

Arduino Cookbook

THIRD EDITION

Recipes to Begin, Expand, and Enhance Your Projects

Michael Margolis, Brian Jepson, and Nicholas Robert Weldin

Arduino Cookbook
by Michael Margolis, Brian Jepson, and Nicholas Robert Weldin Copyright
© 2020 Michael Margolis, Nicholas Robert Weldin, and Brian Jepson. All
rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Rachel Roumeliotis
Development Editor: Jeff Bleiel
Production Editor: Deborah Baker
Copyeditor: Kim Cofer
Proofreader: Josh Olejarz
Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest
March 2011: First Edition
December 2011: Second Edition
April 2020: Third Edition

Revision History for the Third Edition
2020-04-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491903520 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Arduino Cookbook, the cover image, and related trade dress are trademarks

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781491903520

of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility
to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-90352-0

[LSI]

Preface

This book was written by Michael Margolis and Brian Jepson with Nick
Weldin to help you explore the amazing things you can do with Arduino.

Arduino is a family of microcontrollers (tiny computers) and a software
creation environment that makes it easy for you to create programs (called
sketches) that can interact with the physical world. Things you make with
Arduino can sense and respond to touch, sound, position, heat, and light.
This type of technology, often referred to as physical computing, is used in
all kinds of things from smartphones to automobile electronics systems.
Arduino makes it possible for anyone with an interest—even people with no
programming or electronics experience—to use this rich and complex
technology.

Who This Book Is For
This book is aimed at readers interested in using computer technology to
interact with the environment. It is for people who want to quickly find the
solution to hardware and software problems. The recipes provide the
information you need to accomplish a broad range of tasks. It also has
details to help you customize solutions to meet your specific needs. There is
insufficient space in this book to cover general theoretical background, so
links to external references are provided throughout the book. See “What
Was Left Out” for some general references for those with no programming
or electronics experience.

If you have no programming experience—perhaps you have a great idea for
an interactive project but don’t have the skills to develop it—this book will
help you learn how to write code that works, using examples that cover
over 200 common tasks. Absolute beginners may want to consult a
beginner’s book such as Getting Started with Arduino (Make Community),
by Massimo Banzi and Michael Shiloh.

If you have some programming experience but are new to Arduino, the
book will help you become productive quickly by demonstrating how to
implement specific Arduino capabilities for your project.

People already using Arduino should find the content helpful for quickly
learning new techniques, which are explained using practical examples.
This will help you to embark on more complex projects by showing you
how to solve problems and use capabilities that may be new to you.

Experienced C/C++ programmers will find examples of how to use the low-
level AVR resources (interrupts, timers, I2C, Ethernet, etc.) to build
applications using the Arduino environment.

https://learning.oreilly.com/library/view/make-getting-started/9781449363321

How This Book Is Organized
The book contains information that covers the broad range of Arduino’s
capabilities, from basic concepts and common tasks to advanced
technology. Each technique is explained in a recipe that shows you how to
implement a specific capability. You do not need to read the content in
sequence. Where a recipe uses a technique covered in another recipe, the
content in the other recipe is referenced rather than repeating details in
multiple places.

Chapter 1, Getting Started
Introduces the Arduino environment and provides help on getting the
Arduino development environment and hardware installed and working.
This chapter introduces some of the most popular new boards. The next
couple of chapters introduce Arduino software development.

Chapter 2, Arduino Programming
Covers essential software concepts and tasks.

Chapter 3, Mathematical Operations
Shows how to make use of the most common mathematical functions.

Chapter 4, Serial Communications
Describes how to get Arduino to connect and communicate with your
computer and other devices. Serial is the most common method for
Arduino input and output, and this capability is used in many of the
recipes throughout the book.

Chapter 5, Simple Digital and Analog Input
Introduces a range of basic techniques for reading digital and analog
signals.

Chapter 6, Getting Input from Sensors
Builds on concepts in the preceding chapter with recipes that explain
how to use devices that enable Arduino to sense touch, sound, position,
heat, and light.

Chapter 7, Visual Output

Covers controlling light. Recipes cover switching on one or many LEDs
and controlling brightness and color. This chapter explains how you can
drive bar graphs and numeric LED displays, as well as create patterns
and animations with LED arrays. In addition, the chapter provides a
general introduction to digital and analog output for those who are new
to this.

Chapter 8, Physical Output
Explains how you can make things move by controlling motors with
Arduino. A wide range of motor types is covered: solenoids, servo
motors, DC motors, and stepper motors.

Chapter 9, Audio Output
Shows how to generate sound with Arduino via output devices such as a
speaker. It covers playing simple tones and melodies and playing WAV
files and MIDI.

Chapter 10, Remotely Controlling External Devices
Describes techniques that can be used to interact with almost any device
that uses some form of remote controller, including TV, audio
equipment, cameras, garage doors, appliances, and toys. It builds on
techniques used in previous chapters for connecting Arduino to devices
and modules.

Chapter 11, Using Displays
Covers interfacing text and graphical LCD displays. The chapter shows
how you can connect these devices to display text, scroll or highlight
words, and create special symbols and characters.

Chapter 12, Using Time and Dates
Covers built-in Arduino time-related functions and introduces many
additional techniques for handling time delays, time measurement, and
real-world times and dates.

Chapter 13, Communicating Using I2C and SPI
Covers the Inter-Integrated Circuit (I2C) and Serial Peripheral Interface
(SPI) standards. These standards provide simple ways for digital
information to be transferred between sensors and Arduino. This
chapter shows how to use I2C and SPI to connect to common devices. It

also shows how to connect two or more Arduino boards, using I2C for
multiboard applications.

Chapter 14, Simple Wireless Communication
Covers wireless communication with XBee, Bluetooth, and other
wireless modules. This chapter provides examples ranging from simple
wireless serial port replacements to mesh networks connecting multiple
boards to multiple sensors.

Chapter 15, WiFi and Ethernet
Describes the many ways you can use Arduino with the internet. It has
examples that demonstrate how to build and use web clients and servers
and shows how to use the most common internet communication
protocols with Arduino. This chapter also includes recipes that will help
you connect Arduino to the Internet of Things.

Chapter 16, Using, Modifying, and Creating Libraries
Arduino software libraries are a standard way of adding functionality to
the Arduino environment. This chapter explains how to use and modify
software libraries. It also provides guidance on how to create your own
libraries.

Chapter 17, Advanced Coding and Memory Handling
Covers advanced programming techniques, and the topics here are more
technical than the other recipes in this book because they cover things
that are usually concealed by the friendly Arduino wrapper. The
techniques in this chapter can be used to make a sketch more efficient—
they can help improve performance and reduce the code size of your
sketches.

Chapter 18, Using the Controller Chip Hardware
Shows how to access and use hardware functions that are not fully
exposed through the documented Arduino language. It covers low-level
usage of the hardware input/output registers, timers, and interrupts.

Appendix A, Electronic Components
Provides an overview of the components used throughout the book.

Appendix B, Using Schematic Diagrams and Datasheets
Explains how to use schematic diagrams and datasheets.

Appendix C, Building and Connecting the Circuit
Provides a brief introduction to using a breadboard, connecting and
using external power supplies and batteries, and using capacitors for
decoupling.

