphone. The hat has two microphones, which are two 
tiny rectangular metal parts on each side. The next label is for 3 RGB LEDs and a button 
connected to a GPIO pin. After this are the two ways of connecting speakers – a 3.5mm 
jack or a JST connector. I recommend you connect a speaker to hear output from this 
HAT. Then, the last label highlights the right microphone.

I've chosen the ReSpeaker 2-Mic Pi HAT because it is an inexpensive device to get started 
on voice recognition. Very cheap USB microphones will not work well for this. There are 
expensive devices better supported in Mycroft, but they do not sit on the Pi as a hat. This 
ReSpeaker 2-Mics Pi HAT is a trade-off – great for hardware simplicity and cost but with 
some more software setup. Let's now look at how we physically install this HAT.

Physical installation
The ReSpeaker 2-Mics HAT will sit directly on the Raspberry Pi 4 headers with the board 
overhanging the Pi.

The speakers will have either a tiny two-pin connector (JST) type that fits the single 
two-pin socket on the board or a 3.5 mm jack. The next photograph shows the speaker 
plugged into it:
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Figure 15.2 – The Mycroft Voice Assistant ReSpeaker setup

Figure 15.2 shows my Mycroft setup with the ReSpeaker 2-Mics Pi HAT set up on my 
desk. It is powered up, and the Raspberry Pi is lit. I've connected a speaker to it as well.

You could use a Raspberry Pi case or project box but ensure that the microphones are not 
covered up.

You also need an SD card and a power supply. 

Important note
For the next few sections, I recommend using a mains power supply. Do not 
plug it in and power it up yet.

Now we have the hardware prepared, and it has speakers and a microphone. In the next 
section, we will set up Raspbian and the voice agent software.

Installing a voice agent on a Raspberry Pi
Mycroft has a Raspbian distribution prepared for this. Let's put that on an SD card:

1. Go to the Mycroft website to download the Picroft image: https://
mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft/
picroft – this is based on Raspbian Buster. Select stable disk image.

2. Insert the SD card into your computer. Use the procedures from Chapter 3, 
Exploring the Raspberry Pi, in the Flashing the card in balenaEtcher section.  
Be sure to select the Picroft image instead of Raspbian.

https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft/picroft
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft/picroft
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft/picroft
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3. Make sure this image works headlessly, enabling SSH and Wi-Fi as we did in 
Chapter 4, Preparing a Headless Raspberry Pi for a Robot, in the Setting up wireless 
on the Raspberry Pi and enabling SSH section.

With this SD card ready, it's time to try it out. Insert it into the voice assistant Raspberry  
Pi and power it up using the USB micro socket on the ReSpeaker 2-Mics Pi HAT  
(not the Pi).

Important note
Ensure you supply power via the ReSpeaker 2-Mics Pi HAT and not the Pi. 
This board requires power to drive its speaker. The documentation for the 
board suggests that if you power it through the Pi you don't get output from the 
speaker. See https://wiki.seeedstudio.com/ReSpeaker_2_
Mics_Pi_HAT/#hardware-overview for details.

Its hostname starts as picroft.local. You use the username pi and password 
mycroft. Ensure it is connected to Wi-Fi, and you can reach it via SSH (PuTTY).  
With the Raspberry Pi started, you can start to set up Mycroft.

Installing the ReSpeaker software
When you log on, Mycroft will show you an installation guide. This will ask you some 
questions as listed:

1. When asked if you want a guided setup, press Y for yes. The Mycroft installation  
will download a load of updates. Leave it for 30 minutes to an hour to do so.

2. Mycroft will now ask for your audio output device:

HARDWARE SETUP
How do you want Mycroft to output audio:
  1) Speakers via 3.5mm output (aka 'audio jack' or 'headphone 
jack')
  2) HDMI audio (e.g. a TV or monitor with built-in speakers)
  3) USB audio (e.g. a USB soundcard or USB mic/speaker combo)
  4) Google AIY Voice HAT and microphone board (Voice Kit v1)
  5) ReSpeaker Mic Array v2.0 (speaker plugged in to Mic board)
Choice [1-5]:

This guided setup doesn't directly support the ReSpeaker 2-Mics Pi HAT we are 
using. Type 3, to select USB speakers, which sets some basic defaults.

3. Press Ctrl + C to leave the guided setup and return to the $ prompt.

https://wiki.seeedstudio.com/ReSpeaker_2_Mics_Pi_HAT/#hardware-overview
https://wiki.seeedstudio.com/ReSpeaker_2_Mics_Pi_HAT/#hardware-overview
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4. For the installation to work, we'll need the software on the SD card to be updated. 
At the prompt, type sudo apt update -y && sudo apt upgrade -y.  
The update will take some time. 

5. Reboot the Pi (with sudo reboot) for the updates to take effect. After you reboot 
the Pi, ssh in. You will be at the guided setup again. Press Ctrl + C again.

6. Use the following commands to install the audio drivers for the ReSpeaker 2-Mics 
Pi HAT:

$ git clone https://github.com/waveshare/WM8960-Audio-HAT.git
$ cd WM8960-Audio-HAT
$ sudo ./install.sh

The Git clone may take a minute or two. This board uses the WM8960 sound chip. 
The install script will take 20-30 minutes to finish.

7. Reboot again. Press Ctrl + C after to leave the guided mode.

Before we move on, it's a good idea to test that we are getting audio here.

8. Type aplay -l to list playback devices. In the output, you should see the 
following:

card 1: wm8960soundcard [wm8960-soundcard], device 0: bcm2835-
i2s-wm8960-hifi wm8960-hifi-0 [bcm2835-i2s-wm8960-hifi wm8960-
hifi-0]

This shows that it has found our card.

9. We can now test this card will play audio by getting it to play an audio file.  
Use this command: aplay -Dplayback /usr/share/sounds/alsa/
Front_Left.wav.

This command specifies the device named playback with the device -D flag, and 
then the file to play. The playback device is a default ALSA handler that ensures 
mixing is done and avoids issues with bitrate and channel number mismatches. 
There are other test audio files in /usr/share/sounds/alsa.

10. We can then check for recording devices with arecord -l. In the following 
output, we can see that arecord has found the card:

card 1: wm8960soundcard [wm8960-soundcard], device 0: bcm2835-
i2s-wm8960-hifi wm8960-hifi-0 [bcm2835-i2s-wm8960-hifi wm8960-
hifi-0]
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The card is now ready for use. Next, we need to show the Mycroft system how to choose 
this card for use.

Troubleshooting
If you haven't got audio output, there are some things you can check:

1. First, type sudo poweroff to turn off the Raspberry Pi. When it is off, check the 
connections. Ensure that the board is connected fully to the GPIO header on the 
Pi. Make sure you've connected the speaker to the correct port on the ReSpeaker 
2-Mics Pi HAT.

2. When you power it again, ensure that you are using the power connector on the 
ReSpeaker 2-Mics Pi HAT, and not the Raspberry Pi.

3. If you are using the headphone slot instead of the speaker slot, you may need to 
increase the volume. Type alsamixer, select the WM8960 sound card, and turn 
the headphone volume up. Then try the playback tests again.

4. Make sure you have performed the apt update and the apt upgrade steps. 
The installation of the drivers will not work without it. You will need to reboot after 
this and then try reinstalling the driver.

5. When installing the driver, if the Git step fails, double-check the address you have 
fetched.

6. When attempting playback, the -D flag is case-sensitive. A lowercase d will not 
work here.

If these steps still do not help, please go to the https://github.com/waveshare/
WM8960-Audio-HAT website, read their documentation, or raise an issue.

Now we've checked this, let's try to link the sound card with Mycroft.

https://github.com/waveshare/WM8960-Audio-HAT
https://github.com/waveshare/WM8960-Audio-HAT
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Getting Mycroft to talk to the sound card
Now you need to connect Mycroft and the sound card. Do this by editing the Mycroft 
configuration file: 

1. Open the Mycroft config file as root using sudo nano /etc/mycroft/
mycroft.conf.

2. The file has lines describing various aspects of Mycroft. However, we are interested 
in two lines only:

   "play_wav_cmdline": "aplay -Dhw:0,0 %1",
   "play_mp3_cmdline": "mpg123 -a hw:0,0 %1",

The first specifies that Mycroft will play wave audio files using the aplay command 
on device hardware 0,0 (the Pi headphone jack) – written as hw:0,0. This will 
be the wrong device. The second specifies it will play mp3 files using the mpg123 
command and on the same incorrect device. Using a direct hardware device may 
make assumptions about the format of the sound being played, so it needs to go 
through the mixer device. Let's fix these.

3. Edit both occurrences of hw:0,0 to be the term playback. The two lines should 
look like this:

   "play_wav_cmdline": "aplay -Dplayback %1",
   "play_mp3_cmdline": "mpg123 -a playback %1",

4. Press Ctrl + X to write out and exit. Type Y for yes when asked to write out the file.

5. Reboot one more time; when you return, do not exit the guided mode.

6. Mycroft will ask to test the device. Press T to test the speaker. It may take a few 
seconds, but you will hear Mycroft speak to you. If it is a little quiet, try typing the 
number 9, and test it again. An exciting moment! Press D to say you have done the 
test.

7. The guided installer will next ask about the microphone. Select 4 for Other USB 
Microphone and try the sound test. The installer will ask you to speak to the 
microphone, and it should play your voice back to you. Press 1 if this sounds good.

8. The guided installation will ask you about using the recommendations; select 1 
to confirm you want that. There will be a series of questions about your password 
settings. I recommend not adding a sudo password but changing the default 
password for the Pi to something unique. 

9. Mycroft will launch with a large section of purple installation text.
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You have Mycroft configured and starting up. It can record your voice and play that back 
to you, and you have heard it speak a test word too. Now, it's time to start using Mycroft 
and see what it can do.

Starting to use Mycroft
Let's get to know Mycroft a little, and then try talking with it. We will start with the debug 
interface, the Mycroft client, which shows you what is going on with the system, and then 
we'll get into talking to it.

The Mycroft client
When you connect to Mycroft, you will see a display like the following figure:

Figure 15.3 – The Mycroft client interface

The screenshot in Figure 15.3 is the Mycroft client. It allows you to see what Mycroft is 
doing, but you don't need to connect to this for Mycroft to listen to you. The top right 
shows how many messages there are and how many you can see. In the screenshot, you 
can see messages 0-10, out of a total of 10 messages.
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The main middle section shows the messages. Red and purple messages come from the 
Mycroft system and plugins. If many purple messages are flashing by, Mycroft is installing 
plugins and updates, so you may need to leave it until it finishes. Green messages show 
Mycroft interacting with a user. It shows when it detects a wake word, when it starts to 
record, when it ends the recording, and the utterance it thinks you said. The messages are 
useful as if it isn't quite responding, you can check whether it's picking up the wake word 
and that the utterance matches what you are trying to say. 

Below this, on the left, is the history. In the history, what Mycroft has processed from 
your utterance is in blue. The dialog Mycroft speaks is in yellow. You should hear yellow 
text repeated on the speaker; however, it can take a while if it is very busy. On the right, 
it shows a legend that matches colors to a log file. Further right is a microphone speaker 
level meter, and unless Mycroft is busy, or you are very quiet, you should see this moving 
up and down as it picks up noise in the room. Note – too much noise, and you may have 
trouble talking to it.

At the bottom of the screen is an input area, where you can type commands for Mycroft.

Give the system about 30-40 minutes to finish all the installations. If it is not responsive,  
it is not hung but is usually installing and compiling additional components.

Mycroft will then tell you it needs to be paired at mycroft.ai. You will need to register 
the device using the code it gives you; which you can do while Mycroft is installing. You 
will need to create an account there to do so (or log in if this is a second device/attempt). 
Please complete this before proceeding.

When you've paired Mycroft, and it finishes installing things, you can start to interact.

Talking to Mycroft
Now you should be able to speak to your voice assistant:

1. First, to get its attention, you must use the wake word Hey Mycroft. If it's ready (and 
not still busy), it will issue a speaker tone to show Mycroft is listening. You need to 
stand within about a meter of the microphones on the Raspberry Pi. It may respond 
with Please wait a moment while I finish booting up. Give it a minute and try again.

2. If you hear the tone, you can now ask it to do something. A good starting point is  
to tell it: Say hello. Mycroft should respond with Hello from the speaker after about 
10 seconds. You will need to speak as clearly as possible. I've found that it needs  
you to pronounce each syllable; those t and n sounds are essential.

http://mycroft.ai
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Now that this works, you can have some fun with it! You can shorten Hey Mycroft to just 
Mycroft. Other things you can say include the following:

• Hey Mycroft, what is the weather?: This will use the weather skill and tell you 
the weather. It may be for the wrong location; use the mycroft.ai website to 
configure your device to your location.

• Mycroft, what is 23 times 76: This will use the Wolfram skill, which can handle 
mathematical questions.

• Mycroft, wiki banana: This will use a Wikipedia skill, and Mycroft will tell you what 
it has found out about the banana.

Try these out to get used to talking to Mycroft so it responds. It may say I don't 
understand, and the log will tell you what it heard, which can help you try to tune  
how you pronounce things for it.

We can now create a skill to connect Mycroft to our robot. But first, let's check for 
problems.

Troubleshooting
If you are not able to get Mycroft to speak or recognize talking, try the following:

• Make sure you are close enough to the microphone/loud enough. This can be 
checked by observing whether the mic (microphone) level goes above the dashed 
line in the Mycroft console.

• Ensure you have a good network connection from your Raspberry Pi. Mycroft 
is only going to work where you can reach the internet. See the Mycroft 
documentation for handling proxies. Mycroft can fail to boot correctly if the 
internet connection isn't great. Fixing the connection and rebooting it can help.

• Attaching a monitor while the Pi is booting may reveal error messages.

• Mycroft has a troubleshooting system starting with: Troubleshooting and Known 
errors (https://mycroft.ai/documentation/troubleshooting/).

• Mycroft is under active development. Taking the latest Picroft image and applying 
the ReSpeaker driver may help. In short, getting this installed and running is subject 
to change.

With Mycroft talking and responding, we need to prepare the robot for Mycroft to  
talk to it.

http://mycroft.ai
https://mycroft.ai/documentation/troubleshooting/
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Programming a Flask API
This chapter aims to control our robot with Mycroft. To do so, we need to give our robot 
some way to receive commands from other systems. An Application Programming 
Interface (API) on a server lets us decouple systems like this to send commands across 
the network to another and receive a response. The Flask system is ideally suited to 
building this. 

Web-based APIs have endpoints that other systems make their requests to and roughly 
map to functions or methods in a Python module. As you'll see, we map our API 
endpoints directly to functions in the Python robot_modes module.

Before we get into building much, let's look at the design of this thing – it will also reveal 
how Mycroft works.

Overview of Mycroft controlling the robot
The following diagram shows how a user controls a robot via Mycroft:

Figure 15.4 – Overview of the robot skill

The diagram in Figure 15.4 shows how data flows in this system:

1. On the left, it starts with the user speaking an instruction to Mycroft.

2. On recognizing the wake word, Mycroft sends the sound to the Google STT engine.

3. Google STT returns text, an utterance, which Mycroft matches against vocabulary 
in skills/intents. We'll dig more into these later.
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4. This triggers intents in the robot skill, which we will build. The robot skill will 
send a request to the Raspberry Pi in the robot, on the right, as a request to a Flask 
control API (web) server.

5. That control API server will start the robot processes and respond to say it's  
done so.

6. The robot skill will choose dialog to say it has completed and sends this to Mycroft.

7. Mycroft will then speak this response to the user.

At this point, we are going to build the Flask server on the robot. You have seen Flask 
before in the visual processing chapters and have already installed this library.

Starting a behavior remotely
We will use HTTP and a web server for this, as it's simple to send requests to, so we can 
build other ways to control the robot remotely. HTTP sends requests in a URL—first, the 
http:// protocol identifier; a server hostname, myrobot.local; a path, /mode/foo; 
and it may have additional parameters after that. We use the path of the URL to determine 
what our robot does.

As we have done with other systems, we create a few logical sections and blocks to handle 
different aspects of this:

• Code to manage the robot's modes and to start and stop known scripts. It can also 
give us a list of those known scripts.

• A web server to handle requests over the network.

We'll need to build the mode manager first.

Managing robot modes
We can manage modes by starting and stopping our behavior scripts as subprocesses. Let's 
make a configuration to tell the mode manager about the modes. This configuration maps 
a mode name to a file—a Python file. Note that we are specifying a list of files and not 
inferring it. Although we could take our mode/path section and add .py to get a file, this 
would be bad for two reasons:

• It would couple us directly to script names; it would be nice if we could change 
underlying scripts for the same mode name.

• Although the robot is not a secure environment, allowing arbitrary subprocesses  
to run is very bad; restricting it keeps the robot a little more secure.
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Let's start building it:

1. Create a file called robot_modes.py. This file contains a class called 
RobotModes that handles robot processes.

2. The file starts with some imports and the top of the class definition:

import subprocess

class RobotModes(object):

3. Next, we create a few mode mappings, mapping a mode name to a filename:

    mode_config = {
        "avoid_behavior": "avoid_with_rainbows.py",
        "circle_head": "circle_pan_tilt_behavior.py",
        "test_rainbow": "test_rainbow.py"
    }

The mode name is a short name, also known as a slug, a compromise between 
human-readable and machine-readable – they are usually restricted to lowercase 
and underscore characters and are shorter than a full English description. Our 
filenames are relatively close to slug names already.

4. With the fixed configuration aside, this class is also managing running behaviors as 
processes. It should only run one at a time. Therefore, we need a member variable  
to keep track of the current process and check whether it is running: 

    def __init__(self):
        self.current_process = None

5. We should be able to check whether something is already running or it has 
completed:

    def is_running(self):
        return self.current_process and self.current_
process.returncode is None

Python's subprocess is a way of running other processes and apps from within 
Python. We check whether we have a current process, and if so, whether it is still 
running. Processes have a return code, usually to say whether they completed 
or failed. However, if they are still running, it will be None. We can use this to 
determine that the robot is currently running a process.
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6. The next function is running a process. The function parameters include a mode 
name. The function checks whether a process is running, and if not, starts a process:

    def run(self, mode_name):
        if not self.is_running():
            script = self.mode_config[mode_name]
            self.current_process = subprocess.
Popen(["python3", script])
            return True
        return False

Important note
Before we run a new process, we need to check that the previous behavior 
has stopped. Running two modes simultaneously could have quite strange 
consequences, so we should be careful not to let that happen.

We use self.mode_config to map mode_name to a script name. We then use 
subprocess to start this script with Python. Popen creates a process, and the 
code stores a handle for it in self.current_process. This method returns 
True if we started it, and False if one was already running.

7. The class needs a way to ask it to stop a process. Note that this doesn't try to stop 
a process when it is not running. When we stop the scripts, we can use Unix 
signals, which let us ask them to stop in a way that allows their atexit code to 
run. It sends the SIGINT signal, which is the equivalent of the Ctrl + C keyboard 
combination:

    def stop(self):
        if self.is_running():
            self.current_process.send_signal( subprocess.
signal.SIGINT)
            self.current_process = None

After we have signaled the process, we set the current process to None – throwing away 
the handle.

We now have code to start and stop processes, which also maps names to scripts. We need 
to wrap it in a web service that the voice agent can use.



Programming a Flask API     425

Programming the Flask control API server
We've used Flask previously to make the web server for our visual processing behaviors. 
We are going to use it for something a bit simpler this time, though.  

As we saw with the start and stop buttons in the image servers, Flask lets us set up 
handlers for links to perform tasks. Let's make a script that acts as our control web  
service, which uses Flask and our RobotModes object.

Let's build this by following these steps:

1. Create a script called control_server.py. We can start by importing Flask and 
our robot modes:

from flask import Flask
from robot_modes import RobotModes

2. Now, we create a Flask app to contain the routes and an instance of our 
RobotModes class from before:

app = Flask(__name__)
mode_manager = RobotModes()

3. Next, we need a route, or API endpoint, to run the app. It takes the mode name  
as part of the route:

@app.route("/run/<mode_name>", methods=['POST'])
def run(mode_name):
    mode_manager.run(mode_name)
    return "%s running"

We return a running confirmation.

4. We also need another API endpoint to stop the running process:

@app.route("/stop", methods=['POST'])
def stop():
    mode_manager.stop()
    return "stopped"

5. Finally, we need to start the server up:

app.run(host="0.0.0.0", debug=True)

This app is ready to start for speech control.
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Tip
What is a URL? You have already used these with other web services in the 
book. A URL, or uniform resource locator, defines how to reach some kind of 
resource; it starts with a protocol specification—in this case, http for a web 
(hypertext) service. This is followed by a colon (:) and then two slashes // 
with a hostname or host address—the network address of the Raspberry Pi the 
resource will be on. As a host can have many services running, we can then 
have a port number, with a colon as a separator—in our case, :5000. After 
this, you could add a slash / then select a specific resource in the service.

We can test this now:

6. Power up the robot and copy both the control_server.py and  
robot_modes.py files to it.

7. SSH into the robot and start the control server with python3 control_
server.py. You should see the following:

$ python3 control_server.py
 * Serving Flask app "control_server" (lazy loading)
 * Environment: production
   WARNING: Do not use the development server in a production 
environment.
   Use a production WSGI server instead.
 * Debug mode: on
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

8. Now create another ssh window into the Mycroft Raspberry Pi – we can test that 
one talks to the other. Press Ctrl + C once into pi@picroft.local to get to the 
Linux command line (the $ prompt).

9. The curl command is frequently used on Linux systems like the Raspberry Pi  
to test servers like this. It makes requests to web servers, sending/receiving data,  
and displaying the result. It's perfect for testing HTTP control APIs like this.

We intend to make a post request. Type this command: 

curl -X POST http://myrobot.local:5000/run/test_rainbow

This should start the rainbows turning on and off, using the code from Chapter 9, 
Programming RGB Strips in Python. The curl command specifies that we are using 
the POST method to make a request, then a URL with the port, the robot hostname, 
then the instruction run, and then the mode name.
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10. You can stop the LEDs with curl -X POST http://myrobot.local:5000/
stop. This URL has the instruction stop. The robot LED rainbow should stop.

Notice how both these URLs have http://myrobot.local:5000/ at their 
start. The address may be different for your robot, depending on your hostname. 
This is a base URL for this control server.

11. You can press Ctrl + C to stop this.

We can use this to build our Mycroft behaviors, but let's check for any problems before 
carrying on.

Troubleshooting
If this isn't working for you, we can check a few things to see what happened:

• If you receive any syntax errors, check your code and try again.

• Please verify that your robot and the device you are testing from have internet 
availability.

• Note that when we are starting the subprocess, we are starting Python 3. Without 
the 3, other unexpected things will happen.

• First, remember the control server is running on the Raspberry Pi 3A+ on the 
robot. You will need to substitute it for your robot's address in the curl commands.

• Ensure you have installed Flask, as shown in Chapter 13, Robot Vision – Using a Pi 
Camera and OpenCV.

• Make sure you have copied both the control server and the robot mode scripts to 
the robot. You will also need the code from Chapter 9, Programming RGB Strips in 
Python installed on the robot to run this test.

Now we've tested the control server, you can power down the Pi. There's some more code 
to write! Let's tie this into Mycroft.
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Programming a voice agent with Mycroft on 
the Raspberry Pi
The robot backend provided by the Flask control system is good enough to create our 
Mycroft skill with. 

In Figure 15.4, you saw that after you say something with the wake word, upon waking, 
Mycroft will transmit the sound you made to the Google STT system. Google STT will 
then return the text.

Mycroft will then match this against vocabulary files for the region you are in and match 
that with intents set up in the skills. Once matched, Mycroft will invoke an intent in  
a skill. Our robot skill has intents that will make network (HTTP) requests to the Flask 
control server we created for our robot. When the Flask server responds to say that it has 
processed the request (perhaps the behavior is started), the robot skill will choose a dialog 
to speak back to the user to confirm that it has successfully carried out the request or 
found a problem.

We'll start with a simple skill, with a basic intent, and then you can expand this to perform 
more. I've picked the rainbow LEDs test (test_leds from Chapter 9, Programming RGB 
Strips in Python) because it is simple.

It's worth noting that the time taken to get the speech processed by Google means that 
this is not suitable for stopping a robot in a hurry; the voice recognition can take some 
time. You could consider using GPIOZero in the intent and a when_pressed handler 
to trigger the control server's stop handler.

Building the intent
We can start with the intent, then look at some vocabulary. To build it, we will use a 
library built into Mycroft named adapt:

1. Create a folder called my-robot-skill, which we will work in to build the 
Mycroft skill. 

2. The main intent file will be an __init__.py file in this folder. This filename 
means that Python will treat the whole folder like a Python library, called a package. 
Let's start putting some imports in my-robot-skill/__init__.py:

from adapt.intent import IntentBuilder
from mycroft import MycroftSkill, intent_handler
from mycroft.util.log import LOG

import requests
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The imports include IntentBuilder to build and define intents around 
vocabulary. MycroftSkill is a base class to plug our code into Mycroft. 
intent_handler marks which parts of our code are intents, associating the code 
with IntentBuilder. We import LOG to write information out to the Mycroft 
console and see problems there.

The last import, requests, is a tool to talk to our control server in Python 
remotely.

3. Next, we will define our skill from the MycroftSkill base. It needs to set up its 
parent and prepare settings:

class MyRobot(MycroftSkill):
    def __init__(self):
        super().__init__()
        self.base_url = self.settings.get("base_url")

The Python keyword super calls a method from a class we've made our base; in 
this case, __init__ so we can let it set things up.

The only setting we have is a base_url member for our control server on the 
robot. It is consulting a settings file, which we'll see later. It's usually a good idea to 
separate the configuration from the code.

4. The next thing we need is to define an intent. We do so with a handle_test_
rainbow method – but you need to decorate it using @intent_handler. In 
Python, decorating wraps a method in further handling – in this case, making it 
suitable for Mycroft:

    @intent_handler(IntentBuilder("")
                    .require("Robot")
                    .require("TestRainbow"))
    def handle_test_rainbow(self, message):

The intent_handler decorator takes some parameters to configure the 
vocabulary we will use. We will define vocabulary in files later. We require  
a vocabulary matching robot first, then another part matching TestRainbow – which 
could match a few phrases.
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5. Next, this skill should make the request to the robot – using requests.post:

        try:
            requests.post(self.base_url + "/run/test_
rainbow")

This segment posts to the URL in the base_url variable, plus the run instruction 
and the test_rainbow mode.

6. We need Mycroft to say something, to say that it has told the robot to do something 
here:

            self.speak_dialog('Robot')
            self.speak_dialog('TestingRainbow')

The speak_dialog method tells Mycroft to pick something to say from dialog 
files, which allows it to have variations on things to say.

7. This request could fail for a few reasons, hence the try in the code snippet before 
last. We need an except to handle this and speak a dialog for the user. We also 
LOG an exception to the Mycroft console:

        except:
            self.speak_dialog("UnableToReach")
            LOG.exception("Unable to reach the robot")

We are treating many error types as Unable to reach the robot, while  
not inspecting the result code from the server other than if the voice skill contacted 
the robot.

8. This file then needs to provide a create_skill function outside of the class, 
which Mycroft expects to find in skill files:

def create_skill():
    return MyRobot()

The code is one part of this system, but we need to configure this before using it.

The settings file
Our intent started by loading a setting. We will put this in my-robot-skill/
settingsmeta.json, and it defines the base URL for our control server.
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Please use the hostname/address of your robot Raspberry Pi if it is different. This file is  
a little long for this one setting, but will mean that you can configure the URL later if  
need be:

{
    "skillMetadata": {
        "sections": [
            {
                "name": "Robot",
                "fields": [
                    {
                        "name": "base_url",
                        "type": "text",
                        "label": "Base URL for the robot 
control server",
                        "value": "http://myrobot.local:5000"
                    }
                ]
            }
        ]
    } 
}

We have now set which base URL to use, but we need to configure Mycroft to load  
our skill.

The requirements file
Our skill uses the requests library. When Mycroft encounters our skill, we should tell 
it to expect this. In Python, requirements files are the standard way to do this. Put the 
following in my-robot-skill/requirements.txt:

requests

This file is not unique to Mycroft and is used with many Python systems to install libraries 
needed by an application.

Now we need to tell Mycroft what to listen for, with vocabulary.
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Creating the vocabulary files
To define vocabularies, we need to define vocabulary files. You need to put them in  
a folder following the format my-robot-skill/vocab/<IETF language and 
locale>. A language/locale means we should be able to define a vocabulary for variants 
such as en-us for American English and zn-cn for simplified Chinese; however, at the 
time of writing, en-us is the most supported Mycroft language. Parts of the community 
are working on support for other languages.

You define each intent with one or more vocabulary parts matching vocabulary files. 
Vocabulary files have lines representing ways to phrase the intended utterance. These 
allow a human to naturally vary the way they say things, something people notice when  
a machine fails to respond to a slightly different way of asking for something. There is a bit 
of a trick in thinking up similar phrases for the vocabulary files.

We need two vocabulary files for our intent—one for robot synonyms and one for 
TestRainbow synonyms:

1. Create the folder vocab under my-robot-skill, and then the en-us folder 
under that.

2. Make a file there with the path and name my-robot-skill/vocab/en-us/
robot.voc.

3. Add some phrases for asking the robot to do something:

robot
my robot
ask robot to
tell the robot to

Mycroft will match these phrases where we have said robot in the intent handler.

4. Let's create the vocabulary for testing the rainbow. Put it into my-robot-skill/
vocab/en-us/TestRainbow.voc:

test rainbow
test the leds
deploy rainbows
turn on the lights

Important note
Note that the vocabulary filename's capitalization must match the intent 
builder; I've then used the convention of capitalizing the non-shared  
vocab parts.
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Inevitably, when you test this, you will eventually try to say a sensible sounding phrase 
that isn't there. Mycroft will tell you Sorry, I don't understand, and you will add another 
expression to the vocabularies above.

Dialog files
We also want to define the phrases Mycroft will say back to you. We have three phrases 
that our intent requires so far. These go into the my-robot-skill/dialog/en-us 
folder with a similar structure to vocabulary files. Let's build them:

1. Under my-robot-skill, create the folder dialog, and then under this, the 
folder en-us.

2. In the folder, create the file with the path my-robot-skill/dialog/en-us/
Robot.dialog. We can add some phrases for that here:

The Robot
Robot

3. The next dialog we need is TestRainbow.dialog in the same folder:

is testing rainbows.
is deploying rainbows.
is starting rainbows.
is lighting up.

4. Since we have an error handler, we should also create UnableToReach.dialog:

Sorry I cannot reach the robot.
The robot is unreachable.
Have you turned the robot on?
Is the control server running on the robot?

By defining multiple possible dialogs, Mycroft will randomly pick one to make itself less 
repetitive. We've now seen how to make vocabulary phrases and dialog phrases. Let's just 
recap what we should have.
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Current skill folder
Our skill folder should look like the following screenshot:

 

Figure 15.5 – Screenshot of the robot skill folder

In Figure 15.5, we see a screenshot showing the skill in a folder called my-robot-skill. 
This skill folder has the dialog folder, with the en-us subfolder and the three dialog 
files here. Below that is the vocab folder, with the en-us folder and two vocab files. 
Below the vocab folder, we have __init__.py defining the intents, requirements for 
Mycroft to install it, and a settings file. Whew – we've created a lot here, but it will be 
worth it!

We are going to now need to upload this whole folder structure to our robot:

1. Using SFTP (FileZilla), upload this folder to your Mycroft Pi, in the /opt/
mycroft/skills folder.

2. Mycroft will automatically load this skill; you will see purple text for this flash past 
as it does the install.

3. If you need to update the code, uploading the files to this location again will cause 
Mycroft to reload it.

Any problems loading or using the skill will be shown on the Mycroft output. You 
can also find the result in /var/log/mycroft/skills.log—the less Linux 
tool is useful for looking at log output like this, using Shift + G to jump to the end of 
the file or typing /myrobot to jump to its output. 
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You can also use tail -f /var/log/mycroft/skills.log to see problems 
as they happen. Use Ctrl + C to stop.

4. Now, power up the robot, ssh in, and start the control server with python3 
control_server.py.

5. You can then try out your skill with Mycroft: Tell the robot to turn on the lights. 

6. Mycroft should beep to show the user it's awake and, once it has got the words from 
speech to text, it will send /run/test_rainbow to the control server on the 
robot. You should hear Mycroft say one of the dialog phrases, such as The robot is 
testing rainbows and see the LEDs light up.

Troubleshooting
If you encounter problems making the intent respond, please try the following:

• First, check the syntax and indenting of the previous Python code.

• Ensure that your robot and the voice assistant Raspberry Pi are on the same 
network; I've found this problematic with some Wi-Fi extenders, and IP addresses 
are needed instead of myrobot.local. Use the settingsmeta.json file to 
configure this.

• Ensure you have copied over the whole structure – with the vocab, dialog, 
settingsmeta.json, and __init__.py – to the /opt/mycroft/skills 
folder on the voice assistant Raspberry Pi.

• If your settings were incorrect, you will need to change them on the https://
account.mycroft.ai/skills page. Look for the My Robot skill and change 
it here. You will need to save the change and may need to restart Mycroft or wait  
a few minutes for this to take effect.

• Ensure the way you have spoken to Mycroft matches your vocabulary files – it will 
not recognize your words otherwise.

• You can also type phrases into the Mycroft console if you are having trouble with it 
recognizing your voice.

We've got our first intent to work! You've been able to speak to a voice assistant, and it has 
instructed the robot what to do. However, we've now started the LEDs flashing, and the 
only way to stop them is with that inconvenient curl command. We should probably fix 
that by adding another intent.

https://account.mycroft.ai/skills
https://account.mycroft.ai/skills
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Adding another intent
Now we have our skill, adding a second intent for it to stop becomes relatively easy, using 
another of the endpoints in our robot's control server. 

Vocabulary and dialog
We need to add the vocabulary and dialog so our new intent can understand what we are 
saying and has a few things to say back:

1. We will need to create the stop vocabulary; we can put this in my-robot-
skill/vocab/en-us/stop.voc:

stop
cease
turn off
stand down

2. We need a dialog file for Mycroft to tell us the robot is stopping in my-robot-
skill/dialog/en-us/stopping.dialog:

is stopping.
will stop.

These will do, but you can add more synonyms if you think of them.

Adding the code
Now we need to add the intent code to our skill:

1. We will put this into the MyRobot class in my-robot-skill/__init__.py:

    @intent_handler(IntentBuilder("")
                    .require("Robot")
                    .require("stop"))
    def handle_stop(self, message):
        try:
            requests.post(self.base_url + "/stop")
            self.speak_dialog('Robot')
            self.speak_dialog('stopping')
        except:
            self.speak_dialog("UnableToReach")
            LOG.exception("Unable to reach the robot")
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This code is almost identical to the test rainbows intent, with the stop vocabulary, 
the handler name (which could be anything – but must not be the same as another 
handler), and the URL endpoint. 

Identical code like that is ripe for refactoring. Refactoring is changing the 
appearance of code without affecting what it does. This is useful for dealing with 
common/repeating code sections or improving how readable code is. Both the 
intents have the same try/catch and similar dialog with some small differences. 

2. In the same file, add the following:

    def handle_control(self, end_point, dialog_verb):
        try:
            requests.post(self.base_url + end_point)
            self.speak_dialog('Robot')
            self.speak_dialog(dialog_verb)
        except:
            self.speak_dialog("UnableToReach")
            LOG.exception("Unable to reach the robot")

This will be a common handler. It takes end_point as a parameter and uses that in 
its request. It takes a dialog_verb parameter to say after the Robot bit. All of the 
other dialog and error handling we saw before is here. 

3. The two intents now become far simpler. Change them to the following:

    @intent_handler(IntentBuilder("")
                    .require("Robot")
                    .require("TestRainbow"))
    def handle_test_rainbow(self, message):
        self.handle_control('/run/test_rainbow', 
'TestingRainbow')

    @intent_handler(IntentBuilder("")
                    .require("Robot")
                    .require("stop"))
    def handle_stop(self, message):
        self.handle_control('/stop', 'stopping')

Adding new intents is now easier as we can reuse handle_control.
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Running with the new intent
You can now upload the folder structure again—since the vocab, dialog, and __
init__ files have changed. When you do so, note that Mycroft will automatically reload 
the changed skill (or show any problems trying to do so), so it is immediately ready to use.

Try this out by saying Mycroft, tell the robot to stop.

You've now added a second intent to the system, defining further vocabulary and dialogs.  
You've also refactored this code, having seen some repetition. You've now got the 
beginnings of voice control for your robot.

Summary
In this chapter, you learned about voice assistant terminology, speech to text, wake words, 
intents, skills, utterances, vocabulary, and dialog. You considered where you would install 
microphones and speakers and whether they should be on board a robot.

You then saw how to physically install a speaker/microphone combination onto a 
Raspberry Pi, then prepare software to get the Pi to use it. You installed Picroft – a  
Mycroft Raspbian environment, getting the voice agent software.

You were then able to play with Mycroft and get it to respond to different voice commands 
and register it with its base.

You then saw how to make a robot ready for an external agent, such as a voice agent to 
control it with a Flask API. You were able to create multiple skills that communicate with  
a robot, with a good starting point for creating more.

In the next chapter, we will bring back out the IMU we introduced in Chapter 12, IMU 
Programming with Python, and get it to do more interesting things – we will smooth and 
calibrate the sensors and then combine them to get a heading for the robot, programming 
the robot to always turn north.

Exercises
Try these exercises to get more out of this chapter and expand your experience:

• Try installing some other Mycroft skills from the Mycroft site and playing with 
them. Hint: say Hey Mycroft, install pokemon.

• The robot mode system has a flaw; it assumes that a process you've asked to stop 
does stop. Should it wait and check the return code to see if it has stopped?
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• An alternative way to implement the robot modes might be to update all the 
behaviors to exit cleanly so you could import them instead of running in 
subprocesses. How tricky would this be?

• While testing the interactions, did you find the vocabulary wanting? Perhaps 
extend it with phrases you might find more natural to start the different behaviors. 
Similarly, you could make dialogs more interesting too.

• Add more intents to the skill, for example, wall avoiding. You could add a stop 
intent, although the response time may make this less than ideal.

• Could the RGB LEDs on the ReSpeaker 2-Mics Pi HAT be used? The project 
https://github.com/respeaker/mic_hat has an LED demonstration.

With these ideas, there is plenty of room to explore this concept more. Further reading 
will help too.

Further reading
Please refer to the following for more information:

• Raspberry Pi Robotic Projects, Dr. Richard Grimmett, Packt Publishing, has a chapter 
on providing speech input and output.

• Voice User Interface Projects, Henry Lee, Packt Publishing, focuses entirely on voice 
interfaces to systems. It shows you how to build chatbots and applications with the 
Alexa and Google Home voice agents.

• Mycroft AI – Introduction Voice Stack – a whitepaper from Mycroft AI gives more 
detail on how the Mycroft stack works and its components.

• Mycroft has a large community that supports and discusses the technology 
at https://community.mycroft.ai/. I recommend consulting the 
troubleshooting information of this community. Mycroft is under active 
development and has both many quirks and many new features. It's also an  
excellent place to share skills you build for it.

• Seeed Studio, the ReSpeaker 2-Mics Pi HAT creators, host documentation and  
code for this device, along with bigger four and six-microphone versions at 
https://github.com/respeaker/seeed-voicecard.

https://github.com/respeaker/mic_hat
https://community.mycroft.ai/
https://github.com/respeaker/seeed-voicecard
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Diving Deeper  
with the IMU

In Chapter 12, IMU Programming with Python, we read data from an inertial measurement 
unit (IMU). We've now learned a bit more about processing sensor data, using math and 
pipelines to make decisions. 

In this chapter, we will learn how to get calibrated data from the IMU, combine data from 
the sensors, and use this to make a robot have absolute orientation-based behavior. On the 
way, we'll see algorithms for better precision/speed or accuracy.

By the end of the chapter, you will be able to detect a robot's absolute orientation,  
display it on a screen, and incorporate this with the Proportional-Integral-Derivative 
(PID) behaviors.

In this chapter, we're going to cover the following main topics:

• Programming a virtual robot

• Detecting rotation with the gyroscope

• Detecting pitch and roll with the accelerometer

• Detecting a heading with the magnetometer
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• Getting a rough heading from the magnetometer

• Combining sensors for orientation

• Driving a robot from IMU data

Technical requirements
For this chapter, you will need the following items:

• The robot from at least Chapter 14, Line-Following with a Camera in Python

• The robot code from Chapter 14, Line-Following with a Camera in Python, 
at https://github.com/PacktPublishing/Learn-Robotics-
Programming-Second-Edition/tree/master/chapter14

• The IMU code from Chapter 12, IMU Programming with Python, at https://
github.com/PacktPublishing/Learn-Robotics-Programming-
Second-Edition/tree/master/chapter12

• A wide driving space without many magnets

• A magnetic compass

For the complete code for this chapter, go to https://github.com/
PacktPublishing/Learn-Robotics-Programming-Second-Edition/
tree/master/chapter16.

Check out the following video to see the Code in Action: https://bit.ly/2LztwOO

Programming a virtual robot
We will first detect our robot's orientation; it would be useful to show this as a 3D robot 
model. This part builds upon the Representing coordinate and rotation systems section in 
Chapter 12, IMU Programming with Python. In this section, we will construct a simple 
model of our robot in VPython.

Modeling the robot in VPython
We'll use shapes, known as primitives, to model the robot. They have a position,  
rotation, size, and color. The height-and-width parameters match the VPython-world 
coordinate system (see Figure 12.14 – The robot body coordinate system in Chapter 12,  
IMU Programming with Python), so we must rotate things to match the robot body 
coordinate system.

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter16
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter16
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter16
https://bit.ly/2LztwOO
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First, we need to collect some robot measurements. The following diagram shows where 
they are. Once the major measurements are made, estimates can be used for smaller 
measurements:

Figure 16.1 – Measurements for the virtual robot

Figure 16.1 shows the measurements across the robot. A top view and a left view show to 
cover the different aspects. This includes the width and height of the base—note that we 
are treating it as a rectangle for this purpose. The wheels' size and position, along with the 
castor-wheel size and position, are needed. Measure or guess these for your robot. For our 
purposes, guesses are good enough. Positions come from the middle of the chassis.

Let's write the code to make the basic shape, as follows:

1. Create a file called virtual_robot.py and start it by adding in the vpython 
import and our robot view, as follows:

import vpython as vp
from robot_pose import robot_view

2. We'll put the virtual bot in a function ready to use in a few different behaviors,  
like this:

def make_robot():



444     Diving Deeper with the IMU 

3. We put the robot's measurements from Figure 16.1 in variables. I've used 
millimeters (mm) for all of them. The code is shown in the following snippet:

    chassis_width = 155
    chassis_thickness = 3
    chassis_length = 200
    wheel_thickness = 26
    wheel_diameter = 70
    axle_x = 30
    axle_z = -20
    castor_position = vp.vector(-80, -6, -30)
    castor_radius = 14
    castor_thickness = 12

4. The base is a box with the position defaulting to (0, 0, 0). The code is shown in the 
following snippet:

    base = vp.box(length=chassis_length,
                  height=chassis_thickness,
                  width=chassis_width)

5. Rotate this box to match the body coordinate system by 90 degrees around the  
x axis, putting the z axis up, as follows:

    base.rotate(angle=vp.radians(90), 
                axis=vp.vector(1, 0, 0))

6. We'll use two cylinders for the wheels. The distance from each wheel to the middle 
is roughly half the chassis width. Let's use it to create the wheels' y positions,  
as follows:

   wheel_dist = chassis_width/2

7. We set wheel positions to line up with the ends of the motor axles. The left wheel 
has a y coordinate; -wheel_dist moves it left of the platform, as illustrated in  
the following code snippet:

    wheel_l = vp.cylinder(radius=wheel_diameter/2,
          length=wheel_thickness,
          pos=vp.vector(axle_x, -wheel_dist, axle_z),
          axis=vp.vector(0, -1, 0))

The VPython cylinder axis says which way it is pointing. We set y to -1 to point 
it left.
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8. Now, we set the right wheel, with a positive wheel_dist and y as 1 for the axis so 
that it points to the right, as illustrated in the following code snippet:

    wheel_r = vp.cylinder(radius=wheel_diameter/2,
          length=wheel_thickness,
          pos=vp.vector(axle_x, wheel_dist, axle_z),
          axis=vp.vector(0, 1, 0))

9. I've used a cylinder for the rear castor wheel, as illustrated in the following code 
snippet:

    castor = vp.cylinder(radius=castor_radius,
          length=castor_thickness,
          pos=castor_position,
          axis=vp.vector(0, 1, 0))

10. Now, we join all of these parts into a compound object—a single 3D object, like this:

    return vp.compound([base, wheel_l, wheel_r, castor])

11. For testing it, let's make a tiny main section. This code checks if you've launched  
it directly, so the following code won't run when we import the virtual robot as  
a library:

if __name__ == "__main__":

12. Set the view, putting the camera just in front of the robot, as follows:

    robot_view()

13. We'll add axes to show where things are, like this:

    x_arrow = vp.arrow(axis=vp.vector(200, 0, 0), 
color=vp.color.red)
    y_arrow = vp.arrow(axis=vp.vector(0, 200, 0), 
color=vp.color.green)
    z_arrow = vp.arrow(axis=vp.vector(0, 0, 200), 
color=vp.color.blue)

14. And then, we'll draw the robot, as follows:

    make_robot()

15. Upload and test this code with vpython virtual_robot.py.
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16. Open up a browser to port 9020 on your robot to see your virtual robot. You 
should see a figure like the following:

Figure 16.2 – Screenshot of the 3D virtual robot from VPython
In Figure 16.2, we can see the x axis facing forward in red, the y axis going right in 
green, and the z axis going up in blue. This follows a right-hand-rule coordinate 
system. It shows the virtual robot viewed from the front, with a wheel on either side. 
It's gray, boxy, and basic, but it will do for our remaining experiments. 

17. You can right-click and drag this around to get another view. The mouse wheel will 
also zoom in or out. The following screenshot shows the rear castor:

Figure 16.3 – A different view of the virtual robot
Figure 16.3 shows a left-hand view of this virtual robot. 

Close the browser tab, then press Ctrl + C to finish this program when done. Let's just 
check you've been able to follow along.

Troubleshooting
If you haven't got this to work, let's check a few things, as follows:

1. If you receive errors saying no such module vpython, ensure that VPython is 
installed. Follow the steps in Chapter 12, IMU Programming with Python, in the  
Reading the temperature section. You need the code from the whole of Chapter 12, 
IMU Programming with Python, for this chapter to work.
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2. If you receive errors saying no such command vpython, ensure you have 
followed the Simplifying the VPython command line section from Chapter 12, IMU 
Programming with Python. The alias for VPython is necessary to be able to see a 
display.

3. If you see syntax errors, please check your code for typos.

4. If you cannot reach the display (and have checked Step 1), ensure you use port 
9020 on your robot (mine is http://myrobot.local:9020).

5. Be patient—VPython can take a minute or two to start up.

Now that we have a visual robot to play with, we can revisit the gyroscope and try to make 
the onscreen robot move like our real robot.

Detecting rotation with the gyroscope
We've had some raw data from the gyroscope, but to use it more effectively, we'll need to 
perform two operations, calibrating the gyroscope, and then integrating it, as shown in 
the following diagram:

Figure 16.4 – The gyroscope data flow

http://myrobot.local:9020
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Figure 16.4 shows the data flow, and we will look closer at the concepts later in this 
section. The first operation is shown at the top, which shows the gyroscope data going 
through an offset calibration to take out errors. This gives us a calibrated gyroscope, with 
a rate of change in degrees per second (per axis)—shown by the arrow around the circle. 
The gyroscope makes a relative measurement.

The lower part of the diagram is the second operation, combining delta time with the 
calibrated gyroscope (gyro). We need to integrate that to find an absolute measurement. 
An integrator multiplies an input value by delta time and adds this to a previous result.  
In this case, we multiply the gyroscope rate by delta time to produce a movement for 
that period (shown by the multiplication symbol in a box). The circle above it has a small 
slither of pie with dashed lines, denoting the amount moved.

We add the movement to the last value for that axis, shown by the plus symbol box. The 
circle above it shows a solid gray pie segment for the existing position and a new segment 
with dashed lines. When added, they make the total value for that axis—shown by the 
circle with a large, solid gray pie segment representing the addition's result.  The system 
feeds the pitch, roll, or yaw result back into the next cycle.

Before we do this, we need to correct the errors in the gyroscope. 

Calibrating the gyroscope
As they come from the factory, microelectromechanical systems (MEMS) gyroscopes 
usually have minor flaws that cause them to give slightly off readings. These flaws will 
cause drift in our integration.

We can make code to detect these and compensate; we call this calibration. Proceed  
as follows:

1. Create a file named calibrate_gyro.py.

2. We need VPython for vectors, time for a little sleep, and to set up the IMU,  
as illustrated in the following code snippet:

from robot_imu import RobotImu
import time
import vpython as vp
imu = RobotImu()

3. We need vectors to hold the minimum and maximum values of the gyroscope,  
as illustrated in the following code snippet:

gyro_min = vp.vector(0, 0, 0)
gyro_max = vp.vector(0, 0, 0)
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4. Now, for the loop, we'll do a bunch of readings over time, as follows:

for n in range(500):
    gyro = imu.read_gyroscope()

5. To calibrate, we measure for a while to get the minimum and maximum values for 
each axis. The Python min function returns the lower of the two values given to it, 
as follows:

    gyro_min.x = min(gyro_min.x, gyro.x)
    gyro_min.y = min(gyro_min.y, gyro.y)
    gyro_min.z = min(gyro_min.z, gyro.z)

6. We do the same for the maximum values, using the Python max function,  
as follows:

    gyro_max.x = max(gyro_max.x, gyro.x)
    gyro_max.y = max(gyro_max.y, gyro.y)
    gyro_max.z = max(gyro_max.z, gyro.z)

7. The middle of these is an estimate of how far we are from zero. We can calculate  
this by adding the vectors and dividing by 2, as follows:

    offset = (gyro_min + gyro_max) / 2

8. Sleep a little before the next loop, as follows:

    time.sleep(.01)

9. We print the values so we can use them, as follows:

print(f"Zero offset: {offset}.")

10. This code is ready to run. Upload and run this with Python 3, leaving the robot still 
on a flat, stable surface until the program exits.

11. You should see console output ending with something like this:

pi@myrobot:~ $ python3 calibrate_gyro.py
Zero offset: <-0.583969, 0.675573, -0.530534>.
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What we've measured here is how much the gyroscope changes, on average, when 
stationary. This is calculated as an offset for each axis. By subtracting this from the 
measurements, we will mostly offset any continuous errors from the gyroscope.  
Let's put this somewhere we can use it, as follows: 

1. Create a file called imu_settings.py.

2. We'll import the vector type, and then set our calibration readings. You probably 
only need to run this once, or if you change IMU device. Please use the readings 
you got from your robot. Run the following code:

from vpython import vector
gyro_offsets = vector(-0.583969, 0.675573, -0.530534)

3. Next, we upgrade our RobotImu class to handle these offsets—open  
robot_imu.py.

4. We will make our class accept offsets if we pass them, or use zero if we leave them. 
Make the highlighted changes to the __init__ method of RobotImu, as follows:

    def __init__(self, gyro_offsets=None):
        self._imu = ICM20948()
        self.gyro_offsets = gyro_offsets or vector(0, 0, 
0)

5. We need to modify the read_gyroscope method to account for these too,  
as follows:

    def read_gyroscope(self):
        _, _, _, gyro_x, gyro_y, gyro_z = self._imu.read_
accelerometer_gyro_data()
        return vector(x, y, z) - self.gyro_offsets

Now, to see if this works, let's use it to move a virtual robot.

Rotating the virtual robot with the gyroscope
We've mentioned how we will integrate the gyroscope measurements. Take a look  
at the following diagram to see how this will work for a single axis:
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Figure 16.5 – Integrating a gyroscope axis

Figure 16.5 shows a dashed circle, indicating a turning circle of an axis. The crosshair 
through the circle shows its center. A thick arrow above and to the left of the circle 
indicates the current heading. A shaded area shows the change in rotation in degrees over 
some time, which we add to the current heading to get to the new heading estimate—
another thick arrow. 