Appendix D, Tips on Troubleshooting Software Problems
Provides tips on fixing compile and runtime problems.

Appendix E, Tips on Troubleshooting Hardware Problems
Covers problems with electronic circuits.

Appendix F, Digital and Analog Pins
Provides tables indicating functionality provided by the pins on standard
Arduino boards.

Appendix G, ASCII and Extended Character Sets
Provides tables showing ASCII characters.

What Was Left Out
There isn’t room in this book to cover electronics theory and practice,
although guidance is provided for building the circuits used in the recipes.
For more detail, readers may want to refer to material that is widely
available on the internet or to books such as the following:

Make: Electronics, Second Edition, by Charles Platt (Make Community)

Getting Started in Electronics by Forrest M. Mims, III (Master
Publishing)

Physical Computing by Tom Igoe (Cengage)

Practical Electronics for Inventors, Fourth Edition, by Paul Scherz and
Simon Monk (McGraw-Hill)

The Art of Electronics by Paul Horowitz and Winfield Hill (Cambridge
University Press)

This cookbook explains how to write code to accomplish specific tasks, but
it is not an introduction to programming C or C++ (the languages that the

http://shop.oreilly.com/product/0636920031826.do

Arduino development environment is built upon). Relevant programming
concepts are briefly explained, but there is insufficient room to cover the
details. If you want to learn more about C and C++, you may want to refer
to one of the following books:

Head First C: A Brain-Friendly Guide by David Griffiths and Dawn
Griffiths (O’Reilly)

A Book on C by Al Kelley and Ira Pohl (Addison-Wesley)

The C Programming Language by Brian W. Kernighan and Dennis M.
Ritchie (Prentice Hall); a favorite, although not really a beginner’s book,
this is the book that has taught many people C programming

Expert C Programming: Deep C Secrets by Peter van der Linden
(Prentice Hall); an advanced though somewhat dated book, this book is
entertaining at the same time it provides insights into why C is the way it
is

Code Style (About the Code)
The code used throughout this book has been tailored to clearly illustrate
the topic covered in each recipe. As a consequence, some common coding
shortcuts have been avoided, particularly in the early chapters. Experienced
C programmers often use rich but terse expressions that are efficient but can
be a little difficult for beginners to read. For example, the early chapters
increment variables using explicit expressions that are easy for
nonprogrammers to read:

result = result + 1; // increment the count

rather than the following, commonly used by experienced programmers,
that does the same thing:

result++; // increment using the post-increment operator

http://shop.oreilly.com/product/0636920015482.do

Feel free to substitute your preferred style. Beginners should be reassured
that there is no benefit in performance or code size in using the terse form.

Some programming expressions are so common that they are used in their
terse form. For example, the loop expressions are written as follows:

for(int i=0; i < 4; i++)

This is equivalent to the following:

int i;

for(i=0; i < 4; i = i+1)

See Chapter 2 for more details on these and other expressions used
throughout the book.

Good programming practice involves ensuring that values used are valid
(garbage in equals garbage out) by checking them before using them in
calculations. However, to keep the code focused on the recipe topic, very
little error-checking code has been included.

Arduino Platform Release Notes
This edition has been updated and tested with Arduino 1.8.x. The
downloadable code has been updated for this edition, and is posted in two
repositories; one for the all the Arduino Sketches, and another for all the
Processing Sketches.

This book’s website, https://oreil.ly/Arduino_Cookbook_3, has a link to an
errata page. Errata give readers a way to let us know about typos, errors,
and other problems with the book. Posted errata will be visible on the page
immediately, and we’ll confirm them after checking them out. O’Reilly can
also fix errata in future printings of the book and on the O’Reilly learning
platform, making for a better reader experience pretty quickly.

If you have problems making examples work, see Appendix D, which
covers troubleshooting software problems. The Arduino forum is a good

https://github.com/bjepson/Arduino-Cookbook-3ed-INO
https://github.com/bjepson/Arduino-Cookbook-3ed-PDE
http://shop.oreilly.com/product/0636920033653.do

place to post a question if you need more help: https://forum.arduino.cc.

If you like—or don’t like—this book, by all means, please let people know.
Amazon reviews are one popular way to share your happiness or other
comments. You can also leave reviews for the book on the O’Reilly online
learning platform.

Notes on the Third Edition
A lot has changed since the second edition: a proliferation of new boards,
lots more processing power, memory, communications capabilities, and
form factor. Although this book has grown in size through each edition, it is
impossible to cover in depth everything all readers may wish to do. The
focus of this edition is to ensure the content is up to date and to provide an
overview of the rich capabilities made available to the Arduino community
since the previous edition, to help you get started with this amazing
technology.

Note that if you are using earlier releases of Arduino than that covered here
you can still download code from the second and first editions of this book.
To download this example code, visit
http://examples.oreilly.com/9780596802486 and
http://examples.oreilly.com/0636920022244.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data

https://forum.arduino.cc/
http://examples.oreilly.com/9780596802486
http://examples.oreilly.com/0636920022244

types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
If you have a technical question or a problem using the code examples,
please send an email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting

mailto:bookquestions@oreilly.com

example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Arduino Cookbook, Third Edition, by Michael Margolis, Brian Jepson, and
Nicholas Robert Weldin (O’Reilly). Copyright 2020 Michael Margolis,
Nicholas Robert Weldin, and Brian Jepson, 978-1-491-90352-0.”

If you feel your use of code examples falls outside fair use or the
permission given here, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

mailto:permissions@oreilly.com
http://oreilly.com/
http://www.oreilly.com/

Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and more information about our books and courses, see our
website.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments for the Second Edition
(Michael Margolis)
Nick Weldin’s contribution was invaluable for the completion of this book.
It was 90% written when Nick came on board—and without his skill and
enthusiasm, it would still be 90% written. His hands-on experience running
Arduino workshops for all levels of users enabled us to make the advice in
this book practical for our broad range of readers. Thank you, Nick, for
your knowledge and genial, collaborative nature.

Simon St. Laurent was the editor at O’Reilly who first expressed interest in
this book. And in the end, he is the man who pulled it together. His support
and encouragement kept us inspired as we sifted our way through the
volumes of material necessary to do the subject justice.

Brian Jepson helped me get started with the writing of this book. His vast
knowledge of all things Arduino and his concern and expertise for
communicating about technology in plain English set a high standard. He
was an ideal guiding hand for shaping the book and making technology
readily accessible for readers. We also have Brian to thank for the new
XBee content in Chapter 14.

mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Brian Jepson and Shawn Wallace were technical editors for this second
edition and provided excellent advice for improving the accuracy and
clarity of the content.

Audrey Doyle worked tirelessly to stamp out typos and grammatical errors
in the initial manuscript and untangle some of the more convoluted
expressions.

Philip Lindsay collaborated on content for Chapter 15 in the first edition.
Adrian McEwen, the lead developer for many of the Ethernet enhancements
in Release 1.0, provided valuable advice to ensure this chapter reflected all
the changes in that release.

Mikal Hart wrote recipes covering GPS and software serial. Mikal was the
natural choice for this—not only because he wrote the libraries, but also
because he is a fluent communicator, an Arduino enthusiast, and a pleasure
to collaborate with.

Arduino is possible because of the creativity of the core Arduino
development team: Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca
Martino, and David Mellis. On behalf of all Arduino users, I wish to
express our appreciation for their efforts in making this fascinating
technology simple and their generosity in making it free.

Special thanks to Alexandra Deschamps-Sonsino, whose Tinker London
workshops provided important understanding of the needs of users. Thanks
also to Peter Knight, who has provided all kinds of clever Arduino solutions
as well as the basis of a number of recipes in this book.

On behalf of everyone who has downloaded user-contributed Arduino
libraries, I would like to thank the authors who have generously shared their
knowledge.

The availability of a wide range of hardware is a large part of what makes
Arduino exciting—thanks to the suppliers for stocking and supporting a
broad range of great devices. The following were helpful in providing
hardware used in the book: SparkFun, Maker Shed, Gravitech, and NKC
Electronics. Other suppliers that have been helpful include Modern Device,

Liquidware, Adafruit, MakerBot Industries, Mindkits, Oomlout, and SK
Pang.

Nick would like to thank everyone who was involved with Tinker London,
particularly Alexandra, Peter, Brock Craft, Daniel Soltis, and all the people
who assisted on workshops over the years.

Nick’s final thanks go to his family, Jeanie, Emily, and Finn, who agreed to
let him do this over their summer holiday, and of course, much longer after
that than they originally thought, and to his parents, Frank and Eva, for
bringing him up to take things apart.

Last but not least, I express thanks to the following people:

Joshua Noble for introducing me to O’Reilly. His book Programming
Interactivity is highly recommended for those interested in broadening their
knowledge in interactive computing.

Robert Lacy-Thompson for offering advice early on with the first edition.

Mark Margolis for his support and help as a sounding board in the book’s
conception and development.

I thank my parents for helping me to see that the creative arts and
technology were not distinctive entities and that, when combined, they can
lead to extraordinary results.

And finally, this book would not have been started or finished without the
support of my wife, Barbara Faden. My grateful appreciation to her for
keeping me motivated and for her careful reading and contributions to the
manuscript.

Acknowledgments for the Third Edition
(Brian Jepson)
A hearty thanks to Michael Margolis, the lead author of this book, and Jeff
Bleiel, our editor for this edition. They trusted me to take the lead on this
book and to bring this new edition to you. I appreciate their trust and
confidence and I hope that they are as happy with the results as I am. On a

http://shop.oreilly.com/product/0636920021735.do

personal note, I want to thank my wife, Joan, for her encouragement and
patience. Writing a book, especially one that involves testing and building
dozens of projects, affects everyone in my life, and I appreciate the
understanding and support from all my friends and family. A big thanks to
Chris Meringolo and Don Coleman for their technical review, which kept
me and this book honest.

Getting Started

1.0 Introduction
The Arduino environment has been designed to be easy to use for beginners
who have no software or electronics experience. With Arduino, you can
build objects that can respond to and/or control light, sound, touch, and
movement. Arduino has been used to create an amazing variety of things,
including musical instruments, robots, light sculptures, games, interactive
furniture, and even interactive clothing.

Arduino is used in many educational programs around the world,
particularly by designers and artists who want to easily create prototypes
but do not need a deep understanding of the technical details behind their
creations. Because it is designed to be used by nontechnical people, the
software includes plenty of example code to demonstrate how to use the
Arduino board’s various facilities.

Though it is easy to use, Arduino’s underlying hardware works at the same
level of sophistication that engineers employ to build embedded devices.
People already working with microcontrollers are also attracted to Arduino
because of its agile development capabilities and its facility for quick
implementation of ideas.

Arduino is best known for its hardware, but you also need software to
program that hardware. Both the hardware and the software are called
“Arduino.” The hardware (Arduino and Arduino-compatible boards) is
inexpensive to buy, or you can build your own (the hardware designs are
open source). The software is free, open source, and cross-platform. The
combination enables you to create projects that sense and control the
physical world.

In addition, there is an active and supportive Arduino community that is
accessible worldwide through the Arduino forums, tutorials, and project
hub. These sites offer learning resources, project development examples,

https://forum.arduino.cc/
https://oreil.ly/eptIu
https://oreil.ly/1aGpz

and solutions to problems that can provide inspiration and assistance as you
pursue your own projects.

Arduino Software and Sketches
Software programs, called sketches, are created on a computer using the
Arduino integrated development environment (IDE). The IDE enables you
to write and edit code and convert this code into instructions that Arduino
hardware understands. The IDE also transfers those instructions, in the form
of compiled code, to the Arduino board (a process called uploading).

TIP
You may be used to referring to software source code as a “program” or just “code.” In the
Arduino community, source code that contains computer instructions for controlling Arduino
functionality is referred to as a sketch. The word sketch will be used throughout this book to refer
to Arduino program code.

The recipes in this chapter will get you started by explaining how to set up
the development environment and how to compile and run an example
sketch.

The Blink sketch, which is preinstalled on most Arduino boards and
compatibles, is used as an example for recipes in this chapter, though the
last recipe in the chapter goes further by adding sound and collecting input
through some additional hardware, not just blinking the light built into the
board. Chapter 2 covers how to structure a sketch for Arduino and provides
an introduction to programming.

NOTE
If you already know your way around Arduino basics, feel free to jump forward to later chapters.
If you’re a first-time Arduino user, patience in these early recipes will pay off with smoother
results later.

Arduino Hardware
The Arduino board is where the code you write is executed. The board can
only control and respond to electricity, so you’ll attach specific components
to it that enable it to interact with the real world. These components can be
sensors, which convert some aspect of the physical world to electricity so
that the board can sense it, or actuators, which get electricity from the board
and convert it into something that changes the world. Examples of sensors
include switches, accelerometers, and ultrasonic distance sensors. Actuators
are things like lights and LEDs, speakers, motors, and displays.

There are a variety of official boards that you can use with Arduino
software and a wide range of Arduino-compatible boards produced by
companies and individual members of the community. In addition to all the
boards on the market, you’ll even find Arduino-compatible controllers
inside everything from 3D printers to robots. Some of these Arduino-
compatible boards and products are also compatible with other
programming environments such as MicroPython or CircuitPython.

The most popular boards contain a USB connector that is used to provide
power and connectivity for uploading your software onto the board. Figure
1-1 shows a basic board that most people start with, the Arduino Uno. It is
powered by an 8-bit processor, the ATmega328P, which has 2 kilobytes of
SRAM (static random-access memory, used to store program variables), 32
kilobytes of flash memory for storing your sketches, and runs at 16 MHz. A
second chip handles USB connectivity.

Basic board: the Arduino Uno

The Arduino Leonardo board uses the same form factor (the layout of the
board and its connector pins) as the Uno, but uses a different processor, the
ATmega32U4, which runs your sketches and also takes care of USB
connectivity. It is slightly cheaper than the Uno, and also offers some
interesting features, such as the ability to emulate various USB devices such
as mice and keyboards. The Arduino-compatible Teensy and Teensy++
boards from PJRC (http://www.pjrc.com/teensy) are also capable of
emulating USB devices.