We multiply the turning rate by time to get a movement; it is an estimate since we don't 
have intermediate values.

The concept of time-since-last-measurement is an important one, seen in the PID in 
Chapter 14, Line-Following with a Camera in Python. It's more commonly known as the 
delta time. 

We can combine what we know about the gyroscope with the virtual robot and make it 
rotate on the screen. Let's use this to rotate our virtual robot, as follows:

1. Create a new file named visual_gyroscope.py. We have many imports here to 
bring the components together, as can be seen in the following code snippet:

import vpython as vp
from robot_imu import RobotImu
import time
import imu_settings
import virtual_robot

2. This time, when we set up the RobotImu, we will do so with the settings we made, 
as follows:

imu = RobotImu(gyro_offsets=imu_settings.gyro_offsets)
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3. We are going to integrate three axes: pitch, roll, and yaw. Let's start them at 
zero, like this:

pitch = 0
roll = 0
yaw = 0

4. We should now set up the virtual robot and the view for it, as follows:

model = virtual_robot.make_robot()
virtual_robot.robot_view()

5. We are going to be tracking delta time, so we start by taking the latest time, like this:

latest = time.time()

6. We then start the main loop for this behavior. Since this is animating in VPython, 
we need to set the loop rate and tell it to update, as follows:

while True:
    vp.rate(1000)

7. We now calculate the delta time (dt), storing a new latest time, as follows:

    current = time.time()
    dt = current - latest
    latest = current

8. The code reads the gyroscope in the gyro vector, as follows:

    gyro = imu.read_gyroscope()

9. We integrate the current rate (in degrees per second) multiplied by dt (in seconds), 
as illustrated in the following code snippet:

    roll += gyro.x * dt
    pitch += gyro.y * dt
    yaw += gyro.z * dt

10. We reset the model's orientation to prepare it for rotation, like this:

    model.up = vp.vector(0, 1, 0)
    model.axis = vp.vector(1, 0, 0)
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11. We perform the rotations by each axis. We must convert these into radians,  
as follows:

    model.rotate(angle=vp.radians(roll), axis=vp.
vector(1, 0, 0))
    model.rotate(angle=vp.radians(pitch), axis=vp.
vector(0, 1, 0))
    model.rotate(angle=vp.radians(yaw), axis=vp.vector(0, 
0, 1))

The rotations each need an axis to rotate around. We specify rotating around the  
x axis with the vector (1, 0, 0).

12. This code is now ready to run; this will make the virtual robot change position 
when we rotate the robot in the real world! Upload the files and run with vpython 
visual_gyroscope.py.

13. As before, wait a minute or so, and point your browser to myrobot.local:9020. 
You should see the following display:

Figure 16.6 – The robot rotated
Figure 16.6 shows the virtual robot rotated to an angle by having moved the real 
robot. Move your robot around a bit—try to approximate what you see here.

14. You'll notice that as you move the robot and return it, it won't line up correctly 
anymore—this is the accumulating errors or drift that gyroscope integration causes.
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From this experiment, while seeing some great movement you've also noticed that a 
gyroscope alone can't accurately track rotations. We are going to need to leverage the 
other sensors in the IMU device to improve this.

Let's check it is working before proceeding.

Troubleshooting
If it is not quite working, try some of these steps:

1. This code requires the use of the vpython command and a browser to see  
the results.

2. If the robot is still moving when held still, retry the calibration and offsets. The 
gyroscope's nature is that this won't be perfect—we'll fix that further on.

3. If the robot appears to spin uncontrollably or jump around, ensure you've 
remembered to convert to radians.

4. If the robot is rotating the wrong way (left/right instead of up/down), check the 
rotations' axis parameters.

Now that you have this working, let's move on to the accelerometer so that we can see 
forces acting on our robot!

Detecting pitch and roll with the 
accelerometer
In Chapter 12, IMU Programming with Python, we were getting a vector from the 
accelerometer, but we need to calculate angles to consider using it alongside the  
gyroscope and magnetometer. To use this to rotate things, we need to turn this  
vector into pitch-and-roll angles. 

Getting pitch and roll from the accelerometer vector
The accelerometer describes what is going on in Cartesian coordinates. We need  
to convert these into a pair of pitch-and-roll angles perpendicular to each other. In 
Chapter 12, IMU Programming with Python, the Coordinate and rotation systems section 
shows roll as taking place around the x axis, and pitch as taking place around the y axis. 
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A crude but effective way to consider this is as two planes. When rotating around the  
x axis, you can take a vector in the yz plane and find its angle. When turning around the  
y axis, then you consider the xz plane instead. Take a look at the next diagram: 

Figure 16.7 – The accelerometer vector and angles

In Figure 16.7, the background has x, y, and z axes and a sphere, with circles around  
the xz and yz planes. 

The accelerometer vector is shown as vector A. By using only the xz components, we project 
this vector onto an xz circle at point C; so, the angle from the z axis to C is the pitch. We 
project A again onto a yz circle at point B; this angle from the z axis to B is the roll.

When we have two components (x and z, for example) on a plane, they can be used in the 
atan2 function (present in most programming languages) to get an angle from them. A 
slight quirk here is that the orientation of the different sensor components means we must 
negate the pitch. The following diagram shows the process:

Figure 16.8 – Accelerometer data flow
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Figure 16.8 shows the raw accelerometer data going into the arctangent to get the angles 
and outputting the accelerometer pitch/roll values.

Let's turn the accelerometer readings into pitch and roll, and then put them into a graph, 
as follows:

1. First, open up robot_imu.py.

2. Extend the imports to include the trigonometric functions, as follows:

from vpython import vector, degrees, atan2

3. After the read_accelerometer method, add the following code to perform the 
required math:

    def read_accelerometer_pitch_and_roll(self):
        accel = self.read_accelerometer()
        pitch = degrees(-atan2(accel.x, accel.z))
        roll = degrees(atan2(accel.y, accel.z))
        return pitch, roll

4. Let's show these angles on a graph, which will also reveal a major flaw with using 
the accelerometer on its own. Create a plot_pitch_and_roll.py file.

5. Start with imports, as follows:

import vpython as vp
import time
from robot_imu import RobotImu
imu = RobotImu()

6. We create the graphs, like this:

vp.graph(xmin=0, xmax=60, scroll=True)
graph_pitch = vp.gcurve(color=vp.color.red)
graph_roll = vp.gcurve(color=vp.color.green)

7. Now, we set up a start time so that we can make a time-based graph, as follows:

start = time.time()
while True:
    vp.rate(100)
    elapsed = time.time() - start
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8. We can now get our new pitch-and-roll values, as follows:

    pitch, roll = imu.read_accelerometer_pitch_and_roll()

9. And then, we can put both sets into graphs, like this:

    graph_pitch.plot(elapsed, pitch)
    graph_roll.plot(elapsed, roll)

10. Upload both the robot_imu.py and plot_pitch_and_roll.py files. Run 
this with vpython plot_accel_pitch_and_roll.py, and point your 
browser at port 9020 on the robot. This should result in the following:

 

Figure 16.9 – Accelerometer pitch-and-roll graph

Figure 16.9 shows a screenshot of the graph. The red curve in the graph represents pitch, 
around the y axis, while the green curve represents roll, around the x axis. Although it 
shows swings between +90 and -90 degrees, what is also clear is that the graph has a lot  
of noise, so much so that movements of less than a second are blotted out by it.

We need to clean this up. A common way to do so is through a complementary filter, 
combining a new value with a previous value to filter out fast vibration noise. We will 
create such a filter, but it makes sampling slower.

Let's check that this is working.
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Troubleshooting
If it's not quite working, let's try a few fixes, as follows:

1. If it's very noisy, try a more severe turn, and try keeping your hands steady. This 
graph will be noisy due to the nature of the accelerometer alone.

2. If you see the graph break up or misbehave outside of the 0-90-degree range, ensure 
you are using the atan2 function—this mathematically performs the trigonometric 
CAST rule.

3. Notice that the read_accelerometer_pitch_and_roll method has a 
negative sign in front of the atan2 function.

4. If things misbehave at 180 degrees—this is a known and expected problem with this 
system—try to avoid hitting this yet.

Now, we have the pitch and roll, but it's quite rough—a suitable way to fix this is to 
combine sensors through a filter. We have another sensor that is giving us an integrated 
pitch-and-roll value: the gyroscope. 

Smoothing the accelerometer
We can combine what we know about integrating the gyroscope with the accelerometer  
to make a smooth combination.

Since we will use the delta-time concept more, a class to help will save us some work later.

Delta time
We saw before how we tracked the elapsed time for graphing and the delta time between 
updates for integrating. Let's create the code to help, as follows:

1. Make a delta_timer.py file and start by importing time, as follows:

import time

2. We'll make a DeltaTimer class that will keep track of things, as follows:

class DeltaTimer:
    def __init__(self):
        self.last = self.start = time.time()

The code initializes last and start variables with the current time.
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3. The central part of this is an update method. Every loop calls this; let's start by 
getting the current time, as follows:

    def update(self):
        current = time.time()

4. The delta time will be the difference between the current time and last time, as 
illustrated in the following code snippet:

        dt = current - self.last

5. The elapsed time is the difference between the current time and the start time, as 
illustrated in the following code snippet:

        elapsed = current - self.start

6. We now need to update the last time for the delta time and return the parts,  
as follows:

        self.last = current
        return dt, elapsed

We can use this class whenever we need a delta time and an elapsed time for graphing. 
Let's start by using it to combine the accelerometer and gyroscope.

Fusing accelerometer and gyroscope data
By combining the sensors, we can let each of them complement the other's weaknesses. 
The accelerometer acts as an absolute measurement for pitch and roll to counteract the 
drift seen by the gyroscope. The gyroscope does not experience the same noise as the 
accelerometer but can make fast measurements. Let's see how to combine them in the 
following diagram:

Figure 16.10 – Gyroscope and accelerometer fusion data flow
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Figure 16.10 shows the data flow diagram, using a complementary filter to fuse gyroscope 
and accelerometer data. We'll take pitch as an example. First, the system feeds gyroscope 
data and delta time into an integrator. The integrator adds this to a previous position. We 
can then use 95% of this term to account for larger movement changes. The filter's other 
5% is the accelerometer measurement. This 5% will drag the measurement to the average 
accelerometer reading while filtering out the chaotic noise element. The output is a filtered 
pitch or roll, fed back into the integrator for the next cycle.

Let's put this into code, starting with the filter, as follows:

1. Open up robot_imu.py.

2. Add the ComplementaryFilter class, as follows:

class ComplementaryFilter:

3. We can construct this filter with the left side's value, storing this and calculating the 
complement (one minus the left side) to make the right side, as follows:

    def __init__(self, filter_left=0.9):
        self.filter_left = filter_left
        self.filter_right = 1.0 - filter_left

4. This class has a filter method that takes the two sides and combines them using 
the filter values, as follows:

    def filter(self, left, right):
        return self.filter_left * left + \
               self.filter_right * right

That finishes the filter. 

5. The next thing we'll want is code to combine the IMU sensors via filters – to fuse 
them. We'll add a class for this to robot_imu.py, as follows:

class ImuFusion:

6. In the constructor, we will store the RobotImu instance, create a filter, and seed the 
pitch-and-roll values, as follows:

    def __init__(self, imu, filter_value=0.95):
        self.imu = imu
        self.filter = ComplementaryFilter(filter_value).
filter
        self.pitch = 0
        self.roll = 0
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7. The core part of this code is an update function. The function takes a dt (delta 
time) parameter. It will not return anything and just updates the pitch/roll 
members, as follows:

    def update(self, dt):

8. We start by taking the pitch-and-roll values from the accelerometer, as follows:

        accel_pitch, accel_roll = self.imu.read_
accelerometer_pitch_and_roll()

9. We also want the gyroscope values, so we run the following command:

        gyro = self.imu.read_gyroscope()

10. Now, we combine the gyroscope y reading and accelerometer pitch to get the pitch 
value, as follows:

        self.pitch = self.filter(self.pitch + gyro.y * 
dt, accel_pitch)

Notice here the multiply and addition operations from the preceding data flow.

11. We do the same for the roll, as follows:

        self.roll = self.filter(self.roll + gyro.x * dt, 
accel_roll)

Now, we have prepared the RobotImu class with filters and fused the sensors. Let's give 
this code a test drive with a graph, as follows:

1. In the plot_pitch_and_roll.py file, we'll add the DeltaTimer, 
ImuFusion, and gyroscope calibration imports. Note in the following  
code snippet that import time has been removed:

import vpython as vp
from robot_imu import RobotImu, ImuFusion
from delta_timer import DeltaTimer
import imu_settings

2. Next, we set up the RobotImu with the gyroscope settings, and then create the 
fusion instance, as illustrated in the following code snippet:

imu = RobotImu(gyro_offsets=imu_settings.gyro_offsets)
fusion = ImuFusion(imu)
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3. We need a dt (delta time) for the fusion calculations and an elapsed time for the 
graph. The DeltaTimer class provides these. We put this close before the loop 
starts, replacing the assignment of start, as follows:

timer = DeltaTimer()

4. Now, in the loop where we calculate elapsed, we use the delta timer, as follows:

while True:
    vp.rate(100)
    dt, elapsed = timer.update()

5. Now, replace the reading of the accelerometer with code to update the fusion with 
the delta time so that it makes its calculations, as follows:

fusion.update(dt)

6. We can now fetch pitch-and-roll values from the fusion object, as follows:

    graph_pitch.plot(elapsed, fusion.pitch)
    graph_roll.plot(elapsed, fusion.roll)

7. Upload robot_imu.py, delta_timer.py and plot_pitch_and_roll.py 
to the robot.

8. Run vpython plot_pitch_and_roll.py, again and point your browser at 
port 9020 on the robot.

Superficially, it should look similar to the accelerometer pitch-and-roll graph in Figure 
16.9. However, as you move the robot around, you should notice that there is far less 
noise—the graph is smoother—and that when you place the robot down or hold it still, it 
levels off. It should quickly account for rapid turns. The system is smooth and accurate!

Troubleshooting
If you have issues, try these troubleshooting checks:

1. As always, if you see syntax errors or strange behavior, check the code carefully.

2. If things move strangely, ensure you are using 0.95 (and not 95) for the filter value.

3. Ensure you've uploaded all the files.

4. This system will need a second or two after the graph starts to settle.
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You've now seen how to get an accurate and smooth pitch and roll from these sensors. A 
robot on wheels may not encounter many reasons to use pitch and roll, but one of them 
will be to make a compass work. Let's dig further into the magnetometer.

Detecting a heading with the magnetometer
We saw in Chapter 12, IMU Programming with Python, how to plot a vector from the 
magnetometer, and how magnetic metal (such as bits of steel and iron) will interfere  
with it. Even the pin headers on the IMU board interfere. We can calibrate to compensate 
for this. 

Getting X, Y, and Z components aren't that useful; we want a heading relative to a 
magnetic North. We can see how to use this for precise turns.

This section needs a space, with very few magnets present. Laptops, phones, speakers, and 
disk drives interfere with this sensor. Use a map compass to reveal magnetic fields in your 
space. I recommend making the standoff stalk on the robot as long as the cable allows, 
putting more standoffs in; the robot's motors have a strong magnetic field of their own.

Please avoid starting with the robot facing South—this will cause some odd results, which 
we will investigate and fix later. Starting with the robot roughly North is a good idea.

Calibrating the magnetometer
We are going to perform a calibration known as the hard iron offset calculation. Hard 
iron refers to any magnetic things near the magnetometer that move with it. We move 
the robot around to sample the field strength in each axis. We will use the middle of 
all readings for an axis to compensate, and add this to the IMU settings; this will seem 
similar to the gyroscope calibration but requires you to move the robot around.

Let's write the code, as follows:

1. Create a file named magnetometer_calibration.py, starting with imports 
and the RobotImu setup, as follows:

import vpython as vp
from robot_imu import RobotImu
imu = RobotImu()

2. We will find minimum and maximum vectors, as we did for the gyroscope, as 
illustrated in the following code snippet:

mag_min = vp.vector(0, 0, 0)
mag_max = vp.vector(0, 0, 0)
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3. We are going to show the system as a set of three scatter charts with colored-dot 
clusters. Each of the three clusters is a plot combining two axes: xy, yz, and xz.  
Our goal is to make the sets line up by calibrating the device, as follows:

scatter_xy = vp.gdots(color=vp.color.red)
scatter_yz = vp.gdots(color=vp.color.green)
scatter_zx = vp.gdots(color=vp.color.blue) 

4. We start the main loop and read the magnetometer, as follows:

while True:
    vp.rate(100)
    mag = imu.read_magnetometer()

5. Now, we update the minimums, in the same way we did for the gyroscope,  
as follows:

    mag_min.x = min(mag_min.x, mag.x)
    mag_min.y = min(mag_min.y, mag.y)
    mag_min.z = min(mag_min.z, mag.z)

6. And then, we update the maximums, as follows:

    mag_max.x = max(mag_max.x, mag.x)
    mag_max.y = max(mag_max.y, mag.y)
    mag_max.z = max(mag_max.z, mag.z)

7. We then calculate the offset in the same way as we did for the gyroscope, as follows:

    offset = (mag_max + mag_min) / 2

8. This print statement shows the current values and offsets:

    print(f"Magnetometer: {mag}. Offsets: {offset}.")

9. Now, we create the plots. They will guide you in getting enough calibration data and 
show where the axes do not line up. The code is shown in the following snippet:

    scatter_xy.plot(mag.x, mag.y)
    scatter_yz.plot(mag.y, mag.z)
    scatter_zx.plot(mag.z, mag.x)
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10. Upload this and run it with VPython. You should see the following screen:

Figure 16.11 – Initial magnetometer calibration screen
Figure 16.11 shows the clusters as three colored blobs—the bottom right is red,  
(for xy), the top is blue (for yz), and on the right is green (for zx). These clusters will 
start in a different position for you, depending on the orientation of your robot.

11. You need to move the robot around, rotating it slowly around the whole y axis 
(around the wheels). The green graph should be more like an ellipse, as illustrated  
in the following screenshot:

Figure 16.12 – The magnetometer partially calibrated
Figure 16.12 shows the ellipse for the green values, and more data for the red and 
blue scatter plots. The slower you are, the better the data is.
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12. Rotate the robot around the x axis (the length of the robot), and then around the 
z axis (around its height). The more angles you move it through, the better. Fill in 
the gaps by making 3D figures of 8. Eventually, it should look like the graph in the 
following screenshot:

Figure 16.13 – Magnetometer calibration: a good combination
Figure 16.13 shows how a good collection of data should look, with circles of red, 
green, and blue. Note that there are outliers due to waving the robot too close to 
other magnets—beware of these!

13. You can close the browser now, having collected a load of calibration data. 

14. The console will show the calibration offsets, as follows:

Magnetometer: <30.6, -36.9, 10.35>. Offsets: <21.15, 
3.15, 0.225>.
Magnetometer: <31.5, -36.75, 11.25>. Offsets: <21.15, 
3.15, 0.225>.

At the start, those offsets change a lot; however, as you collect more data, they will 
settle and stabilize, even when the magnetometer readings are changing.

We now have some calibration numbers; my example gave 21.15, 3.15, 0.225.  
Let's make sure that everyone has some values.
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Troubleshooting
This calibration may not have worked—let's see why, as follows:

1. If the numbers don't appear to be settling, continue moving the robot. You must try 
to do full 360-degree movements with it to get a full range.

2. If strange dots appear outside of the circle, move somewhere else and restart the 
calibration—this is likely to be a magnetic field where you are testing, and will 
throw your results off.

3. There is a possibility your browser will get slow or run out of memory trying to  
do this—while I say move slowly, you cannot put this aside while running as it  
will continue adding dots.

4. If you don't get circles at all—lines or small patches—double-check that you have 
the right plot combinations of xy, yz, and zx.

You should now be getting calibration offsets. Let's use these values to line up the  
scatter plots.

Testing the calibration values
To see if these are effective we'll put them back into the code, and the same operation 
should show the dot clusters lining up. It starts by allowing us to set offsets in the 
RobotImu interface. Proceed as follows:

1. Open up the robot_imu.py file.

2. In the __init__ method, we need to store the offsets. I've highlighted the new 
code, as follows:

  def __init__(self, gyro_offsets=None,
               mag_offsets=None):
      self._imu = ICM20948()
      self.gyro_offsets = gyro_offsets or vector(0, 0, 0)
      self. mag_offsets = mag_offsets or vector(0, 0, 0)

3. The read_magnetometer method needs to subtract the magnetometer offsets, 
like this:

    def read_magnetometer(self):
        mag_x, mag_y, mag_z = self._imu.read_
magnetometer_data()
        return vector(mag_x, -mag_z, -mag_y) - self. mag_
offsets
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Our scripts can now include an offset for the magnetometer. We'll put these in the same 
settings file we used for the gyroscope calibrations. Proceed as follows:

1. Open imu_settings.py.

2. Add the magnetometer calibration readings from your robot, as follows:

from vpython import vector
gyro_offsets = vector(0.557252, -0.354962, -0.522901)
mag_offsets = vector(21.15, 3.15, 0.225)

3. Now, we can use them in our scatter plot. Open up magnetometer_
calibration.py and add our settings to the imports, as follows:

import vpython as vp
from robot_imu import RobotImu
from imu_settings import mag_offsets

4. When we have created our RobotImu we can apply the offset, like this:

imu = RobotImu(mag_offsets=mag_offsets)

5. Send the files to the robot, and rerun magnetometer_calibration.py. You'll 
need to make rotations and figures of 8 again to get many sample points at different 
orientations. When you have collected the data you should have overlapping circles, 
as depicted in the following screenshot:

Figure 16.14 – Calibrated magnetometer
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Figure 16.14 shows the red, blue, and green circles superimposed. Congratulations—you 
have calibrated your magnetometer!

With your calibrated magnetometer, we can try further experiments with more useful 
values. But first, let's troubleshoot any problems.

What to do if the circles aren't together
You may have reached this point, and the circles are not converging. Try these 
troubleshooting steps if this is the case:

1. You will need to rerun the calibration code. Before you do so, comment out the line 
that applies (sets) the offsets on the RobotImu class. Running the calibration code 
when you have offsets active will cause it to offset incorrectly.

2. Check your calibration and IMU code carefully for errors.

3. Ensure there are no strong magnets or big chunks of metal near the robot—
speakers or hard disks, for example. Try to do this about a meter away from such 
things. Even your laptop or mobile phone can interfere.

4. Ensure you go through each axis slowly and try the figure of 8. Keep going until 
you can see three ellipses.

5. You can use the console output, rotating the robot and moving around in every 
orientation, and then seeing if the offset values output here settle.

6. When the outputs settle, try applying the offset again, and run the calibration to 
see if the circles converge.

After going through these, you should have the calibration values you need to continue. 
Let's put this back into the vector output we had and determine a heading.
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Getting a rough heading from the 
magnetometer
Now that we've got calibration settings, we can start using magnetometer readings to 
estimate where North is, like a compass. The words heading and yaw mean the same thing 
—which way we face relative to a reference point—in this case, magnetic North. Let's see 
how we can do this. Have a look at the following screenshot:

Figure 16.15 – Getting an approximate heading from the magnetometer

Figure 16.15 shows a method we will build. It takes the magnetometer with calibration 
data applied and uses atan2, as we did with the gyroscope to approximate the heading. 
We can also add a rough compass with it too.

Let's make this, as follows:

1. Create a plot_mag_heading.py file. Start with the imports, as follows:

import vpython as vp
from robot_imu import RobotImu
from delta_timer import DeltaTimer
import imu_settings

2. We can initialize the RobotImu with the settings, like this:

imu = RobotImu(mag_offsets=imu_settings.mag_offsets)

3. To make a compass display, we need a dial (cylinder) and needle (arrow) in red,  
as follows:

vp.cylinder(radius=1, axis=vp.vector(0, 0, 1), 
            pos=vp.vector(0, 0, -1))
needle = vp.arrow(axis=vp.vector(1, 0, 0), 
                  color=vp.color.red)
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4. Next, let's make a graph to show the heading, and a delta timer for elapsed time,  
as follows:

vp.graph(xmin=0, xmax=60, scroll=True)
graph_yaw = vp.gcurve(color=vp.color.blue)
timer = DeltaTimer()

5. We start the main loop with a rate and fetch the elapsed time, as follows:

while True:
    vp.rate(100)
    dt, elapsed = timer.update()

6. Now, we read the magnetometer by running the following command:

    mag = imu.read_magnetometer()

7. We can take the xy plane and find the atan2 function of these values of this to get a 
heading, as follows:

    yaw = -vp.atan2(mag.y, mag.x)

8. Then, we plot this on the graph in degrees, like this:

    graph_yaw.plot(elapsed, vp.degrees(yaw))

9. We can also set the needle axis to our direction, using sin/cos to convert it back 
into a unit direction, as follows:

    needle.axis = vp.vector(vp.sin(yaw), vp.cos(yaw), 0)

10. Save, upload, and run this in VPython. Send your browser to port 9020 on  
the robot.
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11. If you rotate the robot around, you will see a display like this:

Figure 16.16 – Magnetometer heading estimate

Figure 16.16 shows a compass, with the top being what the robot perceives as North, and 
a red arrow. Below this is a blue graph, ranging between + and –180 degrees. As you move 
the robot, you will see this move, with 0 degrees being North. You will need the robot to 
be on a flat surface, though. 

Note that the compass is reading where North is relative to the robot—not where the 
robot is relative to North!

This output is starting to appear reasonable. It can point North and make some compass 
measurements, and we have a heading.

It is a little chaotic, and you can make it incorrect by any pitch or roll. Again, by fusing  
this data with data from the other sensors, we can improve this.
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Combining sensors for orientation
We've seen how we combined the accelerometer and gyroscope to get smooth readings 
for pitch and roll. We can combine the sensors again to correctly orient and smooth the 
magnetometer readings too. This system allows us to approximate the absolute orientation 
of the robot.

Take a look at the following data flow to see what we are doing—it builds on the previous 
stages:

Figure 16.17 – Fusing all three sensors

Figure 16.17 starts on the left with data from our previous stages. We have the filtered 
pitch and roll in gray because it's also an output. There's the calibrated gyroscope yaw, 
delta time, and also the calibrated magnetometer as inputs. The filtered pitch and roll 
go through the tilt-compensate box, where we rotate the magnetometer vector. The 
magnetometer data then goes through an xy-to-polar box, using the atan2 function  
to get a heading.

Above this, the calibrated gyroscope yaw and delta time go into an integrator, which adds 
to a previous yaw reading. The integrator and magnetometer heading output go into a 
complementary filter, with the integrator output being dominant. This filter output is then 
a heading/yaw output, which will be stable and quick to respond, and will return to the 
absolute heading. We now have three angles—pitch, roll, and yaw!
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Let's modify the code to do this, as follows;

1. Open up robot_imu.py and head to the ImuFusion class.

2. We will need to convert back to radians, so we need to add this to the imports from 
VPython, as follows:

from icm20948 import ICM20948
from vpython import vector, degrees, atan2, radians

3. In the __init__ method, we should add a variable to store the yaw in, as follows:

    def __init__(self, imu, filter_value=0.95):
        self.imu = imu
        self.filter = ComplementaryFilter(filter_value).
filter
        self.pitch = 0
        self.roll = 0
        self.yaw = 0

We are going to use the same filter for now.

4. In the update method, after calculating the pitch and roll, add the following line 
to get the magnetometer reading:

        mag = self.imu.read_magnetometer()

5. The mag variable is a vector. We rotate this using pitch and tilt to level the xy 
components, as follows:

        mag = mag.rotate(radians(self.pitch), vector(0, 
1, 0))
        mag = mag.rotate(radians(self.roll), vector(1, 0, 
0))

6. We can now calculate the magnetometer yaw from this, as follows:

        mag_yaw = -degrees(atan2(mag.y, mag.x))

7. To stabilize this, we can now use the complementary filter with the gyroscope,  
as follows:

        self.yaw = self.filter(self.yaw + gyro.z * dt, 
mag_yaw)
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The self.yaw value will now have the compensated yaw (or heading) value, allowing 
this IMU to act as a compass. To make use of it, let's visualize it in three ways—as a graph, 
a compass, and the movement of the robot. Proceed as follows:

1. Put this in a new file called visual_fusion.py. The code will be very familiar. 
Only the magnetometer offsets and yaw values are new. The imports are shown in 
the following code snippet:

import vpython as vp
from robot_imu import RobotImu, ImuFusion
from delta_timer import DeltaTimer
import imu_settings
import virtual_robot

2. Prepare the RobotImu with magnetometer offsets, and initialize fusion, as 
follows:

imu = RobotImu(gyro_offsets=imu_settings.gyro_offsets,
               mag_offsets=imu_settings.mag_offsets)
fusion = ImuFusion(imu)

3. We are going to use a VPython canvas for the virtual robot, and a separate one for 
the compass. Each canvas lets us contain a 3D scene. Let's make the current canvas 
a robot view and put it on the left. The robot model will be associated with this. The 
code is shown in the following snippet:

robot_view = vp.canvas(align="left")
model = virtual_robot.make_robot()
virtual_robot.robot_view()

4. To accompany the robot view, we'll create a compass canvas, using the same 
cylinder and arrow as previously. Note that the most recent canvas is associated  
with the shapes created after it. The code is shown in the following snippet:

compass = vp.canvas(width=400, height=400)
vp.cylinder(radius=1, axis=vp.vector(0, 0, 1), 
            pos=vp.vector(0, 0, -1))
needle = vp.arrow(axis=vp.vector(1, 0, 0), 
                  color=vp.color.red)
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5. Set up graphs for pitch, roll, and yaw, as follows:

vp.graph(xmin=0, xmax=60, scroll=True)

graph_roll = vp.gcurve(color=vp.color.red)
graph_pitch = vp.gcurve(color=vp.color.green)
graph_yaw = vp.gcurve(color=vp.color.blue)

6. Create a delta timer, start the loop, and fetch the time update, as follows:

timer = DeltaTimer()
while True:
    vp.rate(100)
    dt, elapsed = timer.update()

7. We now update fusion with the time (it will read the IMU and perform 
calculations), as follows:

    fusion.update(dt)

8. Now, we need to reset the virtual robot model before we rotate it, as follows:

    model.up = vp.vector(0, 1, 0)
    model.axis = vp.vector(1, 0, 0)

9. And then, we need to perform three rotations—roll, pitch, and yaw, as follows:

    model.rotate(angle=vp.radians(fusion.roll), axis=vp.
vector(1, 0, 0))
    model.rotate(angle=vp.radians(fusion.pitch), axis=vp.
vector(0, 1, 0))
    model.rotate(angle=vp.radians(fusion.yaw), axis=vp.
vector(0, 0, 1))

10. We position the compass needle—note that our yaw is in degrees, so we convert it, 
as follows:

    needle.axis = vp.vector(
            vp.sin(vp.radians(fusion.yaw)), 
            vp.cos(vp.radians(fusion.yaw)), 
            0)
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11. Then, we plot the three-graph axes, as follows:

    graph_roll.plot(elapsed, fusion.roll)
    graph_pitch.plot(elapsed, fusion.pitch)
    graph_yaw.plot(elapsed, fusion.yaw)

12. Upload robot_imu.py and visual_fusion.py to the robot. Start with 
vpython visual_fusion.py and point your browser at port 9020 on  
the robot.

You should see the visual robot, compass, and a graph for all three axes displayed, 
and each should be both relatively stable and responsive, as depicted in the following 
screenshot: 

Figure 16.18 – Pitch, roll, and yaw graph
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The graph in Figure 16.18 is a screenshot of the display. In the top left is the virtual robot—
you can change its view by right-clicking. The top left shows the compass. Below that is a 
scrolling pitch, yaw, and roll graph. The roll is in red, pitch is in green, and yaw is in blue. 
The graphs will initially settle and then match your robot movements. When moving in 
one axis there is a small effect on the others, but they can move independently.

At +/-180 degrees, the graph will misbehave though. Let's see how to fix that.

Fixing the 180-degree problem
The fundamental thing to realize is that angles on a circle are cyclical; 200 degrees and 
-160 degrees are equivalent, and -180 degrees and 180 degrees are also equal. We've not 
made the filter or code aware of this, so when we reach the 180-degree point and the 
atan2 function is flipping between -179.988 and 179.991 (or some similar very close 
mark), the graph becomes chaotic, treating the difference of less than 1 degree as 360 
degrees, and then trying to filter between them.

This problem needs some changes to fix it. First, we can state that we intend angles to be 
numerically below 180 and above -180 and constrain them this way. Since we intend to 
use the complementary filter with angles, we can specialize it, as follows:

1. At the top of robot_imu.py, inside the ComplementaryFilter class, let's add 
a method to format the angle, like this:

    @staticmethod
    def format_angle(angle):

2. If the angle is below -180, we want to wrap it around by adding 360, as follows:

        if angle < -180:
            angle += 360

3. If the angle is above 180, we wrap it around by subtracting 360, as follows:

        if angle > 180:
            angle -= 360
        return angle
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4. We will replace the inside of the filter function with something to constrain 
these angles more intelligently. When we filter, we start by formatting the incoming 
angles, as follows:

    def filter(self, left, right):
        left = self.format_angle(left)
        right = self.format_angle(right)

5. We also want to put the filtered angles in the same range. If there is a difference of 
more than 350 degrees, we can assume that something has wrapped around; so, we 
add 360 to the lowest one to filter them together, as follows:

        if left - right > 350:
            right += 360
        elif right - left > 350:
            left += 360
        filtered = self.filter_left * left + \
               self.filter_right * right

6. This operation could leave an answer outside of the range. So, we format it back, like 
this:

        return format_angle(filtered)

7. This filter is in use already, so we can rerun visual_fusion.py and try turning 
back through 180 degrees again. When you point your browser at the port, after 
settling, the robot there should be rotating with yours—and settling, not drifting!

Note that this system still doesn't deal well with facing South when it starts. We've solved 
at least one problem with the system and smoothed out its flaws. 

This behavior is exciting: you can now get a robot on screen to mirror how you rotate it. 
However, while moving on the screen is fun, we'd like to see this used in the real world. 
Let's engage some motors!
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Driving a robot from IMU data
In previous chapters, we saw how to use the PID algorithm, and in this chapter, how to 
detect a pitch, roll, and yaw from a magnetometer. Our robot can't move its pitch or roll, 
but it can change its heading.

In this demonstration, we'll get the robot to stay on course—to try to track North 
regardless of where we turn it. Let's see how. Have a look at the following diagram:

Figure 16.19 – Drive to heading behavior

Figure 16.19 shows the flow of data. The left of the diagram starts with a measured 
heading, and a heading setpoint going into a PID—the error value will be the difference 
between the two. The measured heading has come from the IMU + Fusion algorithm. We 
use the PID output to drive the motors so that they move at a fixed speed plus or minus 
the value, so the robot will turn to reduce the error. The robot moving will feed back into 
the IMU + Fusion algorithm, looping through the PID.

Let's take the preceding flow and use it to build the code, as follows: 

1. Start a drive_north_behavior.py file with the following imports:

from robot_imu import RobotImu, ImuFusion
from delta_timer import DeltaTimer
from pid_controller import PIController
from robot import Robot
import imu_settings
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2. We now initialize the RobotImu, fusion, and the DeltaTimer, as follows:

imu = RobotImu(mag_offsets=imu_settings.mag_offsets,
               gyro_offsets=imu_settings.gyro_offsets)
fusion = ImuFusion(imu)
timer = DeltaTimer()

3. We can then set up a PID (or PI) controller and the robot, as follows:

pid = PIController(0.7, 0.01)
robot = Robot()

4. And then, a couple of constants—the robot's base speed, and the heading setpoint 
in degrees from North, as illustrated in the following code snippet:

base_speed = 70
heading_set_point = 0

5. The main loop here updates the timer and IMU fusion. Note in the following code 
snippet that there's not a visual rate here:

while True:
    dt, elapsed = timer.update()
    fusion.update(dt)

6. We now calculate the error, and feed the PID with that and the delta time,  
as follows:

    heading_error = fusion.yaw - heading_set_point
    steer_value = pid.get_value(heading_error, delta_
time=dt)

7. We print the values to debug, and set our motor speeds, as follows:

    print(f"Error: {heading_error}, Value:{steer_
value:2f}, t: {elapsed}")
    robot.set_left(base_speed + steer_value)
    robot.set_right(base_speed - steer_value)

Upload this to the robot, turn on the motors, and run with regular Python 3. The robot 
will try to drive North. If you turn it off course it will correct back to North, and the  
more you turn it, the faster the motors will try to turn back. Playing with this behavior  
is quite fun!

Press Ctrl + C to stop this when you are done, and play with different heading set points.
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In this section, you've reinforced building data flow diagrams and writing code from 
them. You've further demonstrated that by converting sensor data to a number like this, 
you can build a PID-based behavior with it. You've then taken the heading that we've 
calculated and used it with the PID to create compass-based movement from your robot.

Summary
In this chapter, you've seen how to combine the IMU sensors to approximate an absolute 
orientation in space. You've seen how to render these in graphs and how to display them 
onscreen with a virtual robot. You've then seen how to hook this sensor system up to a 
PID controller and motor to get the robot to drive.

You've learned a little of the math needed to convert between vector components and 
angles, in 3D, along with how to use complementary filters to compensate for noise in one 
system and drift in another. You've started to see multiple sensors fused together to make 
inferences about the world. Your block diagram and data flow skills have been exercised, 
and you have had more practice with the PID algorithm.

In the next chapter, we will look at how you can control your robot and choose behaviors 
from a menu with a smartphone.

Exercises
Here are some ideas to further your understanding, and give you some ideas for more 
interesting things to do with the concepts from this chapter:

• A reader can use more colors and complicated shapes to make a better robot model. 
It's not the purpose of this chapter, but it is a fun and rewarding way to get more 
familiar with VPython.

• Our magnetometer settings were hardcoded, going into a Python file. It is good 
practice to load settings from a data file. A good starting point can be found at 
http://zetcode.com/python/yaml/.

• Could the visual robot be used to display or debug the other sensors and 
integrations?

• Could you combine the absolute positioning here with the encoders to make a 
square with very accurate turns?

http://zetcode.com/python/yaml/


Further reading     483

Further reading
For more information on the topics covered in this chapter, refer to the following:

• The World Wide Web Consortium (W3C) has a guide on magnetometer devices in 
browsers, which makes for interesting reading on techniques, but also on how code 
on a smartphone might be able to perform these same algorithms to get the phone 
orientation: https://www.w3.org/TR/magnetometer.

• I've mentioned the atan2 function a lot; this page has further information on it: 
https://en.wikipedia.org/wiki/Atan2.

• I recommend Paul McWhorter's Arduino experiments with an IMU, and his 
introduction to VPython—his guide was an instrumental part in the research 
for this book: https://toptechboy.com/arduino-based-9-axis-
inertial-measurement-unit-imu-based-on-bno055-sensor/.

• This paper takes things a bit further and introduces a Global Positioning System 
(GPS) for further sensor fusion: https://www.researchgate.net/
publication/51873462_Data_Fusion_Algorithms_for_Multiple_
Inertial_Measurement_Units.

• If you wish to dig deeper into sensor fusion, and algorithms to combine them 
while filtering errors, Kalman filters are the way to go. This article is a starting 
point: https://towardsdatascience.com/sensor-fusion-part-1-
kalman-filter-basics-4692a653a74c.

https://www.w3.org/TR/magnetometer
https://en.wikipedia.org/wiki/Atan2
https://toptechboy.com/arduino-based-9-axis-inertial-measurement-unit-imu-based-on-bno055-sensor/
https://toptechboy.com/arduino-based-9-axis-inertial-measurement-unit-imu-based-on-bno055-sensor/
https://www.researchgate.net/publication/51873462_Data_Fusion_Algorithms_for_Multiple_Inertial_Measurement_Units
https://www.researchgate.net/publication/51873462_Data_Fusion_Algorithms_for_Multiple_Inertial_Measurement_Units
https://www.researchgate.net/publication/51873462_Data_Fusion_Algorithms_for_Multiple_Inertial_Measurement_Units
https://towardsdatascience.com/sensor-fusion-part-1-kalman-filter-basics-4692a653a74c
https://towardsdatascience.com/sensor-fusion-part-1-kalman-filter-basics-4692a653a74c
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Controlling the 

Robot with a Phone 
and Python

The robot we've been programming has many behaviors, but when you run some of them, 
they result in the robot stopping on the other side of the room. You could try to write 
code to return it back to you, but this may be complicated. We've also got a neat camera 
with some visual feedback available on what the robot is doing. Wouldn't it be neat to take 
control and drive the robot sometimes? 

We've been launching commands to drive our robot from a Secure Shell (SSH) terminal, 
but the robot will be more exciting and more comfortable to demonstrate if you could 
start the commands via a menu. We can build upon the web application programming 
interface (API) code you made in Chapter 15, Voice Communication with a Robot  
Using Mycroft.

In this chapter, we will see how to create a menu system to choose behaviors designed for 
a phone. We will then use the touch surface to build a control system, with the camera in 
view. You will learn about phone-ready web apps and get control of the robot.
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We will cover the following topics in this chapter:

• When speech control won't work—why we need to drive

• Menu modes—choosing your robot's behavior

• Choosing a controller—how are going to drive the robot, and why

• Preparing the Raspberry Pi for remote driving—get the basic driving system going

• Making the robot fully phone-operable

• Making the menu start when the Pi starts

Technical requirements
For this chapter, you will need the following items:

• Your Raspberry Pi robot with the camera set up and the code from previous chapters

• A touchscreen device such as a phone with Wi-Fi

• A wireless network

The GitHub code for this chapter is at https://github.com/PacktPublishing/
Learn-Robotics-Programming-Second-Edition/tree/master/
chapter17.

Use the 0_starting_point folder to find the complete code from the previous 
chapters and the full_system folder on GitHub for this chapter's full code.

Check out the following video to see the code in action: https://bit.ly/2Kb7rp8

When speech control won't work – why we 
need to drive
In Chapter 15, Voice Communication with a Robot Using Mycroft, we built a Mycroft 
system to launch behaviors. If you have tried to build intents to make the robot stop  
in time or drive left or right, you will have probably noticed that it takes some time  
to respond even with the clearest speaking.

https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter17
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter17
https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition/tree/master/chapter17
https://bit.ly/2Kb7rp8
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Speech control also only really works in a quiet room. If your robot is outside (you would 
like to drive it somewhere), this is not useful.

Mycroft is also utterly dependent on having access to the internet. It is one thing to have 
a small shared network for a robot and a controller; it's another to always require internet 
access, which can become tricky when not at your home, school, or lab.

Using an SSH session to log in to a robot, then typing commands to start and stop 
behaviors works well during testing stages, but it can be slow and cumbersome. In 
demonstration conditions, mistyping a command or just restarting the SSH session is 
time-consuming.

A phone-targeted browser app can be responsive, giving you tight control over the robot's 
movements. With a local network, it won't need external internet access. You can use this 
to drive a robot back to you after a behavior has run and you've stopped it, and it can be 
used to halt errant behavior. And with a bit of thought, it can be used to deliver useful—or 
plain interesting—feedback on what your robot is doing.

Menu modes – choosing your robot's behavior
Our book has introduced quite a collection of robot behaviors and invited you to create 
more. We've talked about how SSH can be cumbersome to start robot programs—even 
just remembering the options you have or pressing the Ctrl + C combination to stop can 
be frustrating. 

In this section, we are going to create a menu system to select them. A convenient 
and phone-friendly way to do this is to serve it to the phone's browser, so we take that 
approach with our robot. We will also use a desktop browser to test this code.

We can extend the system we built in the Starting a behavior remotely section of Chapter 15, 
Voice Communication with a Robot Using Mycroft, adding a user interface (UI). We'll make 
this UI as templates, with some placeholders replaced by code. 
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Let's take a look in the following diagram at how this system will work:

Figure 17.1 – How the control server and menu system will work

Figure 17.1 shows an overview of the system. Here's how it works:

1. The client browser (a phone or computer) makes a page request via Wi-Fi to the 
web server on the robot for a page to display.

2. The web server uses robot modes to get the mode list: a list of scripts it can start.

3. The web server sends this mode list to a template to render it into the menu page 
and send that rendered menu page to the user.

4. In the browser, when you touch or click the menu item links in the page, they make 
control requests to the web server.

5. The web server acts on control requests by making control mode calls such as run 
and stop to the robot modes system.

6. The robot modes system starts/stops the behavior scripts.

7. The control server sends a status back to the client browser to say it's been handled.

Let's start by extending the list of scripts (modes) and how the system handles them.
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Managing robot modes
We will revisit the code made in Chapter 15, Voice Communication with a Robot Using 
Mycroft, extend the list of modes to run, and add a menu configuration.

Let's expand the number of items our mode system knows about, as follows:

1. Open the file called robot_modes.py.

2. Find the mode_config variable in this file. We can extend it with a few more 
behaviors, as illustrated in the following code snippet:

    mode_config = {
        "avoid_behavior": "avoid_behavior.py",
        "circle_head": "circle_pan_tilt_behavior.py",
        "test_rainbow": "test_rainbow.py",
        "test_leds": "leds_test.py",
        "line_following": "line_follow_behavior.py",
        "behavior_line": "straight_line_drive.py",
        "drive_north": "drive_north.py"
    }

3. After the mode_config variable, we add a list configuring the menu. The order 
will match menu items on a screen. Each item has a mode_name setting—matching 
the short slug in the mode_config variable, and text—the human-readable label 
for the menu option, as illustrated in the following code snippet:

    menu_config = [
        {"mode_name": "avoid_behavior", "text": "Avoid 
Behavior"},
        {"mode_name": "circle_head", "text": "Circle 
Head"},
        {"mode_name": "test_leds", "text": "Test LEDs"},
        {"mode_name": "test_rainbow", "text": "LED 
Rainbow"},
        {"mode_name": "line_following", "text": "Line 
Following"},
        {"mode_name": "behavior_line", "text": "Drive In 
A Line"},
        {"mode_name": "drive_north", "text": "Drive 
North"}
    ]

If we want to add a behavior to the menu, we must add it to both the menu_config  
and the mode_config variables.
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4. To allow a menu user to choose a new mode without pressing a Stop button,  
we want to make the run method cope with this by stopping any existing process, 
as follows:

    def run(self, mode_name):
        while self.is_running():
            self.stop()
        script = self.mode_config[mode_name]
        self.current_process = subprocess.
Popen(["python3", script])

This file will act as a configuration, and you can expand it to run other code. We can 
test this now.

5. Upload robot_modes.py to the robot. You should already have the Chapter 15, 
Voice Communication with a Robot Using Mycroft, control_server.py  
file uploaded.

6. Run this on the Pi with python3 control_server.py.

7. As we saw in Chapter 15, Voice Communication with a Robot Using Mycroft, we will 
use the curl command to make a request, like this:

curl -X POST http//myrobot.local:5000/run/test_leds

This should start the light-emitting diodes (LEDs) flashing on the robot.

8. Let's change behavior—this should stop the current behavior and start a new one. 
Run the following code:

curl -X POST http//myrobot.local:5000/run/circle_head

The LEDs should stop, and assuming the motors are turned on, the head should 
start moving.

9. Let's stop the robot by running the following code:

curl -X POST http//myrobot.local:5000/stop

We have added some further modes and configuration to robot_modes.py to describe 
those modes, and tested them. Let's check for any problems.
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Troubleshooting
When requests to the menu sever fail, it can output error codes in the response. There are 
only three error codes we make use of in our system, as follows:

• 200—This means that the server thinks everything is OK. There may still be a logic 
problem, but it's not caused a failure.

• 404—This is shown when the server couldn't find a route. This means you may 
have a typo either in the request you made or in the routers on the server code. 
Check that they match and try again.

• 500—This means that the server failed in some way. It is usually accompanied  
by a traceback/exception on the server. This can then be treated as a normal  
Python error.

Now that we have the mode configuration lists ready, we need the web service to display it.

The web service
In Chapter 15, Voice Communication with a Robot Using Mycroft, we'd already wired 
robot_modes.py into the control_server.py Flask web server. We have used Flask 
in Chapter 13, Robot Vision – Using a Pi Camera and OpenCV, to render templates with a 
video box. In this section, we will make a menu template to show the user their options. 

Let's make the necessary changes to render the template first, as follows:

1. Open control_server.py.

2. Extend the imports of Flask to include render_template, as follows:

from flask import Flask, render_template
from robot_modes import RobotModes

3. As we will have a style sheet we are changing, we need to stop devices holding a 
stale, cached copy of the sheet. We can do this by adding a header to all responses, 
like this:

@app.after_request
def add_header(response):
    response.headers['Cache-Control'] = "no-cache, 
no-store, must-revalidate"
    return response
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4. We now need to add the route that shows our menu. We will make a template called 
menu.html, which uses the menu_config variable to display. Most of our modes 
need this. Let's add the code to render the template, as follows:

@app.route("/")
def index():
    return render_template('menu.html', menu=mode_
manager.menu_config)

We now have code to render the template building on code we already had to handle  
run and stop requests. However, before we can run this service, we need to provide  
the template, menu.html. 

The template
Our HTML template defines our display and lets us separate how the robot menu looks 
from how to handle the control system. This template combines HTML (seen in Chapter 
13, Robot Vision – Using a Pi Camera and OpenCV, and Chapter 14, Line-Following with 
a Camera in Python) and the Jinja2 template system—a way of substituting data. See the 
Further reading section to find out more about these systems. We have a templates folder 
from Chapter 15, Voice Communication with a Robot Using Mycroft—we will add our menu 
template here. We could add further styling to this template; for now, we'll keep it simple. 

Make a file called templates/menu.html and then proceed as follows:

1. Our template starts with a header that sets the page title and uses the same jQuery 
tool we saw before, as illustrated in the following code snippet:

<html>
<head>
    <script src="https://code.jquery.com/jquery-
3.5.1.min.js"></script>
    <title>My Robot Menu</title>
</head>

2. The body of our template has the My Robot Menu heading. Feel free to change 
this to your robot's name. The code is shown in the following snippet:

<body>
  <h1>My Robot Menu</h1>

3. Next, we have a space for a message; it's empty now though, as you can see here:

    <p id="message"></p>
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4. The next section is a list—that is the menu itself. We use the <ul> tag and then 
a for loop, which creates a list item with a link for each menu item. The double 
brackets {{ }} are used to surround a placeholder, that will be replaced when run. 
It uses the mode_name setting and text to make that link, combining /run with 
the mode name, as illustrated in the following code snippet:

  <ul>
      {% for item in menu %}
        <li>
            <a href="#" onclick="run('/run/{{ item.mode_
name }}')">
                {{ item.text }}
            </a>
        </li>
      {% endfor %}

We are using an onclick handler, so we can handle the run action in some code.

5. Before closing our list, we need to add one more menu item—the Stop button,  
as follows:

    <li><a href="#" onclick="run('/stop')">Stop</a></li>
  </ul>

6. We talked about handling the run action in some JavaScript code. The following 
code makes POST requests sending data to the web server, and then updates the 
message from the response. We need to put it in <script> tags, as follows:

  <script>
    function run(url) {
      $.post(url, '', response => $('#message').
html(response))
    }
  </script>

The run function calls the .post method with the Uniform Resource Locator 
(URL) and empty data. When it receives a response, it will set the content of the 
message element to it. The => operator is JavaScript shorthand for defining a small 
function—in this case, one that has the response parameter. An important idea in 
JavaScript is that a function can be a bit of data. In JavaScript, passing a function in 
as a parameter to another function is a common way to do things. Because we often 
use this, functions used that way are not even given names; they are anonymous 
functions or lambdas.
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7. Now, we can close our HTML document, like this:

</body>
</html>

The nice thing with a template such as this is that you can preview this code in a browser 
without the server and make sense of how it should look. The following screenshot shows 
it in preview mode:

Figure 17.2 – Previewing the template

When you view the preview, as shown in Figure 17.2, the template placeholders are 
showing as the browser doesn't know how to render them.

You need to run the app to see it properly rendered.