Another board with a similar pin layout and even faster processor is the
Arduino Zero. Unlike the Arduino Uno and Leonardo, it cannot tolerate
input pin voltages higher than 3.3 volts. The Arduino Zero has a 32-bit
processor running at 48 MHz and has 32 kilobytes of RAM and 256
kilobytes of flash storage. Adafruit’s Metro M0 Express and SparkFun’s
RedBoard Turbo come in the same form factor as the Arduino Zero and

http://www.pjrc.com/teensy

also offer compatibility with multiple environments, including the Arduino
IDE and CircuitPython.

ARDUINO AND USB
The Arduino Uno has a second microcontroller onboard to handle all USB communication; the
small surface-mount chip (the ATmega16U2, ATmega8U2 in older versions of the Uno) is
located near the USB socket on the board. The Arduino Leonardo has only one chip, the
ATmega32U4, which runs your code and handles USB communications. You can reprogram the
Leonardo to emulate USB devices (see Recipe 18.14).

Older Arduino boards, and some of the Arduino-compatible boards, use a chip from the
company FTDI that provides a hardware USB solution for connection to the serial port of your
computer. Some of the cheaper clones that you will encounter on eBay or Amazon may use a
chip that performs a similar function, such as the CH340. You will probably need to install a
driver to use CH340-based boards.

There’s another class of USB-enabled Arduino-compatible boards you may encounter, which
have no dedicated chip to handle USB communication. Instead, these boards use a technique
called bit-banging, in which software running on the board manipulates I/O pins to send and
receive USB signals. These boards, which include the popular original Adafruit Trinket, may
not work well with modern computers, though you may have luck with an older computer.
(Adafruit has released the Adafruit Trinket M0, which has native USB, and as a bonus, is much
faster than its predecessor.)

Finally, you may find Arduino-compatible boards that have no USB connection whatsoever.
Instead, they offer only serial pins that you cannot directly connect to a computer without a
special adapter. See “Serial Hardware” for a list of some available adapters.

If you want a board for learning that will run the majority of sketches in this
book, the Uno is a great choice. If you want more performance than the
Uno, but still want to use the Uno form factor, then consider the Zero, or a
similar board such as the Metro M0 Express or RedBoard Turbo. The MKR
and Nano 33 series of boards also offer excellent performance, but in a
smaller form factor than the Uno.

Caution Needed with Some 3.3-Volt Boards
Many of the newer boards operate on 3.3 volts rather than the 5 volts used by older boards such as
the Uno. Some such boards can be permanently damaged if an input or output pin receives 5 volts,
even for a fraction of a second, so check the documentation for your board to see if it is tolerant of
5 volts before wiring things up when there is a risk of pin levels higher than 3.3 volts. Most 3.3-
volt boards are powered by a 5-volt power supply (for example, through the USB port), but a
voltage regulator converts it to 3.3 volts before it reaches the board’s 3.3-volt electronics. This
means that it is not unusual to see a 5-volt power supply pin on a board whose input and output
pins are not 5-volt tolerant.

Arduino boards come in other form factors, which means that the pins on
such boards have a different layout and aren’t compatible with shields
designed for the Uno. The MKR1010 is an Arduino board that uses a much
smaller form factor. Its pins are designed for 3.3V I/O (it is not 5V tolerant)
and like the Zero, it uses an ARM chip. However, the MKR1010 also
includes WiFi and and a circuit to run from and recharge a LIPO battery.
Although the MKR family of boards is not compatible with shields
designed for the Uno, Arduino offers a selection of add-on boards for the
MKR form factor called carriers.

EXTEND ARDUINO WITH SHIELDS
Arduino boards can be enhanced by add-ons called shields, which you connect by stacking them
on top with their pins connected to all the headers of the Arduino. Different models of Arduino
and certain Arduino compatibles may have their own add-ons similar to, but not compatible
with, shields. This is because some models of boards use a different form factor than the most
common Arduino, the Uno. For example, the Arduino MKR is physically much smaller than the
Uno. MKR add-on boards are also called shields even though they use a form factor that is
incompatible with the Uno. Adafruit has a huge collection of Featherwing add-on boards for its
Feather line of development boards, which are compatible with Arduino development software.
Featherwing add-on boards are not compatible with other hardware form factors such as the
Uno and MKR boards.

You can get boards as small as a postage stamp, such as the Adafruit
Trinket M0; larger boards that have more connection options and more
powerful processors, such as the Arduino Mega and Arduino Due; and

boards tailored for specific applications, such as the Arduino LilyPad for
wearable applications, the Arduino Nano 33 IoT for wireless projects, and
the Arduino Nano Every for embedded applications (standalone projects
that are often battery-operated).

Other third-party Arduino-compatible boards are also available, including
the following:

Bare Bones Board (BBB)
Low-cost Bare Bones Boards are available with or without USB
capability from Modern Device, and from Educato in a shield-
compatible version.

Adafruit Industries
Adafruit has a vast collection of Arduino and Arduino-compatible
boards and accessories (modules and components).

SparkFun
SparkFun has lots of Arduino and Arduino-compatible accessories.

Seeed Studio
Seeed Studio sells Arduino and Arduino-compatible boards as well as
many accessories. It also offers a flexible expansion system for Arduino
and other embedded boards called Grove, which uses a modular
connector system for sensors and actuators.

Teensy and Teensy++
These tiny but extremely versatile boards are available from PJRC.

Wikipedia has an exhaustive list of Arduino-compatible boards. You can
also find an overview of Arduino boards on the Arduino site.

1.1 Installing the Integrated Development
Environment (IDE)
Problem
You want to install the Arduino development environment on your
computer.

https://oreil.ly/aBakM
https://oreil.ly/bY5YZ
http://www.adafruit.com/
https://oreil.ly/rr5Ry
http://www.seeedstudio.com/
https://oreil.ly/pSKC8
http://www.pjrc.com/teensy
https://oreil.ly/uyFoP
https://oreil.ly/yay5b

Solution
Download the Arduino software for Windows, MacOS, or Linux. Here are
notes on installing the software on these platforms:

Windows
If you are running Windows 10, you can use the Microsoft Store to
install Arduino without needing admin privileges. But for earlier
versions of Windows you’ll need admin privileges to double-click and
run Windows installer when it’s downloaded. Alternatively, you can
download the Windows ZIP file, and unzip it to any convenient
directory that you have write access to.

Unzipping the file will create a folder named Arduino-<nn> (where
<nn> is the version number of the Arduino release you downloaded).
The directory contains the executable file (named Arduino.exe), along
with other files and folders.

NOTE
The first time you run Arduino on Windows, you may see a dialog that says “Windows
Defender Firewall has blocked some features of this app,” specifying javaw.exe as the
source of the warning. The Arduino IDE is a Java-based application, which is why the
warning comes from the Java program instead of Arduino.exe. This is used by boards that
support the ability to upload sketches over a local network. If you plan to use this kind of
board, you should use this dialog to permit javaw.exe access to the network.

When you plug in the board, it automatically associates the installed
driver with the board (this may take a little time). If this process fails, or
you installed Arduino using the ZIP file, then go to the Arduino Guide
page, click the link for your board from the list there, and follow the
instructions.

If you are using an earlier board (any board that uses FTDI drivers) and
are online, you can let Windows search for drivers and they will install
automatically. If you don’t have internet access, or are using Windows
XP, you should specify the location of the drivers. Use the file selector

http://arduino.cc/download
https://oreil.ly/ELrle

to navigate to the drivers\FTDI USB Drivers directory, located in the
directory where you unzipped the Arduino files. When this driver has
installed, the Found New Hardware Wizard will reappear, saying a new
serial port has been found. Follow the same process again.

TIP
You may need to go through the sequence of steps to install the drivers twice to ensure that
the software is able to communicate with the board.

macOS
The Arduino download for the Mac is a ZIP file. If the ZIP file does not
extract automatically after you download it, locate the download and
double-click it to extract the application. Move the application to
somewhere convenient—the Applications folder is a sensible place.
Double-click the application. The splash screen will appear, followed by
the main program window.

Current Arduino boards such as the Uno can be used without additional
drivers. When you first plug the board in, a notification may pop up
saying a new network port has been found; you can dismiss this. If you
are using earlier boards that need FTDI drivers, you can get these from
FTDI.

Linux
Linux versions are increasingly available from your distribution’s
package manager, but these versions are often not the most current
release, so it is best to download the version from
http://arduino.cc/download. It is available for 32 or 64 bit, and offers an
ARM version that can be used on the Raspberry Pi and other Linux
ARM boards. Most distributions use a standard driver that is already
installed, and usually have FTDI support as well. See this Arduino
Linux page for instructions on installing Arduino on Linux. You will

https://oreil.ly/w7_YM
http://arduino.cc/download
https://www.arduino.cc/en/guide/linux

need to follow those instructions to run the install script, and you may
need to do so to permit your user account to access the serial port.

For Arduino-compatible boards that is not made by Arduino, you may need
to install support files using the Boards Manager (see Recipe 1.7). You
should also check the specific board’s documentation for any additional
steps needed.

After you’ve installed Arduino, double-click its icon, and the splash screen
should appear (see Figure 1-2).

Arduino splash screen (Arduino 1.8.9 on Windows 10)

The initial splash screen is followed by the main program window (see
Figure 1-3). Be patient, as it can take some time for the software to load.
You can find the icon for Arduino on the Start menu (Windows), the

Applications folder (macOS), or possibly on the desktop. On Linux, you
may need to run the Arduino executable from the Terminal shell.

IDE main window (Arduino 1.8.9 on a Mac)

Discussion
If the software fails to start, check the troubleshooting section of the
Arduino website for help solving installation problems.

See Also
Online guides for getting started with Arduino are available at for
Windows, for macOS, and for Linux.

The Arduino Pro IDE is a development environment for Arduino that’s
aimed at the needs of professional users. At the time of this writing, it was
in an early state. See the Arduino Pro IDE GitHub repo.

The Arduino CLI is a command-line tool for compiling and uploading
sketches. You can also use it in place of the Library and Boards Manager.
See the Arduino CLI GitHub repo.

There is an online editing environment called Arduino Create. In order to
use this you will need to create an account and download a plug-in that
enables the website to communicate with the board to upload code. It has
cloud storage where your sketches are saved and provides facilities for
sharing code. At the time this book was written, Arduino Create was a fairly
new, still-evolving service. If you would like the ability to create Arduino
sketches without having to install a development environment on your
computer, then have a look at Arduino Create.

If you are using a Chromebook, Arduino Create’s Chrome App requires a
monthly subscription of US$1. It has a time-limited trial so you can try it
out. There is another alternative to compiling and uploading Arduino code
from a Chromebook: Codebender is a web-based IDE like Arduino Create,
but it also supports a number of third-party Arduino-compatible boards.
Pricing plans are available for classrooms and schools as well. See this
Codebender page.

1.2 Setting Up the Arduino Board
Problem

https://oreil.ly/slIus
https://oreil.ly/ufBhk
https://oreil.ly/GL4uk
https://oreil.ly/TW6si
https://oreil.ly/tKGNk
https://oreil.ly/yaOph
https://create.arduino.cc/
https://edu.codebender.cc/

You want to power up a new board and verify that it is working.

Solution
Plug the board into a USB port on your computer and check that the LED
power indicator on the board illuminates. Most Arduino boards have an
LED power indicator that stays on whenever the board is powered.

The onboard LED (labeled in Figure 1-4) should flash on and off when the
board is powered up (most boards come from the factory preloaded with
software to flash the LED as a simple check that the board is working).

Basic Arduino board, the Uno Rev3

NOTE
The current boards in the Arduino Uno form factor have some pins that weren’t present on older
boards, and you may encounter some older Arduino shields that don’t have these pins.
Fortunately, this usually does not affect the use of older shields; most will continue to work with
the new boards, just as they did with earlier boards (but your mileage may vary).

The new connections provide a pin (IOREF) for shields to detect the analog reference voltage (so
that analog input values can be correlated with the supply voltage), and SCL and SDA pins to
enable a consistent pin location for I2C devices. The location of the I2C pins had varied on some
earlier boards such as the Mega due to different chip configurations, and in some cases certain
shields required workarounds such as the addition of jumper wires to connect the shield’s I2C pins
to the ones on the Mega. Shields designed for the new layout should work on any board with the
new pin locations. An additional pin (next to the IOREF pin) is unused at the moment, but enables
new functionality to be implemented in the future without needing to change the pin layout again.

Discussion
If the power LED does not illuminate when the board is connected to your
computer, the board is probably not receiving power (try a different USB
socket or cable).

The flashing LED is being controlled by code running on the board (new
boards are preloaded with the Blink example sketch). If the onboard LED is
flashing, the sketch is running correctly, which means the chip on the board
is working. If the power LED is on but the onboard LED (usually labeled L)
is not flashing, it could be that the factory code is not on the chip; follow
the instructions in Recipe 1.3 to load the Blink sketch onto the board to
verify that the board is working. If you are not using a standard board, it
may not have an onboard LED, so check the documentation for details of
your board.

The Leonardo and Zero-class boards (Arduino Zero, Adafruit Metro M0,
SparkFun RedBoard Turbo) have the same footprint as the Uno (its headers
are in the same position, enabling shields to be attached). They are
significantly different in other respects. The Leonardo has an 8-bit chip like
the Uno, but because it doesn’t have a separate chip for handling USB
communications, the Leonardo only accepts program uploads immediately
after the board has been reset. You’ll see the Leonardo’s onboard LED pulse

gently while it’s waiting for an upload. The Leonardo is 5V tolerant. The
Zero has a 32-bit ARM chip, with more memory for storing your program
and running it. There is also a pin that provides a digital-to-analog converter
(DAC), which means you can get a varying analog voltage from it. This can
be used to generate audio signals at much higher quality than an Uno. The
Zero is not 5V tolerant, nor are the similar boards from Adafruit (Metro M0
Express) or SparkFun (RedBoard Turbo).

The MKR1010 uses the same chip as the Zero (and like the Zero, is not 5V
tolerant), but in a smaller form factor. It also includes WiFi, so it is able to
connect to the internet through a WiFi network. The MKR form factor does
not support shields that are designed for the Uno pin layout.