Running it
Upload the robot_modes.py and control_server.py files to the robot, and  
then the templates folder. On the Raspberry Pi, via SSH, you can start it with the 
following command:

pi@myrobot:~ $ python3 control_server.py 
 * Serving Flask app "control_server" (lazy loading)
 * Environment: production
   WARNING: This is a development server. Do not use it in a 
production deployment.
   Use a production WSGI server instead.
 * Debug mode: on
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 270-549-285
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You can now point your browser at your robot (http://myrobot.local:5000/)  
to see the menu. The following screenshot shows how it should look:

Figure 17.3 – My Robot Menu in a browser

Figure 17.3 now shows the list rendered. We now see all the menu items instead of the 
template placeholders. You should be able to click a mode and see the robot start that 
behavior. Clicking Stop causes the robot_modes.py code to send the equivalent of  
a Ctrl + C action to the running behavior script, making it stop.

When you click a behavior or stop, it shows the output in the message area, as shown in 
the following screenshot:

Figure 17.4 – The stopped message
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Figure 17.4 shows the menu again. I've clicked the Stop button, so the menu shows the 
Stopped response message.

Notice in the following code snippet that the behavior's outputs—its print statements—
are coming out in the web server console:

192.168.1.149 - - [17/Oct/2020 22:42:57] "POST /run/test_leds 
HTTP/1.1" 200 -
red
blue
red
blue
red
Traceback (most recent call last):
  File "leds_test.py", line 16, in <module>
    sleep(0.5)
KeyboardInterrupt
192.168.1.149 - - [17/Oct/2020 22:43:41] "POST /stop HTTP/1.1" 
200 -

You need to press Ctrl + C on the Pi to exit this menu server app. 

Important note
This tiny robot web app has no security mechanism, authentication, or 
passwords. It is beyond this book's scope but is a serious consideration worth 
further research if you plan to use this on shared Wi-Fi.

There are ways to get the console output from a script onto the page. I recommend 
looking at the additional reading recommendations in the Further reading section  
for Flask. 

Troubleshooting
Hopefully, this all works, but if you have any problems try the following steps:

• The output log shows the return codes from the web system. You can use these 
status codes—as you've seen before—to troubleshoot.

• 200—The system thinks everything is OK. If it failed to run something, check the 
run function.
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• 404—Not found. Have you matched the routes?

• 500—You should see a Python error with this too. 

• If the render shows the display { item.text }, this needs double curly brackets 
for the template system to work.

• If you see an error such as jinja2.exceptions.TemplateSyntaxError: 
unexpected '<', then you'll need to verify you have typed out the preceding 
template—you are likely to have missed a closing curly bracket ( }).

You now have a menu system to start different robot behaviors and stop them. You can 
point your phone at it—although it's not particularly phone-friendly yet. We have only 
scratched the surface of this, and this system is quite rudimentary. 

We'll start looking at a more interesting phone interface for driving the robot, but we can 
first look at options other than smartphones.

Choosing a controller — how we are going to 
drive the robot, and why
We want to be able to control our robot with something that is handheld and wireless. 
Trailing a wire to our robot would make little sense. Having seen how our robot drives in 
Chapter 7, Drive and Turn – Moving Motors with Python, we will want a control system 
that directly affects the wheels.

One way to do this would be to use a Bluetooth joypad. There are a large number of these 
on the market, which may require specialist drivers to read. Bluetooth has a habit of 
dropping pairings at inopportune times. 

Some joypads use a custom wireless dongle; these are far more reliable than Bluetooth  
but have a dongle that doesn't fit very nicely on the robot.

However, you already have a handheld device in your pocket: your phone. It has a 
touchscreen, capable of reading finger movements. With a bit of the right code, you can 
display the video between controller bars, creating a kind of robotic periscope you can 
drive around and see (it's quite tricky to drive on camera—harder than overhead). We've 
already been building web applications for our robot to access via Wi-Fi, and most phones 
can connect to that. So, instead of going out and buying a new joypad, we will make a web 
app that your phone can access to drive the robot and see a robot's-eye view of the world. 
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Design and overview
To make a phone web app, a little bit of design on how we would expect this to work is 
needed. This design could be as simple as a pen drawing on a scrap of paper or using 
a drawing tool to get professional-looking results. The next screenshot shows a screen 
mockup of this:

Figure 17.5 – Screen mockup of driving web app

The mockup in Figure 17.5 shows a mobile phone screen in landscape mode. The top of 
the screen has an Exit button, and we can set this up to go to our menu after instructing 
the app to exit.

The middle of the screen has a video feed from the robot, using the mechanism from the 
Building a Raspberry Pi camera stream app in Chapter 13, Robot Vision – Using a Pi Camera 
and OpenCV. The left and right have sliders. The next screenshot shows how this works:

Figure 17.6 – Slider return to middle behavior
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Figure 17.6 shows the slider mechanism. As with an analog joystick, you can drag the 
sliders to any position on their track with touches, and when let go, they will spring  
back to the middle.

Note that they don't immediately drop to the middle when let go but animate back to this 
over a few frames. We'll need a little math to make that happen in our code. 

These sliders let you drive the robot tank-style (with a joypad, you could use two analog 
sticks for this). Each slider controls the speed of a motor. While this sounds tricky (not 
like driving a car), it is an elegant way to drive a two-wheeled robot with a little practice. 
The further away from the middle you slide a slider, the faster the associated motor will 
go. We will also ensure that the robot motors will stop after a second if communication  
is lost. 

This control of left speed and right speed is the same control system your behaviors have 
been using throughout the book, but has been made interactive. The next diagram shows 
some of the motions needed for typical moves:

Figure 17.7 – Common moves on two sliders



500     Controlling the Robot with a Phone and Python

The red dots in Figure 17.7 represent where your thumb is touching the screen. By sliding 
both forward the robot will drive forward, and the further you slide them, the faster it will 
go. A backward action slides them both back. To spin the robot, slide them in opposite 
directions. To drive forward and a little left or right, you slide both forward but bring the 
right slider a little higher than the left. You are also able to compensate for veer this way.

We have a nice user interface design. To start building this, we will plan the code blocks 
we will need, and write the code to make them work in the real world.

Preparing the Raspberry Pi for remote 
driving—get the basic driving system going
Our Raspberry Pi has already been able to run web services, using Flask to create a 
menu server and video servers. We can use image and control queues to make a behavior 
interact with a web server. We are going to reuse these capabilities. In the phone app, the 
slider controls will need to be smart. The next diagram shows the parts of our manual 
drive system:

Figure 17.8 – The system overview of a manual drive app
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The dashed boxes in Figure 17.8 show where the code is running, with the top dashed 
box being code running on the phone, and the lower box being code running on the 
Raspberry Pi in the robot. Inside the dashed boxes, the boxes with solid outlines are 
blocks of code or systems our code will need. At the bottom layer of Figure 17.8, the Robot 
box accepts the stop motors and set motor speed calls. These are from the Behavior box 
based on timeouts or the control message queue from the Flask Web Server. Meanwhile, 
the Behavior loop will also be taking image frames from the camera, encoding them and 
pushing them onto the display frame queue.

The next layer up is the Flask Web Server. This server consumes the display frame queue 
supplying frames to the multi-part image feed. The Flask server will handle control 
requests and push them onto the control message queue. 

A Page Script handles slider updates and turns them into control requests using the 
jQuery library. The Slider Gadget turns touches into slider updates (it will be doing 
animation and converting for this). 

The page itself uses an img tag to display the video feed, as before, and places the slider 
widgets. The Exit button makes a control request. 

The Page Script and Slider Gadget will require JavaScript and Cascading Style Sheets 
(CSS) programming. Before we start that, we need to take the image core from Chapter 
14, Line-Following with a Camera in Python, and build more features to deliver the code  
to the browser.

Enhancing the image app core
To build this, we will start by adding some static file links and reusing the image app core 
we last used in Chapter 14, Line-Following with a Camera in Python. 

Static files do not cause the robot to do something; the system passively serves them. We 
will be serving JavaScript and CSS, along with a local copy of the jQuery library. Flask 
does this automatically.

Let's set up the static files folder, as follows:

1. Create a static folder. We will put JavaScript and CSS code in this static folder.

2. We will make a local copy of the jQuery library. Make a lib directory under static.

3. Download jQuery from https://code.jquery.com/jquery-3.5.1.min.
js, press the browser Save button, and store it in the lib folder. You should have  
a static/lib/jquery-3.5.1.min.js file.

https://code.jquery.com/jquery-3.5.1.min.js
https://code.jquery.com/jquery-3.5.1.min.js
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4. In the image_app_core.py file, we also need to stop it using cached files so that 
it reloads our CSS and JavaScript files, as follows:

@app.after_request
def add_header(response):
    response.headers['Cache-Control'] = "no-cache, 
no-store, must-revalidate"
    return response

The app core now has a static copy of jQuery we can use offline, so our phone doesn't have 
to rely on a good signal to talk to the robot.

Writing the manual drive behavior
The next part we will need is the behavior. It builds on concepts from the code seen before 
in Chapter 14, Line-Following with a Camera in Python, with control messages changing 
motor speeds and a plain video output. 

This system will have a timeout—if no control messages arrive for 1 second, it will stop 
driving. It can be quite frustrating to watch a robot drive off into the distance or off a  
desk, so it will revert to stopping if nothing is making sense.

Let's build it, as follows:

1. Start a file called manual_drive.py with imports for the camera and control,  
like this:

import time
from robot import Robot
from image_app_core import start_server_process, get_
control_instruction, put_output_image
import camera_stream

2. We can declare what we want the timeout threshold to be in seconds, as illustrated 
in the following code snippet:

TIMEOUT_IN_SECONDS = 1
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3. We'll make a ManualDriveBehavior class. In this, we'll store a robot object 
and track time, as illustrated in the following code snippet:

class ManualDriveBehavior(object):
    def __init__(self, robot):
        self.robot = robot
        self.last_time = time.time()

4. Next, build the control section of this behavior. It resets the last time for every 
instruction. The code can be seen in the following snippet:

    def process_control(self):
        instruction = get_control_instruction()
        while instruction:
            self.last_time = time.time()
            self.handle_instruction(instruction)
            instruction = get_control_instruction()

Notice that this will loop until there are no further instructions, since you could 
queue more than one while waiting for a camera frame. We prime this with the  
next instruction. It delegates handling to self.handle_instruction.

5. Our code processes the instruction in handle_instruction. This instruction 
is a dictionary, with an instruction name and parameters as its members. We can 
check if this command is set_left or set_right, as illustrated in the following 
code snippet:

    def handle_instruction(self, instruction):
        command = instruction['command']
        if command == "set_left":
            self.robot.set_left(int(instruction['speed']))
        elif command == "set_right":
            self.robot.set_
right(int(instruction['speed']))

If it matches, we set the robot motor speed. The speed will currently be a string,  
so we use int to convert it into an integer number for our motors. 
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6. We also need to handle the exit command, as follows:

        elif command == "exit":
            print("stopping")
            exit()

7. It would be useful, at least when testing, to know whether we have an unknown 
instruction. Let's handle that case by raising an exception, as follows:

        else:
            raise ValueError(f"Unknown instruction: 
{instruction}")

8. Our app also needs to make a display, putting the frame on the server image queue, 
as follows:

    def make_display(self, frame):
        encoded_bytes = camera_stream.get_encoded_bytes_
for_frame(frame)
        put_output_image(encoded_bytes)

9. The behavior then has a run method to perform the setup and the main loop. We 
start by setting the pan and tilt to look straight ahead, warm up the camera, and 
stop the servos, as follows:

    def run(self):
        self.robot.set_pan(0)
        self.robot.set_tilt(0)
        camera = camera_stream.setup_camera()
        time.sleep(0.1)
        self.robot.servos.stop_all()
        print("Setup Complete")

10. We then loop over frames from the camera and process control instructions, as 
follows:

        for frame in camera_stream.start_stream(camera):
            self.make_display(frame)
            self.process_control()
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11. We finally make it auto stop based on the timeout, as follows:

            if time.time() > self.last_time + TIMEOUT_IN_
SECONDS:
                self.robot.stop_motors()

12. We add the top-level code to create and start the components, as follows:

print("Setting up")
behavior = ManualDriveBehavior(Robot())
process = start_server_process('manual_drive.html')

13. We still want to ensure we stop the server when we exit or hit an error, so we run 
the following code:

try:
    behavior.run()
except:
    process.terminate()

The behavior backend is complete but it needs a template to see it, along with style and 
code to run on the phone.

The template (web page)
The template is where we will place our sliders and some of the code to handle them. 

Let's get into it, as follows:

1. Create a templates/manual_drive.html file. Start with the HTML preamble, 
as follows:

<html>
    <head>

2. We want the display to fit on a phone, adapting to the display size. We also don't 
want the user's touch interactions to accidentally scale the display. This line of  
code tells the browser that this is our intention:

        <meta name="viewport" content="width=device-
width, initial-scale=1.0, user-scalable=no">
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3. We want to style this (and potentially our other interfaces). For this, we use a  
display.css style sheet, as illustrated in the following code snippet:

        <link rel="stylesheet" type="text/css" href="/
static/display.css?">

4. We are going to use the jQuery library to make things interactive, and we'll build  
a touch-slider system. These are the HTML equivalent of imports:

        <script src="/static/lib/jquery-3.5.1.min.js"></
script>
        <script src="/static/touch-slider.js?"></script>

We are going to place a very specific bit of style here in this file. The rest comes from 
the style sheet. We want this behavior's view to take up the whole screen and not 
scroll. The code can be seen here:

        <style>html, body {margin: 0; height: 100%; 
overflow: hidden}</style>

5. The head ends with a title to go on the top of the tab, as follows:

        <title>Manually Drive The Robot</title>
    </head>

6. We now start the body with the first slider; we define this with Scalable Vector 
Graphics (SVG). SVG let us draw things inside a browser. HTML requires us 
to contain SVG parts in a svg tag, which we'll use to make the slider track, as 
illustrated in the following code snippet:

    <body>
        <svg id="left_slider" class="slider_track" 
viewBox="-10 -100 20 200">

The slider_track class lets us style both tracks—we use HTML classes to 
identify multiple objects. The left_slider ID will help us position and add 
touch events to it. IDs in HTML are usually used to reference one object uniquely.

The viewBox attribute defines the dimensions of the drawing internal to svg  
as lower x, lower y, width, and height. View box coordinates make sense even 
if we scale the svg element for a different device. The height range is -100/100, 
equivalent to the motor speeds, and the width range is -10 to +10.
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7. Inside the container, we will draw a circle. The circle needs a radius r, which we can 
give in view box units. The center will be 0 in both directions. The code for this is 
shown here:

            <circle r="18" class="slider_tick"/>

The circle's color will come from the style sheet.

8. Next, we need an Exit link to finish the behavior. It has a class and ID to style it,  
as illustrated in the following code snippet:

        <a class="button" id="exitbutton" href="/
exit">Exit</a>

We will associate the button class with fonts and colors, and we can use the 
style for other buttons (for example, to enhance the menu app). We'll use the 
exitbutton ID to position this in the place we designed before.

9. Next, we have our video block. The img tag for the video is contained inside a div 
tag to preserve our video ratio on any size screen while letting it resize to fit the 
space, as illustrated in the following code snippet:

        <div id="video"><img src="{{ url_for('display') 
}}" /></div>

10. The right slider is a repeat of the left, with only the ID being different. You could 
copy and paste the left code, changing the ID. The code can be seen here:

        <svg id="right_slider" class="slider_track" 
viewBox="-10 -100 20 200">
            <circle r="18" class="slider_tick"/>
        </svg>

11. We will need some JavaScript code in our HTML for the sliders. The code on the 
page will link slider code to the graphics we have and to the motors. First, we 
declare the JavaScript block, as follows:

        <script type="text/javascript">
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12. Add a function to send motor controls to the robot. It takes a name (left or right) 
and a speed, as illustrated in the following code snippet:

            function set_motor(name, speed) {
                $.post('/control', {'command': 'set_' + 
name, 'speed': speed});
            }

We POST this control instruction to the server.

13. The next bit of code must only run after the page has completed loading; we want 
to ensure the preceding JavaScript libraries are fully loaded. jQuery has a special 
function, $(), which will run any function passed to it when the page has completed 
loading, as illustrated in the following code snippet:

            $(() => {

14. We need to link the exit button to a POST request, which forwards to the menu 
when done, as illustrated in the following code snippet:

                $('#exitbutton').click(function() {
                    $.post('/control', {'command': 
'exit'});
                    window.location.replace('//' + 
window.location.hostname + ":5000");
                });

15. We set up the sliders and link them with their svg element IDs and set_motor  
so that they will update this every time they change, as illustrated in the following 
code snippet:

                makeSlider('left_slider', speed => set_
motor('left', speed));
                makeSlider('right_slider', speed => set_
motor('right', speed));
            });

For each side, we use makeSlider, which uses id for the ID of the object we  
are turning into a slider (a svg track), and a function to call when the slider  
has changed.

16. We now end our page by closing all the tags, as follows:

        </script>
    </body>
</html>
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This page has no style; by default, the video and sliders have no shape, size, or color—so, if 
you try to load this, it will show a blank page. We've yet to tell the browser where we want 
things on the page or which colors to make them. We also don't have the slider code yet. 

We've made the code to send the exit button and link sliders with tags. In the next section, 
we'll add a style sheet to make things visible.

The style sheet
We can now give our app some style. Style sheets take time to tune and get just right, so 
this is just a taste of what it can do. If you think my color choices are terrible, please feel 
free to substitute your own; I suggest using w3c colors at https://www.w3schools.
com/colors/default.asp. You can use named or hex (#1ab3c5) colors. 

The essence of CSS is to select elements on the page and associate style attributes with 
them. CSS style sections start with a selector to match HTML page objects. Some 
examples are tag names, class names prefixed with a full stop, or IDs prefixed with a # 
mark. For a comprehensive look at CSS selectors, see the Further reading section. Each 
section uses braces {} to delimit a section of style. A section's styles consist of a property 
name, a colon :, and a setting. A semicolon ; follows these to end each setting.

Let's make the style, as follows:

1. Create a static/display.css file to hold this style information.

We can set our slider track to 10% of the viewport width—that is, 10% as big as 
the screen. CSS has a special unit, vw, for this, along with vh for percentage of the 
viewport height. See the Further reading section for notes on CSS units. This code 
uses the .slider_track CSS selector, which applies to all objects with that class. 
Both sliders have this class, so changes here affect both of them. The code can be 
seen here:

.slider_track {
    width: 10vw;
    height: 90vh;

2. We'll give the slider track a solid blue border and a light blue background to match 
our mockups, as follows: 

    border: 1px solid blue;
    background-color: lightblue;
}

https://www.w3schools.com/colors/default.asp
https://www.w3schools.com/colors/default.asp


510     Controlling the Robot with a Phone and Python

3. To style the tick, the circle we see on the sliders, we can add a light pinkish fill color, 
like our mockups, as follows:

.slider_tick {
    fill: mistyrose;
}

4. Next, we want to position the sliders (by their IDs) to the left and right. When making 
a display match closely to the screen mockup, we can use absolute positioning with 
viewport percentages to say exactly where things should be, as follows:

#left_slider {
    position: absolute;
    left: 5vw;
    top: 5vh;
}
#right_slider {
    position: absolute;
    right: 5vw;
    top: 5vh;
}

5. You can try this now by uploading it, stopping the running behavior, starting it 
again, and then reloading. The sliders look better, but the exit button and video are 
in the wrong place. 

6. Let's make the exit button more like a button. Styles under .button will apply to 
all buttons with the same class. We will make it a block—an element that uses width 
and height properties. This block is 10% of the viewport height. The code can be 
seen here:

.button {
    display: block;
    height: 10vh;

7. Then, we align the text in the middle with line-height and text-align, then 
use 2em to mean twice normal text size, as follows:

    text-align: center;
    font-size: 2em;
    line-height: 10vh;
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8. We want to take the underline off the button text, which you normally get with a 
link. We'll also give it some color, a blue background with white text, as follows:

    text-decoration: none;
    background-color: blue;
    color: white;
}

9. We specify more about the exit button using its ID. We will set its width and the top 
but use auto margins to center it, as follows:

#exitbutton {
    width: 40vh;
    margin-top: 5vh;
    margin-left: auto;
    margin-right: auto;
}

Trying this out, you should now see the exit button in the right place.

10. Next, we style the video. We want to center the video on the screen. The outer video 
element can do that for us, like this:

.video {
  text-align: center;
}

11. We can then specify the position and size of the inner image block. We want it to 
be 20% from the top of the screen using a vh measurement. The vmin unit is a 
percentage of the screen's minimum dimension; it ensures that this block is never 
so large that it would obscure the two slider bars. We make the height automatically 
scale. We select #video img to apply this style to the img object contained in the 
video object, as illustrated in the following code snippet:

#video img {
    margin-top: 20vh;
    width: 80vmin;
    height: auto;
}
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Our page is fully styled. You can try this now to see how it looks. Upload the whole folder 
(including templates) to the robot, and then run python3 manual_drive.py. Point 
a desktop browser at http://myrobot.local:5001/, substituting your robot's 
hostname or address to see it. A desktop browser is good to discover errors in the HTML 
or JavaScript code. At the time of writing, Firefox and Chrome support emulating mobile 
devices in the browser and touch events. It should look like the mockup with real video,  
as illustrated in the following screenshot:

Figure 17.9 – Screenshot of app running on the phone

Figure 17.9 shows the app running on a real phone. The slider bars still don't do anything 
yet. Note that you may need to force your browser to reload the style sheet. 

We now need to add the slider code.

Creating the code for the sliders
The sliders need to respond to touch events, moving the circle to match the touch location 
and sending an update message to show how far this movement is from the middle. The 
sliders will automatically return to the center when the touch events stop. JavaScript lets 
us run code in the browser, so we'll create a JavaScript makeSlider function.
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First, we want to see how touches translate to slider positions and motor speeds. This is 
illustrated in the following diagram:

Figure 17.10 – Going from touch events to motor positions

Our sliders have some complexity in their positions, shown in Figure 17.10. When a user 
touches a screen, the position arrives in terms of screen coordinates. We first need to 
find where it is in the slider by taking away the slider's top coordinates. We will need to 
divide that result by the slider height, multiply by 200, and then subtract 100 to give us 
the viewbox position (the same system used to draw the SVG). In viewbox coordinates, 
the top is -100, but for our motors to go forward we need +100, so we must negate the 
viewbox position to get the motor speed.

Our script will set up the data needed to move the slider and internal functions to map 
to the slider events, manage the slider's movement, and call back the manual_drive.
html code (or any other code) when we move the sliders. Let's make the slider code,  
as follows:

1. We will put this in static/touch-slider.js. As we are in a .js file, the 
<script> tags are not needed. 

2. We create the makeSlider, function, a factory function to make everything the 
sliders need, as follows:

function makeSlider(id, when_changed) {
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3. The first thing we need is some internal data. The code needs to know if we are 
touching the slider so that it won't try to move back while we're still touching it. 
We need to know if the touch position has changed and keep track of its position. 
Finally, we'll find our slider by its ID and keep the found object to use, as follows:

    let touched = false;
    let changed = false;
    let position = 0;
    const slider = $('#' + id);

4. We then need some functions to deal with the slider. We'll start with a function to 
update the position, ensuring the tick is updated, that we only use whole numbers 
(because the browser won't accept decimal points here), and that we update the 
changed flag, as illustrated in the following code snippet:

    const set_position = function(new_position) {
        position = Math.round(new_position);
        slider.find('.slider_tick')[0].setAttribute('cy', 
position);
        changed = true;
    };

5. The next thing is handling touch events. Event handlers are functions that get called 
when something happens (such as the exit button handler). Touch events have three 
events: touchstart—when someone starts touching a screen, touchmove—
when a touch moves to another area, and touchend—when the touch stops. We 
won't use touchstart, so we'll start with making an anonymous touchmove 
function, as follows:

    slider.on('touchmove', event => {
        let touch = event.targetTouches[0];

Notice we immediately get a touch variable from the event data. We get a list of 
touches, but we are only using the first one.

6. We then get the relative position of this touch from the top of the slider, as follows:

        let from_top = touch.pageY - slider.offset().top;
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7. We can use this with the height to convert the touch position into a number from 
-100 to +100, matching the SVG viewbox coordinates, as follows:

        let relative_touch = (from_top / slider.height()) 
* 200;
        set_position(relative_touch - 100);

8. Since the code has received a touch event, we should set the touched flag to true. 
We must also prevent the touch event from having any other effects, as illustrated in 
the following code snippet:

        touched = true;
        event.preventDefault();
    });

9. Since we've set a flag to say that the touch event is occurring, we should also clear it 
(set it to false) when the touch event ends, as follows:

    slider.on('touchend', event => touched = false);

10. Our system is animated, so it needs to have an update cycle to return to the middle. 
The update should only move the tick if we are not touching the slider, so it stays 
where you keep your thumb. When the touch has stopped and it's still not at the 
zero position, we should update the position, as follows:

    const update = function() {
        if(!touched && Math.abs(position) > 0) {

11. This next part looks a bit like the Proportional-Integral-Derivative (PID) 
controller code in that there's an error multiplied by a proportional component. We 
scale the error by a factor of 0.3 and add/subtract an extra 0.5 to get it closer to a 1% 
minimum. Every time this is updated, it moves the slider closer to the middle. The 
code can be seen here:

            let error = 0 - position;
            let change = (0.3 * error) + (Math.
sign(error) * 0.5);
            set_position(position + change);
            // console.log(id + ": " + position);
        }
    };

This code is also a great place to log the position—something we can use when it 
goes wrong.



516     Controlling the Robot with a Phone and Python

12. To run this update function frequently, we can use the setInterval built-in 
function, which runs a function repeatedly on every interval. This display update 
should be short to keep it responsive. The timings are in milliseconds. The code  
can be seen here:

    setInterval(update, 50);

13. Besides updating the image, we also need to call the when_changed function. We 
only want to do so when something has changed and then reset the changed flag, 
so we don't call it when idle. We'll call this update_when_changed. This checks 
for changes and runs less frequently than the display update, so it doesn't flood the 
when_changed handler and the queue on the robot. The code can be seen here:

    const update_if_changed = function() {
        if(changed) {
            changed = false;
            when_changed(-position);
        }
    };
    setInterval(update_if_changed, 200);
}

Note that we negate the position; this is so the top of the screen (-100) will  
become motors going full forward (+100). Don't forget the closing bracket  
for the makeSlider function. 

You should now be ready to run the whole system.

Running this
You can now upload the entire set of files to a folder on your robot. As before, you can use 
python3 manual_drive.py to run this. 

You can use developer mode on a browser to view the web page before trying it on a 
phone, as follows:

1. Point your browser (Chrome or Firefox) at http://myrobot.local:5001 
(using your robot's hostname or address).

2. Right-click on your page and click the menu item labeled Inspect or Inspect Element. 

3. In the developer tools, there will be buttons for emulating phone devices and touch 
events. Enable the phone emulation.
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4. Try to shake out any problems in a desktop browser first. Check that dragging the 
sliders has the desired results and click on the Console button to see if there are 
errors from the JavaScript. 

Common problems in JavaScript and CSS are missing punctuation such as 
semicolons, commas, or brackets. Having class or ID selectors that do not match  
(or are missing the required dot/hash mark syntax) will make styles fail to apply  
or element lookups in JavaScript produce no results.

5. To use on the phone, you will need to use your robot's IP address, as major 
smartphone brands do not support .local addresses. You can find this from your 
desktop with ping myrobot.local, as illustrated in the following code snippet:

$ ping myrobot.local
PING myrobot.local (192.168.1.107): 56 data bytes
64 bytes from 192.168.1.107: icmp_seq=0 ttl=64 time=5.156 
ms

This example shows the robot's IP address to be 192.168.1.107. Your address 
will be different; note that down, and put that in the phone browser with the port. 
An example for my robot is http://192.168.1.107:5000.

6. With the phone, you should be able to use your thumbs to drive the robot.

It will take some practice to drive the robot manually. I suggest practicing overhead 
driving first, and when you have got the hang of that, try navigating through the camera. 
The camera frame rate is not very high, and this frame rate currently constrains the 
driving loop. 

Troubleshooting
This is a fairly complex combination of Python, HTML, JavaScript, and CSS. Try these if 
you've run into trouble:

• If you see errors from Python, verify the line of code against the preceding code. 

• If things are not working on the web page, try out the phone emulation in browser 
mode, as suggested previously, then select the inspector Console tab and try the 
operation again. This will show JavaScript errors.

• If the display appears wrong, with parts out of place or in the wrong color, verify 
that the CSS/style sheet sections and the HTML are correct.
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• If you receive 404 errors, ensure that the URLs in the HTML match the routes in 
the Flask/Python code.

• If your robot seems to be pausing and then spending a while catching up with  
your events, you could adjust the update_if_changed interval time to 
something longer.

You now have a robot you can drive remotely with the phone while seeing through its 
camera. You've seen how to handle touch events and use style sheets with SVG to make 
custom widgets. You've used JavaScript to bring the widget to life with animation and 
send control messages back to the robot.

In our next section, we'll make the menu more touch-friendly so that we can control the 
robot mostly from the phone.

Making the robot fully phone-operable
The goal here is to make it so that we can drive the robot completely from the phone. We 
need to ensure that the robot is ready to run when we turn it on, and make sure that the 
menu is usable from a phone. The menu we made earlier doesn't seem very touch-friendly. 
It also will not successfully run any of the behaviors with displays using Flask. We will 
make the menu buttons bigger and more touch-friendly, using styles similar to our manual 
drive behavior. The menu will also load our server page after clicking a behavior with  
a server such as this one or the last chapter's visual tracking behaviors.

Let's fix the Flask behaviors first.

Making menu modes compatible with Flask behaviors
If you've already tried running Flask-based behaviors (such as those with a camera) in the 
control server, you will have noticed some very odd behavior. Your behavior will appear 
to do the right thing with sensors on the robot, but the web service fails to do anything 
useful on port 5001. 

Flask uses subprocesses to manage its debug mode, which interferes with our use of them. 
We don't need debug mode, so the fix is to remove debug mode by doing the following:

1. Open control_server.py and jump to the last few lines.

2. Remove debug=True from the app.run line by running the following code:

app.run(host="0.0.0.0")
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You can now add the manual drive and color-tracking and face-tracking behaviors to the 
control server, and they will start properly.

Loading video services
When we click on a menu option for a video server-based behavior, after it starts we need 
to send our browser to port 5001 on our robot to see its output. 

Our menu.html file currently takes the response from the control_server process 
and puts this into the message box. We can upgrade this to instruct the code to do 
something else. We can start by configuring the items that need to show a server page  
in mode_config variable. 

Each item in the mode_config variable holds only the mode script; we can update this 
to have both a script and whether it needs to show a server, as follows: 

1. Open robot_modes.py.

2. In mode_config, we will take the simple text naming the script (such as 
"avoid_behavior.py") and replace it with a dictionary, allowing a simple 
case ({"script": "avoid_behavior.py}) or a more complex case 
({"script": "manual_drive.py", "server": True}). You'll need to 
change that on all items throughout the mode_config. The code is shown in the 
following snippet:

    mode_config = {
        "avoid_behavior": {"script": "avoid_behavior.
py"},
        "circle_head": {"script": "circle_pan_tilt_
behavior.py"},
        ...

3. We then need to update the server-type scripts in mode_config variable using the 
more complex case, as follows:

        "color_track": {"script": "color_track_behavior.
py", "server": True},
        "face_track": {"script": "face_track_behavior.
py", "server": True},
        "manual_drive": {"script": "manual_drive.py", 
"server": True}
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We've added the new manual drive behavior too. When you added the manual_
drive configuration here, you need to add this to menu_config variable too so 
that it shows up on the menu.

4. We need to modify the run method to pick the script from this changed structure, 
as follows:

    def run(self, mode_name):
        while self.is_running():
            self.stop()
        script = self.mode_config[mode_name]['script']
        self.current_process = subprocess.
Popen(["python", script])

5. Next, we need to check if we should redirect if the mode is a server and the current 
process is alive. I've added the explicit is True, to make it clearer that the value is 
a True/False flag, as illustrated in the following code snippet:

    def should_redirect(self, mode_name):
        return self.mode_config[mode_name].get('server') 
is True and self.is_running()

We've prepared robot_modes.py. The control_server.py file sends responses 
to the web page. Let's use the same trick we did with the mode_config and return a 
dictionary with data instead of just a string, as follows:

1. We will use JavaScript Object Notation (JSON) to format the response. Open 
control_server.py and add jsonify to the Flask imports, as illustrated  
in the following code snippet:

from flask import Flask, render_template, jsonify

2. Next, we replace the run method so that it creates the response dictionary,  
as follows:

@app.route("/run/<mode_name>", methods=['POST'])
def run(mode_name):
    mode_manager.run(mode_name)
    response = {'message': f'{mode_name} running'}

This response is the basic message.
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3. If we intend to redirect, we should send the redirect setting with our response, 
as follows:

    if mode_manager.should_redirect(mode_name):
        response['redirect'] = True

4. We need to send the response, encoded as JSON. JSON is an easy way to get  
data to JavaScript from Python—it is especially good with dictionary data.  
Run the following code:

    return jsonify(response)

5. Since we also sent a message back in the stop command, we should wrap it in the 
same way, like this:

@app.route("/stop", methods=['POST'])
def stop():
    mode_manager.stop()
    return jsonify({'message': "Stopped"})

The control server is able to send the response dictionary, and redirect if needed. The 
other side of this, now receiving the JSON object, requires changes in the page scripts  
to handle the new response. Proceed as follows:

1. Open templates/menu.html and find the run function, as illustrated in the 
following code snippet:

    function run(url) {

2. The message handling here needs to change. We need to set the message element 
HTML using the message element from our response, as follows:

      $.post(url, '', response => {
           $('#message').html(response.message);

3. However, we can also check if we need to redirect. If so, we use the same trick  
we did in the previous The template section for the exit button in the manual  
drive behavior, but in a timeout, as follows:

           if(response.redirect) {
              setTimeout(() => window.location.
replace('//' + window.location.hostname + ":5001"), 
3000);
          }
      })
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The setTimeout function calls a function after a specified time. We give it 3,000 
milliseconds (3 seconds), which gives a video behavior time to warm up first.

If you upload this and run python3 control_server.py, you'll see the menu is 
now more functional but looks quite plain. You should be able to click on the tracking 
or driving behaviors and, after 3 seconds, be redirected to their page. Clicking the exit 
buttons should take you back to the menu.

Time to give it some style.

Styling the menu
We've already used a style sheet in the manual drive demo to make the exit button look 
better. This menu is a set of buttons too. We can build on that style and make the menu 
more phone-friendly.

Making the menu template into buttons
We have an existing style sheet in static/display.css. We can make further use  
of this in the menu, perhaps with a few tweaks. Our menu template can be optimized  
to make the most of that style sheet too. Proceed as follows:

1. Open templates/menu.html. We will add a link to the style sheet. We can add 
a charset definition too, as follows:

<head>
    <script src="https://code.jquery.com/jquery-
3.5.1.min.js"></script>
    <title>My Robot Menu</title>
    <meta charset="UTF-8">
    <link rel="stylesheet" type="text/css" href="/static/
display.css">
</head>

2. The menu template uses a list of items for the menu. Adding a menu class to that list 
and a button class to the links lets us use the existing style for them, as illustrated 
in the following code snippet:

    <ul class="menu">
      {% for item in menu %}
        <li>
            <a class="button" href="#" onclick="run('/
run/{{ item.mode_name }}')">
                {{ item.text }}
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            </a>
        </li>
      {% endfor %}
    <li><a class="button" href="#" onclick="run('/
stop')">Stop</a></li>

3. Now, open up static/display.css, where we will define the style for the 
menu class, as follows:

.menu {
    width: 100%;
    margin-top: 0;
    margin-bottom: 0;
    padding: 0;
}

We make the list container fill the screen width without any extra margins (space 
around the outside of the item) or padding (space between the inside of the item 
and its child list items).

4. The menu consists of list items. By default, these get a dot: a bullet point. We want 
to set this to none (no shape) to remove the bullet point. We can use CSS list-
style properties to change that. The selector here applies to list items (li) that are 
children of a .menu class object. The code can be seen in the following snippet:

.menu li {
    list-style-type: none;
    list-style-position: initial;
}

5. To make this touch-friendly, we make the buttons the same width. 60vw (60%  
of the viewport width) should be wide enough. We use the margin auto trick  
to center this. We can also add a 1-pixel light blue border to them, as illustrated  
in the following code snippet:

.menu .button {
    margin-left: auto;
    margin-right: auto;
    width: 60vw;
    border: 1px solid lightblue;
}
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Upload the whole directory and start the menu server with python3 control_
server.py. This menu should now look more phone-friendly.

You've now seen how to make our control server work nicely on a smartphone, and you 
should be getting a little more comfortable with the interactions of JavaScript, HTML, and 
CSS with Python. However, this system has a flaw—we are still starting it from an SSH 
terminal. Let's see how to fix this.

Making the menu start when the Pi starts
You now have a menu system launching robot behaviors. Using SSH to log in is great to 
debug, see problems, and fix them. However, when you want to demonstrate your robot,  
a SSH session will become inconvenient.

The ideal is to turn on the robot, wait for a light to come on, then point your phone 
browser at it to control it. 

We are going to do two things to make this useful, as follows:

• Use an LED to indicate that it's ready (in menu mode) to allow the robot to tell us 
before our phone has linked to the page

• Use systemd to automatically start the menu Flask server when we turn on  
the robot

Let's get stuck in with the lights.

Adding lights to the menu server
We won't want the whole robot class loaded in our menu, but it can use the lights to 
indicate our robot is now ready. We will import the LED system, turn it on as the server 
starts, and then turn it off/release it when the first /run request arrives. Proceed as follows:

1. Open the control_server.py file and import the LEDs, like this:

from robot_modes import RobotModes
from leds_led_shim import Leds

2. We need to set up our LEDs and turn one LED green by running the following code:

mode_manager = RobotModes()

leds = Leds()
leds.set_one(1, [0, 255, 0])
leds.show()
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3. When we run something, we know that someone's used the menu. In our run 
method, we can clear the LED. Since we only want to do it once, we can set the 
global LEDs to None and then check this next time. Note in the following code 
snippet that we are inserting the highlighted code into the existing run function:

def run(mode_name):
    global leds
    if leds:
        leds.clear()
        leds.show()
        leds = None
...

You can test this by uploading the menu server code and rerunning it. The LED should 
light when it starts, and then when you select another behavior, it will go out. It should 
work correctly to move from the menu to the LED test behavior.

Using systemd to automatically start the robot
The systemd tool is designed for automatically starting programs on Linux. This tool is 
perfect for starting the menu/control server so that the robot is ready to drive. See the 
Further reading section for more information about systemd in Raspberry Pi.

Registering a service is done by creating a unit file and copying it into the right folder on 
the Pi. Proceed as follows:

1. Make a menu_server.service file. Start this with a description, and tell 
systemd to start our service after we have networking on our Raspberry Pi,  
as illustrated in the following code snippet:

[Unit]
Description=Robot Menu Web Service
After=network.target

2. Now, we tell systemd we want this to start as the Pi is ready for users to log in,  
as illustrated in the following code snippet:

[Install]
WantedBy=multi-user.target



526     Controlling the Robot with a Phone and Python

3. The Service section shown in the following snippet configures how to run  
our code: 

[Service]

4. The working directory is where you have copied your robot files to—for example, 
/home/pi. We can also set the pi user we've been using the whole time. The 
working directory is how your code finds its other components. Have a look  
at the following code snippet:

WorkingDirectory=/home/pi
User=pi

5. The ExecStart statement tells systemd the command to run the service. 
However, it does not assume a path the way a shell would, so prefix the python3 
command with /usr/bin/env, as follows:

ExecStart=/usr/bin/env python3 control_server.py

6. You now need to set this up on the Raspberry Pi. Upload this file to your Raspberry 
Pi home directory.

7. You'll need sudo to copy it into the system configuration. Type this via SSH on 
the Pi. Note you will see permission errors if you miss the sudo command. The 
code can be seen here:

$ sudo cp menu_server.service /etc/systemd/system/

8. We should now ask systemd to load our configuration and then enable our 
service, as follows:

$ sudo systemctl daemon-reload
$ sudo systemctl enable menu_server

9. The system will confirm you've enabled it with this message:

Created symlink /etc/systemd/system/multi-user.target.
wants/menu_server.service → /etc/systemd/system/menu_
server.service.

10. You can then try starting your service with this command:

$ sudo systemctl start menu_server
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If starting this server is successful, you will see a green light go on, showing it is ready.  
You will then be able to point your browser at the robot and control it.

Let's just check that this has worked.

Troubleshooting
Things can go wrong here—if so, try these steps to fix it or find out more:

1. Starting/enabling the menu server with systemd may fail, and you will see 
Unit menu_server.service is not loaded properly: Invalid 
argument if there are problems with the menu_server.service file. Please 
verify its content, copy it back over, and rerun the sudo commands to install the 
new file.

2. If you want to see more of what the server is doing, you can use this command:

$ systemctl status menu_server

The Pi will then respond with something like this:
● menu_server.service - Robot Menu Web Service
  Loaded: loaded (/etc/systemd/system/menu_server.
service; enabled; vendor preset: enabled)
   Active: active (running) since Wed 2020-10-21 23:41:55 
BST; 2s ago
 Main PID: 1187 (python3)
    Tasks: 1 (limit: 860)
   Memory: 10.0M
   CGroup: /system.slice/menu_server.service
           └─1187 python3 control_server.py

Oct 21 23:41:55 myrobot systemd[1]: Started Robot Menu 
Web Service.
Oct 21 23:41:56 myrobot env[1187]:  * Serving Flask app 
"control_server" (lazy loading)
Oct 21 23:41:56 myrobot env[1187]:  * Environment: 
production
Oct 21 23:41:56 myrobot env[1187]:    WARNING: This is 
a development server. Do not use it in a production 
deployment.
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3. systemctl can show some recent activity, but you may want to follow the 
output of behaviors as they run. To do this, you will need to use the journalctl 
command. Use -u to specify the service we created, and then -f to follow the log, 
as illustrated in the following code snippet:

$ journalctl -u menu_server -f

We will then be able to see servers as they run—perhaps not as convenient for 
debugging, but handy for launching services. Use Ctrl + C to stop seeing the log.

You can now reboot the robot, wait for the green light, and start driving it. The green light 
will also mean that your Mycroft voice assistant can send requests to the robot too.

If you upload new code, you will need to restart the service. You can use the following 
command to do so:

$ sudo systemctl restart menu_server

Congratulations—your robot is now truly headless! It doesn't even need a PC or laptop  
to start doing things.

Summary
This chapter added a small menu system to our robot to start different modes from a 
connected web browser.

You've seen how to drive a robot from a mobile phone and how to create interesting-
looking animated widgets with SVG and JavaScript. 

Your robot has now gained the ability to be driven manually. It may take you a while 
to get used to handling it, and manually correcting for veer (motors behaving slightly 
differently) is more challenging than when the PID systems correct themselves. Still, you 
will gain skills in driving it with your phone. You can use the camera on the front of the 
robot to get a robot's-eye view of the world.

You've turned the control server into a menu server and then made that start 
automatically when you turn on the robot. You've also seen how to connect your menu 
server to the video-server apps such as manual driving, color-tracking, or face-tracking 
apps. By making the buttons more touch-friendly on the menu server, you can use a 
phone to launch most behaviors.
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Finally, we gave the menu server a way to indicate being ready on the robot with a LED 
and then set it up to automatically start when you turn on the robot. If your robot and 
phone can connect to the same network (perhaps you can set up your phone hotspot in 
a wpa_supplicant.conf file), you will be able to launch the behaviors from places 
outside your lab and demonstrate them to people. You've made the robot fully controllable 
with your phone!

In the next chapter, we will look at meeting the robot-making community and finding 
further robot building and programming skills to continue building.

Exercises
You could enhance the system in many ways. Here are some suggestions for building 
further:

1. In the manual_drive.py file, the handle_instruction function uses a 
bunch of if statements to handle the instruction. If this list of command handlers 
exceeds five, you could improve it by using a dictionary (such as menu_modes)  
and then calling different handler methods.

2. Could you change the touch interface into two circular pads—perhaps so the left 
controls motor movement and the right changes the camera position?

3. What about creating phone-friendly interfaces for other behaviors to control  
their parameters?

4. You could embellish the CSS by adding round buttons or putting spacing between 
the buttons.

5. The menu still uses text buttons. Could you find a way to associate an image with 
each behavior and make a button grid?

6. Adding a Shutdown menu button will mean you could more gracefully shut 
down the Pi, where it would start the sudo poweroff command.

7. For desktop compatibility, the manual driving system could be enhanced with 
keyboard interactions to drive the robot, which is not quite as fun as the phone  
but is a handy fallback.

8. A seriously advanced improvement to the driving system would be to control 
motors in terms of counts per second, with a PID per wheel, matching the number 
of pulse counts we get with those we expect from the encoders. This improvement 
would make the robot drive straighter and be therefore easier to drive.
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Further reading
To find out more about the topics covered in this chapter, here are some suggestions:

• I highly recommend the Flask API documentation (http://flask.pocoo.
org/docs/1.0/api/), both to help understand the Flask functions we've used 
and to learn other ways to use this flexible web server library.

• For a more guided look at the Flask web server, I suggest reading Flask By Example, 
Gareth Dwyer, Packt Publishing (https://www.packtpub.com/product/
flask-by-example/9781785286933), showing you how to build more 
involved web applications using Flask.

• I also recommend the book Mastering Flask, Jack Stouffer, Packt Publishing 
(https://www.packtpub.com/web-development/mastering-flask).

• The HTML used in this chapter is elementary. To get a more in-depth look into 
how you could enhance the simple menu system, I recommend the e-learning video 
guide Beginning Responsive Web Development with HTML and CSS [eLearning], 
Ben Frain, Cord Slatton-Valle, Joshua Miller, Packt Publishing (https://www.
packtpub.com/web-development/beginning-responsive-web-
development-html-and-css-elearning-video). 

• We use CSS selectors throughout HTML, CSS, and JavaScript applications. You can 
find a good combination of reference and tutorials at the W3C Schools CSS Selectors 
website (https://www.w3schools.com/cssref/css_selectors.asp). 
I would recommend exploring the site for its information on most web application 
technologies. For CSS units, see W3C Schools CSS Units (https://www.
w3schools.com/cssref/css_units.asp) to practice and find more types of 
units to use. W3C Schools provides in general great reference and learning material 
for these web technologies.

• For getting more familiar with the JavaScript, CSS, and HTML technologies used 
here, freeCodeCamp (https://www.freecodecamp.org/) is a valuable 
resource with self-learning modules.

• Raspberry Pi has handy documentation on user systemd files at https://www.
raspberrypi.org/documentation/linux/usage/systemd.md. 

• There is a chapter on understanding systemd in Mastering Linux 
Network Administration, Jay LaCroix, Packt Publishing (https://
www.packtpub.com/product/mastering-linux-network-
administration/9781784399597), published in 2015. 

• A full reference for systemd services can be found on the freedesktop manuals at 
https://www.freedesktop.org/software/systemd/man/systemd.
service.html.
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Section 4:  
Taking Robotics  

Further

In this section, we will learn how to find more interesting robot projects, continue 
growing the skills started in this book, and discover what communities there are.  
We will also summarize the skills we have learned.

This part of the book comprises the following chapters:

• Chapter 18, Taking Your Robot Programming Skills Further 

• Chapter 19, Planning Your Next Robot Project – Putting It All Together 





18
Taking Your Robot 

Programming Skills 
Further

You've now learned some beginner building skills and some of the more exciting 
programming tricks we can use with robotics. However, this robot is only really suitable 
for a lab; it's not ready for competitions or touring, and this is only the start of your 
robotics journey. There is also a large community of robot builders and makers that  
come from many angles. 

In this chapter, you will learn how to continue your journey, how to find communities, 
how to look for new challenges, and where to learn more robotics skills. You will learn 
what skill areas there are beyond this book, and why they will help you make more robots.

How can you be part of this? Let's find out!

In this chapter, we will cover the following topics:

• Online robot building communities – forums and social media

• Meeting robot builders – competitions, makerspaces, and meetups
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• Suggestions for further skills – 3D printing, soldering, PCB, and CNC

• Finding more information on computer vision

• Extending to machine learning

Online robot building communities – forums 
and social media
Robot building is a topic that shares a space with the general community of makers. 
Makers are everywhere. There are ham radio and electronics enthusiasts who are more 
connected to the electronics side of robot building, and there are artists who are using 
devices such as the Arduino and Raspberry Pi to bring their creations to life. Teachers  
are using these devices to show children the world of technology or teach other subjects  
to them. There are also people with problems to solve or brilliant and sometimes crazy 
ideas to try out.

Robotics is part of the maker community, which has a strong presence on  
Twitter, Instagram, and YouTube. Search for tags such as #raspberrypi (https://
twitter.com/hashtag/RaspberryPi), #arduino (https://twitter.
com/hashtag/Arduino), and #makersgonnamake (https://twitter.com/
hashtag/makersgonnamake) to find these communities. A rallying point is the  
@GuildOfMakers (https://twitter.com/guildofmakers) account on Twitter. 
I talk about making robots on my account, @Orionrobots (https://twitter.
com/orionrobots), from which I follow many robot communities and share what   
I have been making.

Another part of the robotics community is far more focused on the AI side of 
robotics, with specialist groups in visual processing, speech recognition and its various 
implementations, and more advanced topics such as neural networks, deep learning, and 
genetic algorithms. These communities may be close to universities and company research 
bodies. For speech processing, you can use the #mycroft (https://twitter.
com/hashtag/mycroft) and #voiceassistant (https://twitter.com/
hashtag/voiceassistant) Twitter tags. For visual processing, you can use the 
#computervision (https://twitter.com/hashtag/computervision) 
and #opencv (https://twitter.com/hashtag/opencv) tags to find relevant 
conversations and blogs. Searching for TensorFlow and machine learning will help. 
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Finding Twitter feeds from universities involved, such as MIT Robotics (https://
twitter.com/MITRobotics), CMU Robotics Institute (https://twitter.
com/cmu_robotics), and The Standford Vision and Learning Lab at http://svl.
stanford.edu/, will reveal some fantastic projects. Industrial robotics companies tend 
to be less helpful to makers but can be a source of inspiration.

Robot parts vendors online often have great projects, along with community influence. 
They also deliver internationally. In the UK, we have Pimoroni (https://blog.
pimoroni.com/), 4Tronix (http://4tronix.co.uk/blog/), and Cool 
Components (https://coolcomponents.co.uk/blogs/news), to name a 
few. In the US, there is Adafruit (https://blog.adafruit.com/) and Sparkfun 
(https://www.sparkfun.com/news). Finding these vendors on social media  
will often reveal robotics and maker discussions with sources for parts and projects.

The online Instructables (https://www.instructables.com/) community shares 
many projects, including robotics builds and other things that will help a robot maker, 
either with experience or tooling. The Hackaday (https://hackaday.com/) website 
also has many great stories and tutorials.

Along with online websites, there are communities of robot builders on YouTube.

YouTube channels to get to know
First, there's my own: Orionrobots (https://www.youtube.com/orionrobots).  
I share many of my robot builds, experiments with sensors, and code on my channel. I put 
the code on GitHub with the intent that people can learn from and build on my ideas.

James Bruton (https://www.youtube.com/user/jamesbruton), also known 
as XRobots, makes very complicated and large 3D printed robotic builds and uses them 
to make creations that rival the great university robots, robotic costumes with real 
functionality, and self-balancing walkers. 

The Ben Heck show (https://www.youtube.com/
playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa) is less about 
robotics and more general making, including robotics. The show is far more focused  
on the maker side than the coding side but is an incredibly inspiring resource.

Computerphile (https://www.youtube.com/user/Computerphile) is a 
YouTube channel with great videos on programming, including aspects of robotics,  
visual processing, and artificial intelligence. It includes interviews with some of the 
significant figures still around in computing.
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The Tested channel (https://www.youtube.com/user/testedcom) features 
Adam Savage from the the Mythbusters team, with very skilled makers doing in-depth 
builds and sharing their work and techniques.