All the 32-bit boards have more pins that support interrupts than most of the
8-bit boards, which are useful for applications that must quickly detect
signal changes (see Recipe 18.2). The one 8-bit exception to this is the
Arduino Uno WiFi Rev2, which supports interrupts on any of its digital
pins.

See Also
Online guides for getting started with Arduino are available at for
Windows, for macOS, and for Linux. See the Arduino Guide for board-
specific instructions.

A troubleshooting guide can be found on the Arduino site.

1.3 Using the Integrated Development
Environment to Prepare an Arduino Sketch
Problem
You want to familiarize yourself with Arduino’s compilation process and
understand both the status and error messages it can produce.

Solution

https://oreil.ly/ufBhk
https://oreil.ly/GL4uk
https://oreil.ly/TW6si
https://oreil.ly/MHLdN
https://oreil.ly/lYeR0

Source code for Arduino is called a sketch. The process that takes a sketch
and converts it into a form that will work on the board is called compilation.
Use the Arduino IDE to create, open, and modify sketches that define what
the board will do. You can use buttons along the top of the IDE to perform
these actions (shown in Figure 1-6), or you can use the menus or keyboard
shortcuts (visible in Figure 1-5).

The Sketch Editor area is where you view and edit code for a sketch. It
supports common text-editing shortcuts such as Ctrl-F (⌘+F on a Mac) for
find, Ctrl-Z (⌘+Z on a Mac) for undo, Ctrl-C (⌘+C on a Mac) to copy
highlighted text, and Ctrl-V (⌘+V on a Mac) to paste highlighted text.

Figure 1-5 shows how to load the Blink sketch (the sketch that comes
preloaded on a new Arduino board).

IDE menu (selecting the Blink example sketch) on Windows 10

After you have started the IDE, go to the File→Examples menu and select
01. Basics→Blink, as shown in Figure 1-5. The code for blinking the built-
in LED will be displayed in the Sketch Editor window (refer to Figure 1-6).

Before you can send the code to the board, it needs to be converted into
instructions that can be read and executed by the Arduino controller chip;
this is called compiling. To do this, click the compile button (the top-left

button with a checkmark inside), or select Sketch→Verify/Compile (Ctrl-R;
⌘+R on a Mac).

You should see a message that reads “Compiling sketch...” and a progress
bar in the message area below the text-editing window. After a second or
two, a message that reads “Done Compiling” will appear. The black console
area will contain the following additional message:

Sketch uses 930 bytes (2%) of program storage space. Maximum is 32256 bytes.

Global variables use 9 bytes (0%) of dynamic memory, leaving 2039 bytes for

local variables. Maximum is 2048 bytes.

The exact message may differ depending on your board and Arduino
version; it is telling you the size of the sketch and the maximum size that
your board can accept.

Arduino IDE on macOS

Discussion
The IDE uses a number of command-line tools behind the scenes to
compile a sketch. For more information on this, see Recipe 17.1.

The final message telling you the size of the sketch indicates how much
program space is needed to store the controller instructions on the board. If
the size of the compiled sketch is greater than the available memory on the
board, the following error message is displayed:

Sketch too big; see

http://www.arduino.cc/en/Guide/Troubleshooting#size for tips on reducing it.

If this happens, you need to make your sketch smaller to be able to put it on
the board, or get a board with higher flash memory capacity. If your global
variables are using too much memory, you’ll see a different error instead:

Not enough memory; see http://www.arduino.cc/en/Guide/Troubleshooting#size

for tips on reducing your footprint.

In that case, you’ll need to go through your code and reduce the amount of
memory that you are allocating to global variables, or get a board with a
higher SRAM (dynamic memory) capacity.

TIP
To prevent you from accidentally overwriting the example code, the Arduino IDE does not allow
you to save changes to the built-in example sketches. You must rename them using the File→Save
As menu option. You can save sketches you write yourself with the Save button (see Recipe 1.5).

If there are errors in the code, the compiler will print one or more error
messages in the console window. These messages can help identify the
error—see Appendix D on software errors for troubleshooting tips.

The compiler can also generate warnings if it decides there are some
peculiarities about your sketch that could cause problems. These can be
very helpful to avoid problems that could trip you up later. You can
configure your warning level by opening File→Preferences (Windows or
Linux) or Arduino→Preferences (macOS) and setting Compiler Warnings
to None, Default, More, or All. Despite the name, Arduino defaults to
None. We suggest you set this to Default or More.

NOTE
Code uploaded onto the board cannot be downloaded back onto your computer. Make sure you
save your sketch code on your computer. You cannot save changes that you’ve made to the
example files; you need to use Save As and give the changed file another name.

See Also
Recipe 1.5 shows an example sketch. Appendix D has tips on
troubleshooting software problems.

1.4 Uploading and Running the Blink Sketch
Problem
You want to transfer your compiled sketch to the Arduino board and see it
working.

Solution
Connect your Arduino board to your computer using the USB cable. Load
the Blink sketch into the IDE by choosing File→Examples and selecting
01. Basics→Blink.

Next, select Tools→Board from the drop-down menu and select the name
of the board you have connected (if it is the standard Uno board, it is
probably one of the first entries in the board list).

Now select Tools→Serial Port. You will get a drop-down list of available
serial ports on your computer. Each machine will have a different
combination of serial ports, depending on what other devices you have used
with your computer.

On Windows, they will be listed as numbered COM entries. If there is only
one entry, select it. If there are multiple entries, your board will probably be
the last entry.

On the Mac, if your board is an Uno it will be listed as:

/dev/cu.usbmodem-XXXXXXX(Arduino/Genuino Uno)

If you have an older board, it will be listed as follows:

/dev/tty.usbserial-XXXXXXX

/dev/cu.usbserial-XXXXXXX

Each board will have different values for XXXXXXX. Select either entry.

On Linux, if your board is an Uno it will probably be listed as:

/dev/ttyACMX(Arduino/Genuino Uno)

If you have an older board, it may be listed as follows:

/dev/ttyUSB-X

X is usually 0, but you will see 1, 2, etc. if you have multiple boards
connected at once. Select the entry that corresponds to your Arduino.

TIP
If you have so many entries in the Port menu that you can’t figure out which one goes to your
Arduino, try this: look at the menu with the Arduino unplugged from your computer, then plug the
Arduino in and look for the menu option that wasn’t there before. Another approach is to select
the ports one by one, and try uploading until you see the lights on the board flicker to indicate that
the code is uploading.

Click the upload button (in Figure 1-6, it’s the second button from the left),
or choose Sketch→Upload (Ctrl-U; ⌘+U on a Mac).

The IDE will compile the code, as in Recipe 1.3. After the software is
compiled, it is uploaded to the board. If this is a fresh-out-of-the-box
Arduino that’s preloaded with the Blink sketch, you will see the onboard
LED (labeled as Onboard LED in Figure 1-4) stop blinking. When the
upload begins, two LEDs (labeled as Serial LEDs in Figure 1-4) near the
onboard LED should flicker for a couple of seconds as the code uploads.

The onboard LED should then start flashing as the code runs. The location
of the onboard LED differs across some Arduino models, such as the
Leonardo, MKR boards, and third-party Arduino clones.

Discussion
For the IDE to send the compiled code to the board, the board needs to be
plugged into the computer, and you need to tell the IDE which board and
serial port you are using.

When an upload starts, whatever sketch is running on the board is stopped
(if you were running the Blink sketch, the LED will stop flashing). The new
sketch is uploaded to the board, replacing the previous sketch. The new
sketch will start running when the upload has successfully completed.

NOTE
Some older Arduino boards and compatibles do not automatically interrupt the running sketch to
initiate upload. In this case, you need to press the Reset button on the board just after the software
reports that it is done compiling (when you see the message about the size of the sketch). It may
take a few attempts to get the timing right between the end of the compilation and pressing the
Reset button.

The IDE will display an error message if the upload is not successful.
Problems are usually due to the wrong board or serial port being selected or
the board not being plugged in. The currently selected board and serial port
are displayed in the status bar at the bottom of the Arduino window.

See Also
For more, see the Arduino troubleshooting page.

1.5 Creating and Saving a Sketch
Problem

https://oreil.ly/lYeR0

You want to create a sketch and save it to your computer.

Solution
To open an editor window ready for a new sketch, launch the IDE (see
Recipe 1.3), go to the File menu, and select New. Delete the boilerplate
code that is in the Sketch Editor window, and paste the following code in its
place (it’s similar to the Blink sketch, but the blinks last twice as long):

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(2000); // wait for two seconds

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

 delay(2000); // wait for two seconds

}

Compile the code by clicking the compile button (the top-left button with a
triangle inside), or select Sketch→Verify/Compile (see Recipe 1.3).

Upload the code by clicking the upload button, or choose File→Upload to
I/O board (see Recipe 1.4). After uploading, the LED should blink, with
each flash lasting two seconds.

You can save this sketch to your computer by clicking the Save button, or
select File→Save. You can save a sketch using a new name by selecting the
Save As menu option. A dialog box will open where you can enter the
filename.

Discussion
When you save a file in the IDE, a standard dialog box for the operating
system will open. It suggests that you save the sketch to a folder called
Arduino in your My Documents folder (or your Documents folder on a

Mac). You can replace the default sketch name with a meaningful name that
reflects the purpose of your sketch. Click Save to save the file.

NOTE
The default name is the word sketch followed by the current date. Sequential letters starting from
a are used to distinguish sketches created on the same day. Replacing the default name with
something meaningful helps you to identify the purpose of a sketch when you come back to it
later.

If you use characters that the IDE does not allow (e.g., the space character),
the IDE will automatically replace these with valid characters.

Arduino sketches are saved as plain-text files with the extension .ino. Older
versions of the IDE used the .pde extension, also used by Processing. They
are automatically saved in a folder with the same name as the sketch.

You can save your sketches to any folder, but if you use the default folder
(the Arduino folder in your Documents folder; ~/Arduino on Linux) your
sketches will appear in the Sketchbook menu of the Arduino software and
be easier to locate.

If you have edited one of the built-in examples, you will not be able to save
the changed file into the examples folder, so you will be prompted to save it
into a different folder.

After you have made changes, you will see a dialog box asking if you want
to save the sketch when a sketch is closed. The § symbol following the
name of the sketch in the top bar of the IDE window indicates that the
sketch code has changes that have not yet been saved on the computer. This
symbol is removed when you save the sketch.

As you develop and modify a sketch, you will want a way to keep track of
changes. The easiest way to do this is to use the Git version control system
(see this Atlassian Git Tutorial page for installation information). Git is
typically accessed using a command-line interface (there are graphical
clients available as well). The basic workflow for putting a sketch under
version control in Git is:

https://oreil.ly/0wJJC

Figure out which folder your sketch resides in. You can find this using
Sketch→Show Sketch Folder. This will open the sketch folder in your
computer’s file manager.

Open a command line (on Windows, Command Prompt; on Linux or
macOS, open a Terminal). Use the cd command to change to the
directory where your sketch is located. For example, if you saved a
sketch called Blink in the default sketch folder location, you’d be able to
change to that directory with the following on macOS, Linux, and
Windows, respectively:

$ cd ~/Documents/Arduino/Blink

$ cd ~/Arduino/Blink

> cd %USERPROFILE%\Documents\Arduino\Blink

Initialize the Git repository with the git init command.

Add the Sketch file to Git with git add Blink.ino (replace
Blink.ino with the name of your sketch). If you add any additional files
to your sketch folder, you’ll need to add them with the git add
filename command.

After you have made substantial changes, type git commit -a -m
"your comment here". Replace “your comment here” with something
that describes the change you made.

After you’ve committed a change to Git, you can use git log to see a
history of your changes. Each one of those changes will have a commit hash
associated with it:

commit 87e962e54fe46d9e2a00575f7f0d1db6b900662a (HEAD -> master)

Author: Brian Jepson <bjepson@gmail.com>

Date: Tue Jan 14 20:58:56 2020 -0500

 made massive improvements

commit 0ae1a1bcb0cd245ca9427352fc3298d6ccb91cef (HEAD -> master)

Author: Brian Jepson <bjepson@gmail.com>

Date: Tue Jan 14 20:56:45 2020 -0500

 your comment here

With these hashes, you can work with older versions of files (you don’t
need the full hash, just enough of it to differentiate between versions). You
can restore an old version with git checkout hash filename, as in git
checkout 0ae1 Blink.ino. You can compare versions with git diff
firsthash..secondhash, as in git diff 0ae1..7018. See https://git-
scm.com/doc for complete documentation on Git.

Frequent compiling as you modify or add code is a good way to check for
errors. It will be easier to find and fix any errors because they will usually
be associated with what you have just written.

NOTE
Once a sketch has been uploaded onto the board there is no way to download it back to your
computer. Make sure you save any changes to your sketches that you want to keep.

If you try to save a sketch file that is not in a folder with the same name as
the sketch, the IDE will inform you that this can’t be opened as is and
suggest you click OK to create the folder for the sketch with the same
name.

NOTE
Sketches must be located in a folder with the same name as the sketch. The IDE will create the
folder automatically when you save a new sketch.

Sketches made with older versions of Arduino software have a different file extension (.pde). The
IDE will open them, and when you save the sketch it will create a file with the new extension
(.ino). Code written for early versions of the IDE may not be able to compile in version 1.0. Most
of the changes to get old code running are easy to do.

1.6 An Easy First Arduino Project

https://git-scm.com/doc

Problem
You want to get started with a project that is easy to build and fun to use.

Solution
This recipe provides a taste of some of the techniques that are covered in
detail in later chapters.

The sketch is based on the LED blinking code from the previous recipe, but
instead of using a fixed delay, the rate is determined by a light-sensitive
sensor called a photoresistor or light-dependent resistor (LDR for short, see
Recipe 6.3). Wire the photoresistor as shown in Figure 1-7.

Arduino with photoresistor

If you are not familiar with building a circuit from a schematic, see
Appendix B for step-by-step illustrations on how to make this circuit on a
breadboard.

NOTE
Photoresistors contain a compound (cadmium sulfide) that is a hazardous substance. You can use a
phototransistor if you live in a jurisdiction where it is difficult to obtain a photoresistor, or if you
simply prefer to not use a photoresistor. A phototransistor has a long lead and a short lead, much
like an LED. You can wire it exactly as shown in the figure, but you must connect the long lead to
5V and the short lead to the resistor and pin 0. Be sure to buy a phototransistor such as Adafruit
part number 2831 that can sense visible light so you can test it with a common light source.