The vendors Makezine (https://www.youtube.com/user/makemagazine), 
Adafruit (https://www.youtube.com/user/adafruit), Sparkfun (https://
www.youtube.com/user/sparkfun), and Pimoroni (https://www.youtube.
com/channel/UCuiDNTaTdPTGZZzHm0iriGQ) have YouTube channels (and 
websites) that are very tutorial-based and can help you get to know what is available.

These YouTube communities are good if you want to see what people are working on and 
see robot builders at work. There are also specific places on the internet to ask for help.

Technical questions – where to get help
For technical questions, Stack Exchange can help, with specialist areas for Raspberry 
Pi (https://raspberrypi.stackexchange.com/), Electronics (https://
electronics.stackexchange.com/), Robotics (https://robotics.
stackexchange.com/), and Stack Overflow (https://stackoverflow.com) 
for general programming help. Quora (https://hi.quora.com/) offers another 
question-and-answer community for technical questions. Raspberry Pi has a forum at 
https://www.raspberrypi.org/forums/, while Mycroft has a community  
forum at https://community.mycroft.ai/.

OpenCV has a forum for technical questions following the Stack Overflow style at 
http://answers.opencv.org/questions/.

Twitter is a more open format where you can ask technical questions. To do so, make sure 
you use hashtags for the subject matter and perhaps tag some influential Twitter robotics 
people to help you. 

Video channels on the subject are good places to ask questions; of course, watch the video 
to see if the answer is there first.

A trick to finding alternative tech and solutions on search engines is to type the first 
technology you think of, then vs. (as in versus), and see what completions they suggest. 
The suggestions will give you new options and ways to solve problems. 

While talking to people on the internet can help with many problems, nothing beats 
meeting real robot builders and talking things over with them. Where are they and  
how can you find them?
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Meeting robot builders – competitions, 
makerspaces, and meetups
As you start to build more, meeting up with other makers is a must. First, you will gain 
from the experience and knowledge in the community, but there is also a great social aspect 
to this. Some events are free, but the larger ones will have fees associated with them. 

Makerspaces
These spaces are for any kind of maker, be it robotics, crafting, arts, or radio specialists. 
They serve as tool collectives with a collection of tools any maker may need, along with 
space to use them.

You can expect to find a collection of Computer Numerical Control (CNC) machines 
such as 3D printers, laser cutters, lathes, and mills for cutting materials and drills. They 
also usually have a full electronics bench and many kinds of hand tools in these spaces.

Some have the materials for making Printed Circuit Boards (PCBs). Makerspaces also 
have a community of people using these tools for their projects. People are there for the 
community and are happy to share their experiences and knowledge with anyone.

Makerspaces are a great place to learn about making and practice skills. Some, such as the 
Cambridge Makerspace (https://twitter.com/cammakespace), have robot clubs.

There are Makerspaces in many cities and towns around the world. They are also known as 
maker collectives, Hackerspaces, and fab labs. For example, for South West London, there 
is the London Hackspace (https://london.hackspace.org.uk/), Richmond 
Makerlabs (https://richmondmakerlabs.uk/), and South London Makerspace 
(https://southlondonmakerspace.org/). Another example is Mumbai with 
Makers Asylum (https://www.makersasylum.com/). There is a Directory of 
Makerspaces at https://makerspaces.make.co, although searching Google  
Maps for makerspace and hackspace near you will probably yield results.

These spaces make themselves easy to find on search engines and social media. If there  
are none in your area, reaching out via social media to other makers may help you find 
like-minded individuals who can help you organize spaces like this. When you find a 
venue, be clear on what the venue allows, as, for instance, soldering can be a problem  
until you find a dedicated space with a large enough collective.

https://twitter.com/cammakespace
https://london.hackspace.org.uk/
https://richmondmakerlabs.uk/
https://southlondonmakerspace.org/
https://www.makersasylum.com/
https://makerspaces.make.co
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Maker Faires, Raspberry Jams, and Dojos
In terms of Maker Faires (https://makerfaire.com/), many countries host festivals 
based on making. This is where people gather to show and build things together, with 
robotics often being a part of such festivals. These can be 1-day events or camping festivals 
such as EmfCamp (https://www.emfcamp.org/) in the UK. These are places where 
you can get started learning new skills, show and tell things you've made, and see what 
others have been making.

Raspberry Jams (https://www.raspberrypi.org/jam/) and Coder Dojos 
(https://coderdojo.com/) are groups that get together to regularly exercise their 
programming and, sometimes, maker skills. A Coder Dojo is a community programming 
workshop. A Raspberry Jam is a similar event, closely related to Raspberry Pi. Some 
Raspberry Jams are aimed at adults, while others are aimed at kids, so find out what 
groups there are locally, if any, and what they are aiming at. Becoming a mentor for kids  
at a Dojo or Jam is a great way to get to know other interested makers and programmers.

The annual Raspberry Pi parties are a fun get-together, but the focus is much more on 
meeting and less on building together.

All these groups tend to have quite inspiring Twitter feeds.

Competitions
Robotics competitions are still relatively rare outside of academia. The FIRST (https://
www.firstinspires.org/robotics/frc) engineering initiative in the US is about 
getting schools and colleges to build robots and compete, with a few sporadic FIRST teams 
outside the US. FIRST challenges can be autonomous and manually driven. Most countries 
do have some kind of Science Technology Engineering and Mathematics (STEM) 
organization, such as https://www.stem.org.uk/ in the UK. They sometimes host 
robotics competitions, which you will be able to find out about on their websites and 
newsletters; be sure to see if they are open to the general public or just schools.

In the UK, the PiWars (https://piwars.org/) competition is run annually and 
involves many autonomous and manual challenges set around the Cambridge University 
School of computing. It has a strong community element and is a great place to meet 
robot builders as a competitor or spectator. The #piwars (https://twitter.
com/hashtag/PiWars) Twitter tag has quite an active community discussing this, 
particularly when robot makers gather to build and test robots before the event. 

https://makerfaire.com/
https://www.emfcamp.org/
https://www.raspberrypi.org/jam/
https://coderdojo.com/
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.stem.org.uk/
https://piwars.org/
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
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Another competition in the UK is Micromouse, http://www.micromouseonline.
com/, which is about maze-solving robots, though other kinds of robots are exhibited by 
makers. Both competitions also have small robot markets.

The Robotex International (http://robotex.international) robotics exhibition 
is held in Estonia and combines lots of show and tell with days of competitions and 
serious prizes. They welcome robot builders working with electronics and Raspberry Pi, 
alongside Lego and other materials. 

As these require travel, you should probably consider a large enough box, with bubble 
wrap or packing foam, to safely transport your robot(s) to and from such events. 

I advise that you remove the batteries to reduce the possibility of a stray wire causing a 
short and pack them into a plastic bag to insulate them from any metal. Start considering 
cable routing in robot design; although this is outside the scope of this book, it makes 
robots far more robust.

I also recommend having a field repair kit at hand with a breadboard, wires, spare 
batteries, a charger, all the screwdriver types, replacement components for logic-level 
shifters, hook and loop tape, a standoff kit, and possibly a multimeter. Robots often  
need a little tuning and repair when arriving at an event.

In this section, you've learned about some of the places where you can meet robot makers, 
use tools, and find some competition. Next, let's look at more skills you can utilize to build 
your robot.

Suggestions for further skills – 3D printing, 
soldering, PCB, and CNC
As you build more robots, you will want to create more elaborate or customized systems.

To build a competition-grade robot, you will need more hardware building skills.

Design skills
We've used block diagrams and simple drawings throughout this book. However, to 
become more serious about robot building, you'll want to design parts or check that 
bought parts will integrate with your robot. You will want to create cases, chassis, sensor 
mounts, brackets, wheel types, and any number of parts, for which Computer-Aided 
Design (CAD) is key.

http://www.micromouseonline.com/
http://www.micromouseonline.com/
http://robotex.international
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2D design for illustration and diagrams
For 2D design and illustration, I recommend Inkscape (https://inkscape.org/). 
Inkscape is more artistic than CAD-oriented, but it is handy if you wish to make logos and 
other designs. It is quite complicated, so I recommend a book such as Inkscape Beginner's 
Guide, Bethany Hiitola, Packt Publishing, to get started learning about it. 

Draw.io (https://app.diagrams.net) is useful for creating diagrams like the ones 
in this book. You can combine these two systems using Inkscape to make new shapes that 
you can use in Draw.io. Inkscape allows more freedom in terms of shape manipulation, 
but Draw.io is better for placing shapes and connecting things.

3D CAD
It is thoroughly worth getting to know 3D CAD systems such as FreeCAD (https://
www.freecadweb.org) and Fusion 360 (https://www.autodesk.com/
campaigns/fusion-360-for-hobbyists). FreeCAD is free and open source; 
Fusion 360 has a free entry-level CAD system for makers.

3D CAD systems let you design parts and then create further designs so that you can test 
how to assemble them. You can also make drawings from these for hand tool usage or 
export them for 3D printing.

All of them will take some investment in time, so I recommend using tutorials and 
YouTube videos to get to grips with them. The Maker's Muse channel (https://www.
youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg) is a good place to get 
started with this.

The Thingiverse (https://www.thingiverse.com/) community share 3D designs 
for printing and making. One very effective technique can be to either draw inspiration 
from, reuse, or repurpose creations seen there. If you can, import a bracket into FreeCAD 
and add the particular holes/base or connectors you need; it could save you hours of work 
trying to draw the mount for a sensor from scratch. The community will also have tips 
on printing these. As you may not always find what you are looking for in Thingiverse, 
consider alternatives such as Pinshape (https://pinshape.com/) and GrabCad 
(https://grabcad.com/).

Once you have CAD drawings of parts, you can send them off to have them made or learn 
about techniques you can use to manufacture them yourself.

https://inkscape.org/
https://app.diagrams.net
https://www.freecadweb.org
https://www.freecadweb.org
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.thingiverse.com/
https://pinshape.com/
https://grabcad.com/
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Skills for shaping and building
As a general recommendation, the MIT How To Make Almost Anything (http://fab.
cba.mit.edu/classes/863.14/) course materials (which are updated annually) 
are a fantastic resource for finding ways to put things together – although they look plain, 
the links there are very useful. As we mentioned in Online robot building communities – 
forums and social media, YouTube and other channels are rich with practical examples  
and hands-on tutorials when it comes to making things.

Machine skills and tools
CNC milling, laser cutting, and 3D printing allow you to create solid parts and can give 
great results; however, each is a field of its own with many skills you must learn on the 
way. Laser cutting allows you to make flat parts, but with some ingenuity, flat parts can  
be assembled (like so many types of furniture) into sophisticated, solid 3D objects. 

The YouTube channel NYC CNC (https://www.youtube.com/user/
saunixcomp) covers a lot of CNC tips and usage; however, the online book Guerrilla 
guide to CNC machining, mold making, and resin casting, by Michal Zalewski is also a 
brilliant resource.

For these machining techniques, I would not suggest going out and buying your own, but 
to find out more about the local community Makerspaces we mentioned previously and 
use the facilities they have there. Some libraries are also getting into this and providing  
3D printers and simple maker materials. Using these will be cheaper than buying your 
own; you will be among a community of others with experience, and it will be far easier 
than trying to do it alone. 

If you just want the 3D printed or laser cut parts, there are places online that will make 
things for you. Ponoko (https://www.ponoko.com/), RazorLAB (https://
razorlab.online), 3DIng (https://www.3ding.in/), Protolabs (https://
www.protolabs.co.uk/), Shapeways (https://www.shapeways.com/), and 
3D Hubs (https://www.3dhubs.com/) are some of the companies that offer such 
services. Looking for 3D printing and laser cutting services in your region via a search 
engine isn't difficult, but it will still help to gain some experience through a Makerspace  
to understand what is and isn't possible with these machines. Using the wrong machine 
for a job, or making the wrong design decisions, could lead to huge costs.

http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.ponoko.com/
https://razorlab.online
https://razorlab.online
https://www.3ding.in/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.shapeways.com/
https://www.3dhubs.com/
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3D printers, laser cutters, and CNC machines require routine maintenance and upkeep 
tasks, such as leveling a 3D print bed or tramming the CNC chuck. They also require 
consumables such as stock (plastic filament, wood to mill or laser cut), replacement 
components, and bed adhesive materials. Unless you are printing a lot, it is rarely an 
economy to own your own when you have access to another via a Makerspace or an 
online market.

While machine skills will create very precise parts, hand skills are needed either to finish 
or modify these parts. Some parts will always be more suitable if they're made by hand  
for robot one-offs.

Hand skills and tools
Having some basic woodworking and crafting skills always comes in handy. Practicing 
these at a Makerspace will help you see how things can go together. With this comes 
knowing how to choose suitable wood as an unsuitable wood might be too soft, too  
heavy, or too irregular. Wood can be carved by hand or used in a CNC machine, as 
mentioned previously.

Learning modeling skills, such as using plasticard (styrene sheets), creating molds, and 
casting, are other ways to make 3D parts. Plasticard is an inexpensive, flexible material  
of varying thickness that can be easily cut by hand, perhaps using a printed template,  
and then assembled.

You can use woodworking to create molds and makeshift robot chassis. Molds allow 
you to make multiple copies or use materials in high-quality parts. Casting can be 
tricky, especially if you're dealing with bubbles, but there are good books on this subject. 
For this, I recommend the articles https://medium.com/jaycon-systems/
the-complete-guide-to-diy-molding-resin-casting-4921301873ad, 
https://youtu.be/BwLGK-uqQ90, and the Guerilla Guide To CNC, which was 
mentioned in Machine skills and tools.

Further interesting material skills, such as working with metal, allow for even bigger 
robots. This means learning how to cut, shape, and weld metal parts.

Carbon fiber or Kevlar materials are useful in larger robots, fighting robots, or those 
needing to handle heavier materials.

The Instructables (https://www.instructables.com/) and Hackaday (https://
hackaday.com) communities will help you learn skills like those mentioned in this 
section. They have practical instructions and tutorials on building things. You can either 
follow along with complete projects or just skim read for techniques to borrow from 
them. As well as looking for robots, look at modeling techniques (often similar), plasticard 
builds, woodwork, or metalwork tutorials. Makerspaces run lessons on these skills too.

https://medium.com/jaycon-systems/the-complete-guide-to-diy-molding-resin-casting-4921301873ad
https://medium.com/jaycon-systems/the-complete-guide-to-diy-molding-resin-casting-4921301873ad
https://youtu.be/BwLGK-uqQ90
https://www.instructables.com/
https://hackaday.com
https://hackaday.com
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With a pointer to where you can learn how to make the structural and mechanical parts, 
what about electrical parts?

Electronics skills
The next thing you must do is extend your electronic skills. We have been using Raspberry 
Pi hats and modules to build our robots. This is fine when we're starting out, but this 
starts to feel clumsy when there are many parts, with demands on space or fragile wiring 
making it far from ideal. You'll note that our wiring on the robot is very crowded. 

Electronics principles
Learning more about the electronic components and common circuits' functions will help 
you understand your robot further, expand it, find ways to reduce its size, or eliminate 
problems on the robot. 

Power electronics will give you a better understanding of your robot's motor controller 
and battery regulation circuits. Digital electronics will let you connect other logic devices, 
use new sensors, or aggregate them in useful ways. Analog electronics will also open 
up new types of sensors and actuators and give you tools to diagnose many electrical 
problems that can crop up.

For this, you should learn how to draw and read schematic circuits for the common parts. 
Online courses and YouTube channels teach electronics step by step, with books such as 
Make: Electronics, by Charles Platt giving a very hands-on learning path.

The EEVBlog (https://www.eevblog.com/episodes/) channel is less step by step 
but offers more general immersion in terms of electronic engineering concerns. 

Taking soldering further
Although we've done a little soldering, it's just the bare minimum. There is far more stuff 
to learn about on the subject. Soldering is a skill that many makers use daily.

Some good places to start are the Raspberry Pi guide to soldering (https://www.
raspberrypi.org/blog/getting-started-soldering/), The Adafruit Guide 
To Excellent Soldering (https://learn.adafruit.com/adafruit-guide-
excellent-soldering), and the EEVBlog Soldering tutorial (https://www.
youtube.com/watch?v=J5Sb21qbpEQ).

https://www.eevblog.com/episodes/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
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I recommend starting in a local Makerspace, where you will benefit from others and 
complete simple soldering projects. Soldering headers onto a module is a pretty basic 
way to start, along with using kits such as those made by Boltportclub (https://
boldport.com) to stretch those skills a bit further. Soldering allows you to start 
thinking about creating boards or Raspberry Pi hats.

You will start off by soldering simple headers and what are known as through-
hole components since they go through a hole in the board. This is the right type of 
construction you should be implementing to gain confidence with the technique.

As you become more confident, you will find kits that use surface mount soldering. Surface 
mount components do not have legs that go through holes but simple metal pads that are 
soldered directly onto the copper pads on the board. They take up far less space, allowing for 
smaller constructions, but they are also quite fiddly and eventually require fairly professional 
tools to be used. Some simple surface mount components, such as LEDs, resistors, and 
capacitors, can be soldered by hand. See the EEVBlog Surface Mount tutorial (https://
www.youtube.com/watch?v=b9FC9fAlfQE) for a starting point.

Devices with tens of pins may not work and require solder ovens and solder paste. At that 
point, you may be making custom circuits, and a Printed Circuit Board and Assembly 
(PCBA) service might be the correct path to take.

Custom circuits
As you gain confidence with electronics and soldering, you will want to create more 
circuits and transfer them onto more professional-looking PCBs to save space and perhaps 
make them easier to wire. Breadboards are good for learning and experimenting, but they 
are not ideal for competing and quickly become bulky and untidy, while point-to-point 
wiring is fragile and prone to mistakes. 

The first stage of custom, more permanent circuits is using stripboard or perfboard and 
soldering components onto them. This is a good further step from breadboards and will 
save space. They can still be a little bulky and messy, though. You may also want to use 
parts that are surface mounted or have irregularly laid out legs of different sizes that  
don't fit conveniently on perfboard or stripboard. 

To take your circuits to the next level, you can learn to design PCBs. You will be able to 
save yet more space, have more robust circuits, and be able to use tiny surface mount 
parts. You could even design PCBs that are for light structural placement too. 

For breadboards, you can use Fritzing (http://fritzing.org/home/), but I don't 
recommend it for schematic or PCB work. To design these, software such as KiCad 
(https://kicad.org) is a good hobbyist tool. I recommend the video course  
KiCad Like a Pro, Peter Dalmaris, Packt Publishing.

https://boldport.com
https://boldport.com
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
http://fritzing.org/home/
https://kicad.org
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You can use facilities at local Makerspaces to make PCBs or send them to board houses 
to have them beautifully made, with fine tracks, lettering, and fancy colored solder masks 
(you'll see more such terminology in the field). Custom PCBs allow you to tune the layout 
to avoid any point-to-point wiring, work with tiny surface mount parts, add helpful text 
right on the board for some wiring, and get a professional look. Some even use this to 
make other parts for the robot, including structural parts and front panels, in PCB.

Finding more information on computer vision
We started looking at computer vision in Chapter 13, Robot Vision – Using a Pi Camera 
and OpenCV. We used OpenCV to track colored objects and faces but barely scratched 
the surface of computer vision.

Books
I recommend the book OpenCV with Python By Example, Prateek Joshi, Packt Publishing, 
if you wish to continue learning about OpenCV. This book uses computer vision to build 
augmented reality tools and to identify and track objects and takes you through different 
image transformations and checks, showing screenshots for each of them. It is also quite 
fun as it contains lots of hands-on code.

You can even extend computer vision further to 3D computer vision with the Xbox 360 
Kinect sensor bar. Although they are no longer produced by Microsoft, they are extremely 
common and fairly cheap on eBay. Note that there is a modern Azure Connect device you 
can use for this, but at the time of writing, this is 20 times the price! The XBox 360 Kinect 
sensor bar has also been interfaced with the Raspberry Pi. The Kinect has a 3D sensing 
system that makes them valuable for use in robots. There is a section on connecting  
this to the Raspberry Pi in the book Raspberry Pi Robotic Projects, Dr. Richard Grimmett,  
Packt Publishing.

Online courses
PyImageSearch (https://www.pyimagesearch.com/) contains some of the best 
resources for learning OpenCV and experimenting with machine vision.

Learn Computer Vision with Python and OpenCV, Kathiravan Natarajan, Packt Publishing 
(https://www.packtpub.com/in/application-development/learn-
computer-vision-python-and-opencv-video) dives in some depth into color 
tracking, feature detection and video analysis while using the excellent Jupyter tool to 
experiment with image transformations. 

https://www.pyimagesearch.com/
https://www.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://www.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
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The TensorFlow Tutorials (https://www.tensorflow.org/tutorials/) website 
(a machine learning framework) contains tutorials specifically aimed at using TensorFlow 
in computer vision. Training machine learning systems to perform visual recognition can 
take a lot of time and sample data.

The video course Advanced Computer Vision Projects, Matthew Rever, Packt Publishing 
(https://www.packtpub.com/big-data-and-business-intelligence/
advanced-computer-vision-projects-video) provides further computer 
vision projects, culminating in using the TensorFlow machine learning system to analyze 
human poses from camera input.

Social media
I mentioned the Twitter tags #computervision and #opencv in the Online robot 
building communities – forums and social media section, and they are a good place to ask 
questions or share your work about the subject.

Computerphile has a small computer vision playlist (https://www.youtube.com/
watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF) that 
explains the concepts and theory of some visual processing algorithms, but does not tend 
to dive into any hands-on implementation.

With that, you've learned where you can find out more about computer vision. However, 
this leads to a more advanced robot subject: machine learning.

Extending to machine learning
Some of the smartest sounding types of robotics are those involved in machine learning. 
The code used throughout this book has not used machine learning and is instead 
used well-known algorithms. The Proportional Integral Derivative (PID) controller 
you used in this book is a system that makes adjustments to read a value, but it is not 
machine learning. However, optimizing PID values might come from a machine learning 
algorithm. We used Haar Cascade models to detect faces; this was also not machine 
learning, though OpenCV contributors probably used a machine learning system to 
generate these cascades.

Machine learning tends to be great at optimizing tasks and discovering and matching 
patterns, but poor at making fully formed intelligent-seeming behavior.

https://www.tensorflow.org/tutorials/
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
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The basic overall idea of many machine learning systems involves having a set of starting 
examples, with some information on which are matches and which are not. The machine 
is expected to determine or learn rules based on what is or is not a match. These rules may 
be fitness scores based on learning rules to maximize such a score. This aspect is known  
as training the system.

For the PID control system, you could base fitness on settling to the set point in the fewest 
steps with little or no overshoot based on training values from data, such as machine 
variations, response times, and speed. 

Once again, I recommend the Computerphile AI Video playlist (https://www.
youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT
5YE-sA8Ps) video series for getting to know the concepts around machine learning;  
it's not hands-on but is more focused on the ideas. 

Machine learning can be quite focused on data and statistics, but the techniques you've 
learned throughout this book can be applied to sensor data to make this more relevant to 
robotics. There are many examples of the TensorFlow system being used to build object 
recognition systems. Genetic algorithm-evolving solutions have been used to great effect 
for robot gaits in multi-legged systems or finding fast ways to navigate a space.

Robot Operating System
Some of the robotics community make use of the Robot Operating System (ROS); see 
http://www.ros.org/. Robot builders use this to build common, cross-programming 
language abstractions between robot hardware and behaviors. It's intended to encourage 
common reusable code layers for robot builders. AI systems built on top of this can be 
mixed and matched with lower-level systems. The behaviors/robot layers we have built 
allow some reuse but are very simplified compared to ROS.

The book ROS Programming: Building Powerful Robots, Anil Mahtani, Packt Publishing 
covers linking the TensorFlow AI system to ROS-based robotics.

For a simpler introduction, Learning Robotics using Python, Lentin Joseph, Packt Publishing 
uses ROS with Python to build a smart AI robot using LIDAR.

https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
http://www.ros.org/
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Summary
In this chapter, you learned how to find out who else and where else robots like the ones 
we covered in this chapter are being made, as well as how to be part of those communities. 
Sharing knowledge with other robot builders will accelerate your journey.

You've also learned where to compete with a robot, where to get more advice, and how to 
find information to progress the different skills you've started building much further. This 
inspiration and direction should make it easy for you to keep growing your robot skills.

In the next chapter, we will summarize everything that we have learned throughout this 
book, with a view toward building your next robot.

Further reading
The following are further practical robotics books available that I enjoy:

• Python Robotics Projects, Prof. Diwakar Vaish, Packt Publishing: This book offers 
more Raspberry Pi and Python robotics projects for you to practice with. 

• Robot Building for Beginners, David Cook, Apress: This book leads you through 
building sandwich, a scratch-built robot based on a lunchbox. It is a little more 
maker- and electronics-based, but it is quite a fun project to follow. 

• Learning Raspberry Pi, Samarth Shah, Packt Publishing: You can dig further into 
what can be done with a Raspberry Pi here and find inspiration for enhancing your 
robots within the sections of this book.

• Robot Builder's Bonanza (5th Edition), Gordon McComb, McGraw-Hill Education 
TAB: This was an influential book and is quite extensive in terms of how to make a 
robot. This is the best book for going beyond buying kits and constructing bigger 
and more mechanically complicated robots.



19
Planning Your 

Next Robot Project 
– Putting It All 

Together
Throughout this book, you've now seen how to plan, design, build, and program a robot. 
We've covered many of the starting topics with some hands-on experience of them, an 
example demonstrating the basics, and some ideas of how you could improve them. In 
this chapter, we will think about your next robot. We'll answer questions such as the 
following: How would you plan and design it? Which skills might you need to research 
and experiment with? What would you build?

We will cover the following topics in this chapter:

• Visualizing your next robot—how will it look?

• Making a block diagram—identify the inputs/outputs and parts it would need

• Choosing the parts—which tradeoffs will you think about when selecting 
components for the robot?
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• Planning the code for the robot—which software layers and components might this 
robot need, and which behaviors would be fun?

• Letting the world know—how would you share your plans, or your robot, with 
interested people?

Technical requirements
For this chapter, I recommend having some diagramming tools such as the following:

• Pen/pencils

• Paper—a sketchbook (or perhaps graph paper) is great, but the back of an envelope 
will do

• A computer with internet and access to https://app.diagrams.net/

Visualizing your next robot
When we started this book, in Chapter 2, Exploring Robot Building Blocks – Code and 
Electronics, we first learned how to look at robots as a sketch. I suggested that you make 
quick drawings, and not worry if they are rough and sketchy—this is perfect at an early 
planning stage. Use a pencil or pen, and then move on to the more formal block and 
layout diagrams later.

Every robot starts with a bit of inspiration. Perhaps there is a competition you want to 
try; maybe you've seen something such as another robot or an animal you want to mimic 
(crabs are fascinating!). Other inspirations may come from seeing a unique new part or 
wanting to learn/play with a new skill. You may even have made a list of amazing robots 
you want to try to build.

Before building a robot, make a short bullet-point list of what it will do, which sensors/
outputs it will have, and what it might have to deal with. This list lets you focus your 
efforts. Here is an example, which I made for my SpiderBot project seen in Chapter 10, 
Using Python to Control Servo Motors. This is what I planned for it to do:

• It will have six legs (yes—an insect, not a spider).

• I will use it to experiment with legs and gaits.

• It will be able to avoid walls.

https://app.diagrams.net/
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Your quick sketches could first be a basic six-legged stick drawing, with some squares 
at one end to represent the ultrasonic sensor, and perhaps a few arrows with notes to 
depict what they mean. You've seen this technique in detail in Chapter 2, Exploring Robot 
Building Blocks – Code and Electronics. The following photo shows a simple design:

Figure 19.1 – Sketching your ideas on paper

As Figure 19.1 shows, my preferred first sketches are with a biro on graph paper, but I'll 
use any paper I have.

Visualizing the robot can be made with 2D, 3D, or profile sketches. Here are a few tips:

• Draw lightly, then follow through with firmer strokes when you are more confident 
with the design.

• Annotate it a lot with anything that comes to mind.

• Don't worry about scale, dimensioning, or perfect drawing; this is simply to capture 
ideas. You'll flesh them out and make firmer decisions later.

• It can be a good idea to date the picture and put a working name on it, even if you 
have a better name later.

• Feel free to combine block-style representations with sketchy visual versions.

• Keep a biro/pencil and notepad/scrap paper with you somewhere so that you can 
quickly jot down ideas. A whiteboard is excellent if you are near one. A pencil can 
let you erase and rewrite, and a ballpoint pen is easy to keep in a bag or pocket.
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• Get the big ideas down first; come back for detail. It's easy to get bogged down in 
detail on one aspect, forget the other parts, and run out of time. You can always 
make a tiny note to remind yourself. 

You can revisit this process at any time during the robot build, perhaps when you have 
further ideas, when you have a problem you are solving, or when you want to refine it. 
Most ideas start with some bullet points and a scribbled sketch; waiting for access to 
a computer or trying to draw it perfectly will detract from the next fantastic idea you 
already have in your mind—get it down first. 

Now that you have a sketch of roughly what it will look like and have written a basic plan 
on paper, we can start to formalize it with block diagrams.

Making a block diagram
Recall how in Chapter 2, Exploring Robot Building Blocks – Code and Electronics, and 
throughout the book, we've created block diagrams showing the robot we built there. You 
can represent any robot in this way. This diagram is where you would have a block for each 
input and output and then create controller and interface blocks to connect with them. 
Don't worry about the diagram being perfect; the main point is that the picture conveys 
which parts you'll connect to others. It's also quite likely that the initial diagram will need 
some change as you build a robot and come across constraints you were not aware of.

Here are two stages of a block diagram for SpiderBot:

Figure 19.2 – SpiderBot block diagram stages
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In Figure 19.2, I initially knew going in that each leg had three motors, but not a lot else. 
So, I drew those blocks in, along with the distance sensor I want it to have and a Wi-Fi 
connection.

In the next stage of the diagram, I added the controllers I'll use for it and then made the 
rough connections on the diagram. These are just blocks, and this is not a circuit diagram. 
These have been thrown together with app.diagrams.net. Note that things could still 
change as you learn more about your robot and its controllers.

You may also consider making diagrams for add-ons and subcomponents. Any part that 
seems complicated may need a further diagram to explore it. The important thing is to  
get ideas such as this out of your head and onto paper so that they are clearer, so that  
you don't forget them, and so that you may be able to spot flaws.

The other block diagram to consider is a software diagram, which we will visit in the 
Planning the code for the robot section.

Now, you have a rough sketch of the robot and the block diagram, and you are ready  
to start choosing the parts you would use to build a robot.

Choosing the parts
Throughout this book, we have looked at the tradeoffs between different kinds of sensors, 
different chassis kits, controllers, and so on. These are tradeoffs on weight, complexity, 
availability (you don't want an irreplaceable part), and cost, covered in detail in Chapter 6, 
Building Robot Basics – Wheels, Power, and Wiring.

If a particular kit inspired the robot—for example, SpiderBot was inspired by a hexapod 
kit; yours could be a robot arm or caterpillar track kit—this will likely constrain the 
other part choices you need to make. I'd need to support 18 servo motors; however, I had 
a 16-motor controller available, so I elected to use two input/output (I/O) pins of the 
central controller for the remaining two servos. This added software complexity, though.

Another tradeoff was the main controller. I knew that I'd want SpiderBot to be Wi-Fi-
enabled, but it wasn't going to be doing visual processing, so a small, cheap, and 
low-power controller such as the ESP8266 was an excellent choice for it.

For power, I knew that it would require a lot of current for all those servos but it wouldn't 
be able to carry a great deal of weight, so a more specialist lithium polymer (LiPo) battery 
would be needed, along with a charger/protection circuit.

A key stage of choosing the parts is to test fit them.

http://app.diagrams.net
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The test-fit diagram
When choosing the parts, consider how they will fit together: is there a clear path to 
interfacing the choice of motor controller with your choice of main controller? Have these 
two components been used together, or are you prepared for the complexity of making a 
new interface? Based on the parts you think you will buy, collect their dimensions and try 
making a test-fit diagram, as we did in Chapter 6, Building Robot Basics – Wheels, Power, 
and Wiring. Try to make a test fit before buying new parts.

Buying parts
It was then a matter of finding stockists to buy it. I do have some local favorites (such as 
coolcomponents.co.uk, shop.pimoroni.com, and thepihut.com), and you 
will find those in your region as you build more. Looking for local Pimoroni, SparkFun, 
Raspberry Pi, and Adafruit stockists will help you find the right kind of store. 

You can find modules on your regional Amazon, Alibaba, or eBay but be very clear about 
what you are buying and how much support you will get. You'll find individual parts at 
large stockists such as Element14, Mouser, RS, and Digi-Key; although they tend not to 
have many prebuilt modules, they are reliable and have large catalogs.

Parts are mostly sold online. There may be high-street sellers of electronics and 
mechanical parts, but this is becoming rarer.

You may also use parts from an existing stock, which you will build up as you build 
robots. You can convert toys into robot chassis, a practice known as toy hacking. Robot 
builders can salvage motors and sensors from old printers and electromechanical systems 
(with care). In this case, the test-fit diagram will help you see what you may need to 
change to make things work with the salvaged parts.

Assembling your robot
Now, you are ready to assemble your new robot. The building guides in Chapter 6, 
Building Robot Basics – Wheels, Power, and Wiring, and Chapter 7, Drive and Turn – 
Moving Motors with Python, along with the basic soldering guide in Chapter 12, IMU 
Programming with Python, will get you started. However, the additional reading and skills 
suggested in Chapter 18, Taking Your Robot Programming Skills Further, will give you 
many more options for assembling the robot.

Now that you have the parts and you've started building the robot, the next thing to 
consider is the robot's code.

http://coolcomponents.co.uk
http://shop.pimoroni.com
http://thepihut.com
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Planning the code for the robot
We started planning code in layers in Chapter 2, Exploring Robot Building Blocks – Code 
and Electronics, and then explored this further in Chapter 7, Drive and Turn – Moving 
Motors with Python under the Robot Object section.

Let's recall how we planned our code structure with layers.

System layers
The general idea is to create layers of code in the system, as shown in the following diagram:

Figure 19.3 – Robot software layers

As Figure 19.3 shows, there are some suggested layers, as follows:

• At the bottom of the stack, Vendor Libraries. These, as the name implies,  
usually come from the hardware supplier, third parties, or a community. These are 
things such as the gpiozero library we have been using or the various Arduino 
libraries for that ecosystem. This layer may include I/O control, bus layers, and 
network stacks.

• The next layer is Libraries and Middleware. This software may come from a third 
party—for example, higher-level libraries to interface with specific hardware. 
The middleware layer also includes abstractions you've written, such as making 
two-wheeled robots behave the same, even if the third-party libraries differ. On 
the same layer are algorithms and libraries. OpenCV exists at this layer, from a 
community. Your Proportional-Integral-Derivative (PID) algorithm or object 
recognition pipelines may belong in this layer. This layer has components to build 
apps and behaviors.

• The top layer is gluing everything together. Take hardware sensor inputs, through 
algorithms, to create hardware motor outputs and pleasing control interfaces or 
dashboards. The top layer is where you make behaviors and apps for the robot.
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For a basic robot, components in these layers could just be functions or classes. For a 
more complicated one, these may be different software components talking on a shared 
software bus (such as a message queue or as connected services). The library we have 
already built will work for many small-wheeled robots (at the middle layer). This library 
will need refining as you gain experience with it. You can adapt behaviors for new sensors 
and outputs if you have kept the behavior separate from the hardware concerns.

Use diagrams to draw the blocks and layers to express where those boundaries lie. Expect 
to write code in modules and blocks that you link together to reason about each part. It 
should not be necessary to get lost in the details of a Serial Peripheral Interface (SPI) 
data bus transaction (at the vendor hardware layer) when thinking about making pleasing 
LED patterns (at the behavior layer). 

Once you've considered layers and some rough components, you will need to think about 
how information moves between them with a data-flow diagram.

Data-flow diagrams
You can also use diagrams to explore the behavior from a data-flow perspective, such as 
the PID and feedback diagrams used to express the behaviors in Chapter 13, Robot Vision 
– Using a Pi Camera and OpenCV. We also use this diagram style for the color object and 
face-tracking behaviors as data pipelines showing the image transformations. Don't expect 
to capture the whole story in one diagram; sometimes, a few are needed to approach the 
behavior's different aspects.

Spend time considering the tricky areas here, such as additional math that might be 
needed if the sensor/movement relationship is complicated. You might not get it right 
the first time, so building it and reasoning about why it behaved differently from your 
expectations will be necessary. At this stage of the design, going and finding similar 
works on the internet or reading one of the many recommended books will yield a deeper 
understanding of what you are attempting. In most cases, persistence will pay off.

Formal diagrams
There are formal representations for diagrams such as flowcharts or the Unified Modeling 
Language (UML) types. These are worth finding out about and learning as a resource to 
draw upon for drawing. The app.diagrams.net software has a nice library of diagram 
elements. The most important aspect of a diagram is to convey the information—you 
should try to express what is in your head in a way that makes sense to you 6 months  
later, or to your team (if you have one).

http://app.diagrams.net


Letting the world know     557

Sometimes, building simple behaviors gives you a library to use for more complicated and 
interesting ones. Our straight-line drive behavior was a building block to start on driving 
in a square behavior.

Programming the robot
You can now program the robot, but be prepared to go around a few planning, 
implementing, testing, and learning loops. Do not be disheartened by testing failures, 
as these are the best opportunities to learn. The most learning is done in planning and 
determining test failures. If it all works the first time, it's far less likely to stick with you. 
Each behavior in this book took me multiple attempts to get right; tuning them is a trial-
and-error process.

You've planned your code, and you're now building the robot. How do you let the world 
know you are making something and find help?

Letting the world know
You are bound to have questions about how to proceed and problems to be solved—
perhaps you've already encountered them before building. When you have questions 
or have made some minor progress, it is the right time to get online and link with the 
robotics communities, as shown in the Online robot building communities section of 
Chapter 18, Taking Your Robot Programming Skills Further.

Use Twitter and Stack Overflow to ask questions or even answer questions from other 
robot builders. Use YouTube to share your creation or the story of your build and see other 
people's builds. You do not need to wait until you have a perfectly polished product. Share 
the steps you've taken, the frustrations you have encountered, and even the failures you've 
learned from. Failure situations make for some of the best stories. These stories can be just 
the right motivation for someone else to keep on persisting with complicated builds.

Use a combination of YouTube, Instructables, and online blogs to practice new skills,  
or—better yet—get to a nearby Makerspace, Coder Dojo, or Raspberry Jam to practice 
new skills with others who are also making and learning.

Being a robot builder will make you an eternal student; there is always more to learn on 
the subject, not least because it is still an area of much research. People are pushing the 
boundaries of human knowledge in robotics. You can push your skill and knowledge 
boundaries while becoming a mentor and helper to extend the boundaries of what 
others can do. Perhaps you will come up with kits, modules, and code to lower barriers 
to entry, and you may also find novel ways to use robotics or build a sensor that pushes 
the boundaries of human knowledge. Whichever way it is, engaging with the robot 
community is exciting, refreshing, and keeps you looking out for new stuff to try.
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Testing your robot in lab conditions is OK, but the most rigorous testing happens outside, 
at competitions and demonstrations. You will shake out new bugs, find new problems to 
solve in these cases, and create a network of robot-building friends and peers. Robotics 
has a stereotype of being a very solitary hobby or profession, but this need not be the case 
as there are plenty of people making something, so make with them.

Building with a team can be very rewarding and challenging. It will allow you to create 
more ambitious builds than going it alone. Getting involved in any of the communities, 
especially local ones, will probably represent your best chance of finding team members.

You've now reviewed how to reach out to the wider world of robot builders and find help, 
inspiration, and competition. You've seen how robotics can be a collaborative and social 
hobby. Perhaps you've also been inspired to start your own robotics blog or YouTube 
channel. I look forward to seeing you in our community!

Summary
You've now seen throughout this book how to build and program your first robot. You've 
seen where to find out more and how to extend your knowledge. In this final chapter, 
we've summarized what you've learned and suggested how to use this to plan, build,  
and program your next robot, as well as taking it on tour and being a member of the 
robotics community.

You've seen how to design and plan a robot and how to build, program, and test a robot. 
You've learned hardware skills such as soldering, simple software such as moving a 
robot, and have touched lightly on complex areas such as computer vision and inertial 
measurements. You've shaken out bugs, made tradeoffs, finely tuned systems, and learned 
how to keep backups. You've made user interfaces, smart behaviors, and taken control of  
a robot with a smartphone.

You have reached the end of this book, but I hope this is just the start of your robotics 
journey.
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O
obstacle avoidance

basics  172-176
flowchart  173, 174

sophisticated object avoidance  176-178
odometry  94, 242
OnionIoT  43
online robot building communities

about  534
forums and social media  534, 535
technical questions  536

Open Computer Vision (OpenCV) library
about  331
installing  331

optical encoders  244
optical sensors  153
opto-interrupters  244
orientation

sensors, combining for  473-478
Orionrobots

URL  535

P
pan and tilt code

creating  224
running  231
servo, adding to robot class  227, 228
servo object, making  224-226
troubleshooting  231, 232

pan and tilt head
making, to move in circles  228-231

pan and tilt mechanism
about  8
adding  217, 218
attaching, to robot  223, 224
kit, building  219-223

pan-and-tilt mechanism
Raspberry Pi camera, 

attaching to  323-327
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parts
buying  554
selecting  553
test-fit diagram  554

photo interrupters  244
physical robot

planning  37-39
Pi camera

about  44
software, setting up  330

PID controller
components  264
derivative (D)  264
integral (I)  264
proportional (P)  264

Pimoroni
URL  535, 536

Pimoroni LED SHIM  184
Pimoroni Python library

installing  295, 296
troubleshooting  297

Pinshape
URL  540

pitch  305
pitch-and-roll angles

detecting, with accelerometer  454
pitch-and-roll angles, obtaining 

from accelerometer vector
about  454-457
troubleshooting  458

Pi Wars  15
plasticard  542
polar plot  236
pose  306
power pins  45
power switch

adding, to motor power  160-162

prerequisites, for building 
competition-grade robot

design skills  539
electronic skills  543
skills, for shaping and building  541

Pre-Shared Key (PSK)  55
primitives  442
Printed Circuit Board and 

Assembly (PCBA)  544
Printed Circuit Boards (PCBs)  252, 537
Proportional Integral Derivative (PID)

about  348, 515, 546, 555
veer, correcting with  263, 264

proportional-integral (PI)  265
Pulse Width Modulation (PWM)  30, 208
PuTTY

used, for connecting to 
Raspberry Pi  59-61

PyImageSearch
URL  545

Python
accelerometer, reading  310
colored objects, following with  347, 348
distance traveled, detecting in  253
faces, tracing with  362
gyroscope, reading  303

Python libraries
installing, to communicate 

with sensor  166
Python OpenCV libraries

Flask  332
installing  331
large array extension  332
NumPy  332

Python PID control object
creating  265, 266
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R
rack and pinion steering  134
rainbow

making, on Light Emitting 
Diode (LED)  196-198

rainbow display
making, with Light Emitting 

Diode (LED)  194
Raspberry Jams

URL  538
Raspberry Pi

about  31, 62
encoders, wiring to  251, 252
finding, on network  56
IMU, wiring to  294, 295
lifting  250
light strip, attaching to  185, 186
motors, connecting to  116-118
physical installation  412, 413
PuTTY or SSH, used for 

connecting to  59-61
ReSpeaker software, installing  414
selecting  33
setup, testing  57, 58
sound input, adding  411, 412
sound output, adding  411, 412
SSH, enabling  54-56
troubleshooting  58
voice agent, installing on  413, 414
wireless, setting up  54-56

Raspberry Pi 3A+  33, 43
Raspberry Pi 4B  33
Raspberry Pi camera

attaching, to pan-and-tilt 
mechanism  323-327

pictures, obtaining from  331

setting up  322, 323
wiring in  327-329

Raspberry Pi Camera Guide
URL  328

Raspberry Pi camera stream app
building  332
CameraStream object, writing  334, 335
image server main app, writing  336, 337
OpenCV camera server, designing  333
server, running  338, 339
template, building  338
troubleshooting  339

Raspberry Pi Forums
URL  59

Raspberry Pi HATs  46
Raspberry Pi OS

about  46, 47
configuring  61, 62
rebooting  65-67
reconnecting  65-67
renaming  62-64
SD card, preparing with  47-49
securing  64
shutting down  69
software, updating  67, 68

Raspberry Pi OS Lite  47
Raspberry Pi, pinouts

reference link  96
Raspberry Pi, preparing for remote driving

about  500, 501
code, creating for sliders  512-516
image app core, enhancing  501, 502
manual drive behavior, writing  502-505
running  516, 517
style sheet  509-512
template (web page)  505-508
troubleshooting  517, 518
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Raspberry Pi’s, capabilities
connectivity  43
exploring  42
networking  43
power  42
speed  42

Raspberry Pi Zero W  34
record-and-replay interface

using  246
relative encoders  244, 245
requirements, for selecting 

motor controller board
connectors  98
integration level  95
pin usage  96
power input  98
size  96, 97
soldering  97

requirements, for selecting 
robot chassis kit

cost  94
motors  93, 94
simplicity  94
size  91
wheel count  91, 92
wheels  93, 94

ReSpeaker software
installing  414, 415
troubleshooting  416

RGB
HSV, converting to  196

RGB strip  182
RGB values  184, 185
robot

about  4, 5
code object, displaying to  187
code structure, planning  34-36
components, planning  34-36

controller  31, 33
controllers and I/O, exploring  29
driving, from IMU data  480, 481
encoders, attaching to  248
IMU, attaching  291
I/O pins  29-31
LED strip, attaching to  186
pan and tilt mechanism, 

attaching to  223, 224
physical system  20-23
powering  99-101
programming  557
Raspberry Pi, selecting  33, 34
script, writing to follow 

predetermined path  145-147
sensors, securing to  158, 159
starting, automatically with 

systemd tool  525, 526
steering  133, 137, 138
test fitting  102-104
visualizing  550-552

robot arms  12, 13
robot base, assembling

about  105, 106
AA battery holder, mounting  115
batteries, adding  113
castor wheel, adding  110
completing  116
encoder wheels, attaching  107
metal motor brackets, fitting  109
motor brackets, fitting  107
plastic motor brackets, fitting  108
Raspberry Pi, fitting  112, 113
USB power bank, setting up  114
wheels, pushing on  111
wires up, bringing  111, 112

robot behaviors, menu modes
HTML template  492-494



Index   573

robot modes, managing  489, 490
running  494-496
selecting  487, 488
troubleshooting  491-497
web service  491, 492

robot builders
meeting  537

robot chassis sizes
comparing  91

robot chassis
encoders, lifting onto  250, 251

robot chassis kit
selecting  90

robot chassis kit selection
conclusion  94

Robot class
sensors, adding to  171

robot components
actuators, types  26
motors, types  24
sensors, types  27-29
status indicators  26, 27
types, exploring  23

robot components, motors
brushless motor  25
DC gear motor  24
DC motor  24
servomechanism  25
stepper motor  25

robot components, sensors
line sensor  28
microphones  28
optical distance sensor  28
optical interrupt sensor  29
Raspberry Pi camera module  28
ultrasonic distance sensor  28

robot, direction and speed
encoding  246, 247

robot fully phone-operable
making  518
menu modes, making compatible 

with Flask behaviors  518, 519
menu, styling  522
menu template, making into 

buttons  522-524
video services, loading  519-521

robotics
in education  14

robotics competitions
about  538, 539
Micromouse, URL  539
PiWars  538
Robotex International, URL  539

robot, modeling in VPython
about  442-446
troubleshooting  446, 447

Robot object
code, building  140-145
constants, setting  272
device, adding to  258-260
encoders, adding to  257
LEDs, adding to  189, 190
making  138
need for  139

Robot Operating System (ROS)
about  547
URL  547

robots
example, washing machine  9
exploring, in industry  11
household robots  10, 11
using, in homes  9

robots, inputs
controller  5
sensor  5
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robot software layers
apps/behaviors  555
Libraries and Middleware  555
Vendor Libraries  555

robots, outputs
motor  5

robot, starting automatically 
with systemd tool

troubleshooting  527, 528
robot, user controls via Mycroft

behavior remotely  422
overview  421, 422
robot modes, managing  422-424

roll  305
rotation

detecting, with gyroscope  447, 448
rotor  304
rough heading

obtaining, from magnetometer  470-472

S
saturation  195
Scalable Vector Graphics (SVG)  506
scanning sonar

building  232
code, writing  236-238
issues, troubleshooting  239
library, attaching  236
sensor, attaching  233-235

Science Technology Engineering and 
Mathematics (STEM)  538

script
writing, to avoid obstacles  170

SD card
preparing, with Raspberry Pi OS  47-49

SD card backups
making  79

SD card corruption  72
Secure File Transfer Protocol (SFTP)

about  73
files, copying from Raspberry 

Pi over network  73-76
Secure Shell (SSH)

about  54, 485
used, for connecting to 

Raspberry Pi  59-61
sensors

adding, to Robot class  171
securing, to robot  158, 159
troubleshooting steps  169, 170
two sensors, using  157, 158

sensors, combining for orientation
180-degree problem, fixing  478, 479
about  473-478

Serial Peripheral Interface (SPI)  127, 556
servo horn

about  210
fitting  210, 211

servomechanism motors. See  servo motors
servo motor  25
servo motors

about  206, 207
calibrating  216, 217
controlling  215, 216
exploring  208
input positions, sending to  208, 209
issues, troubleshooting  215
positioning, with Raspberry Pi  210
turning, by writing code  211-214
working  208

shaping and building skills
hand skills and tools  542
machine skills and tools  541
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Single-Board Computer (SBC)
about  42
BeagleBone  43
CHIP  43
Gumstix Linux  43
OnionIoT  43

single LED
testing  191

skills  410
Skittlebot  15
soldering  97, 288, 289
solder joint

creating  289, 290
sophisticated object avoidance  176-178
Sparkfun

URL  535, 536
speaker and microphone, on robot

considerations  411
specific distance

driving  270
speech to text (STT)  409
SpiderBot

block diagram  552, 553
steerable wheels  134, 135
steering

types  133
steering systems  136, 137
stepper motor  25
straight line

behavior, troubleshooting  269
code, writing to go in  266-269
driving in  262
Python PID control object, 

creating  265, 266
veer, correcting with PID  263, 264

strategies, for powering robot
battery eliminators  100
dual batteries  100

streaming
background tasks, running  340, 341

systemd tool
using, to automatically start 

robot  525, 526

T
tachometer  94
tachometers  242
tachos  242
tacho wheels  94
temperature

graphing  298, 299
reading, with Pimoroni Python 

library  295, 296
temperature plotter

running  300, 301
temperature

reading  295
temperature register

reading  297
reading, by creating interface  297
reading, with VPython  298

TensorFlow Tutorials
URL  546

Tested channel
URL  536

test images
capturing  384-386
need for  384
Python code, writing for 

edges of line  386-389
testing, without clear line  391-393
used, for locating line edges  390, 391
used, for testing computer 

vision pipeline  384
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test track
creating  380, 381
managing  379
materials, obtaining  379

Thingiverse community
URL  540

through-hole components  544
time of flight  153
trigger pin  157, 166
tuple  187

U
ultrasonic distance sensor

reading  166-169
ultrasonic sensor

attaching  158
connections  163
reading  158

ultrasonic sensors  154
Unified Modeling Language (UML)  556
Uniform Resource Locator (URL)  493
Unotron robot  135
utterance  409

V
value  195
variable resistor  243
vector  306

accelerometer, displaying as  311, 312
virtual robot

programming  442
virtual robot, rotating with gyroscope

about  450-454
troubleshooting  454

visual clues  378
visual line following

about  378
detecting, with camera  378
detecting, with light sensors  378

Visual Python (VPython)
about  296
for reading temperature register  298
robot, modeling  442-446
troubleshooting  302

vocabulary  410
voice agent

installing, on Raspberry Pi  413, 414
voice agent, programming with 

Mycroft on Raspberry Pi
about  428
intent, adding  436
intent, building  428-430

voice agent terminology  409
voice assistant  409
voltage  155
VPython command line

simplifying  303

W
wagon-style steering  134
wake word  409
warehouse robots  13
Wheels box  36
Win32DiskImager

using  79-81
World Coordinate System  305

X
XRobots  535

Y
yaw  305
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