The following sketch reads the light level of a photoresistor connected to
analog pin 0. The light level striking the photoresistor will change the blink
delay of the internal onboard LED:

/*

 * Blink with photoresistor sketch

 */

const int sensorPin = A0; // connect sensor to analog input 0

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // enable output on the led pin

}

void loop()

{

 int delayval = analogRead(sensorPin); // read the analog input

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(delayval); // delay is dependent on light level

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

 delay(delayval);

}

The code in this recipe and throughout this book uses the const int
expression to provide meaningful names (sensorPin) for constants instead
of numbers (0). See Recipe 17.5 for more on the use of constants.

Discussion
The value of the resistor shown in Figure 1-7 depends on the range of your
photoresistor: you will want a resistor that is in the ballpark of the

https://oreil.ly/24xzl

maximum (dark) resistance of your photoresistor (you can find this by
covering the photoresistor while you measure its resistance on a
multimeter). So if your photoresistor measures 10K ohms in darkness, use a
10K resistor. If you are using a phototransistor, you will generally be OK
with a value between 1K and 10K. The light level on the sensor will change
the voltage level on analog pin 0. The analogRead command (see Chapter
6) provides a value that ranges from around 200 when the sensor is dark to
800 or so when it is very bright (the sensitivity will vary depending on the
type of photoresistor and resistor you use, and whether you use a
phototransistor in place of the photoresistor). The analog reading
determines the duration of the LED on and off times, so the blink delay
increases with light intensity.

You can scale the blink rate by using the Arduino map function as follows:

/*

 * Blink with photoresistor (scaled) sketch

 */

const int sensorPin = A0; // connect sensor to analog input 0

// low and high values for the sensor readings; you may need to adjust these

const int low = 200;

const int high = 800;

// The next two lines set the min and max delay between blinks.

const int minDuration = 100; // minimum wait between blinks

const int maxDuration = 1000; // maximum wait between blinks

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // enable output on the LED pin

}

void loop()

{

 int delayval = analogRead(sensorPin); // read the analog input

 // the next line scales the delay value between the min and max values

 delayval = map(delayval, low, high, minDuration, maxDuration);

 delayval = constrain(delayval, minDuration, maxDuration);

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(delayval); // delay is dependent on light level

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

 delay(delayval);

}

NOTE
If you’re not seeing any change in values as you adjust the light, you will need to play with the
values for low and high. If you are using a phototransistor and aren’t getting changes in the blink
rate, try a value of 10 for low.

Recipe 5.7 provides more details on using the map function to scale values.
Recipe 3.5 has details on using the constrain function to ensure values do
not exceed a given range. If, for some reason, your delay value is outside
the range between low and high, map will return a value outside the range
between minDuration and maxDuration. If you call constrain after map
as shown in the sketch, you will avoid the problem of out-of-range values.

If you want to view the value of the delayval variable on your computer,
you can print this to the Arduino Serial Monitor as shown in the revised
loop code that follows. The sketch will display the delay value in the Serial
Monitor. You open the Serial Monitor window in the Arduino IDE by
clicking the icon on the right of the top bar (see Chapter 4 for more on
using the Serial Monitor):

/*

 * Blink sketch with photoresistor (scaled with serial output)

 */

const int sensorPin = A0; // connect sensor to analog input 0

// Low and high values for the sensor readings. You may need to adjust these.

const int low = 200;

const int high = 800;

// the next two lines set the min and max delay between blinks

const int minDuration = 100; // minimum wait between blinks

const int maxDuration = 1000; // maximum wait between blinks

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // enable output on the led pin

 Serial.begin(9600); // initialize Serial

}

void loop()

{

 int delayval = analogRead(sensorPin); // read the analog input

 // the next line scales the delay value between the min and max values

 delayval = map(delayval, low, high, minDuration, maxDuration);

 delayval = constrain(delayval, minDuration, maxDuration);

 Serial.println(delayval); // print delay value to serial monitor

 digitalWrite(LED_BUILTIN, HIGH); // set the LED on

 delay(delayval); // delay is dependent on light level

 digitalWrite(LED_BUILTIN, LOW); // set the LED off

 delay(delayval);

}

You can use the sensor to control the pitch of a sound by connecting a small
speaker to the pin, as shown in Figure 1-8.

Connections for a speaker with the photoresistor circuit

You will need to increase the on/off rate on the pin to a frequency in the
audio spectrum. This is achieved, as shown here, by decreasing the min and
max durations:

/*

 * Speaker sketch with photoresistor

 */

const int outputPin = 9; // Speaker connected to digital pin 9

const int sensorPin = A0; // connect sensor to analog input 0

const int low = 200;

const int high = 800;

const int minDuration = 1; // 1 ms on, 1 ms off (500 Hz)

const int maxDuration = 10; // 10 ms on, 10 ms off (50 Hz)

void setup()

{

 pinMode(outputPin, OUTPUT); // enable output on the led pin

}

void loop()

{

 int sensorReading = analogRead(sensorPin); // read the analog input

 int delayval = map(sensorReading, low, high, minDuration, maxDuration);

 delayval = constrain(delayval, minDuration, maxDuration);

 digitalWrite(outputPin, HIGH); // set the pin on

 delay(delayval); // delay is dependent on light level

 digitalWrite(outputPin, LOW); // set the pin off

 delay(delayval);

}

See Also
For a full discussion on audio output with Arduino, see Chapter 9.

1.7 Using Arduino with Boards Not Included
in the Standard Distribution
Problem
You want to use a board such as the Arduino MKR 1010, but it does not
appear in the boards menu.

Solution

To use the MKR 1010 with Arduino, you need to add its details to the
Arduino software you have already downloaded. To do this go to
Tools→Board→Boards Manager (Figure 1-9).

Selecting Boards Manager (Linux version of Arduino IDE shown)

As this window opens, the list of board definitions available online will be
checked to ensure you have the latest versions available, so wait till this has
finished.

Adding Other Boards to the Boards Menu
The procedure described here is similar for other boards you may want to add to the boards menu.
Check the documentation for your board to find the location of the definition files.

The window that opens (Figure 1-10) shows you the board definitions that
are already installed and ones that are available to download.

The Boards Manager

To find the MKR 1010 you can scroll down the list, or type its name in the
filter box. For the MKR 1010, you’ll need to select the Arduino SAMD
Boards entry from the list. Once you have selected it, click install and it will
be downloaded and added to the Arduino IDE. This may take some time.

Once it has finished you can add other boards, or click Close to finish using
the Boards Manager. If you open Tools→Board, you should now have the
option of selecting the MKR 1010 as shown in Figure 1-11.

The MKR 1010 is now installed and can be programmed using the Arduino IDE

Discussion
The files that you download when you do this describe how to map the
programming concepts in Arduino that connect to specific bits of hardware
in the board’s microcontroller chip, to where that hardware is located in a
specific chip or family of chips.

Once you have added the description for a particular chip, you will often be
able to work with a family of boards that use that chip. For example, adding
support for the MKR 1010 board also provides support for the Arduino
Zero as both boards use the same microcontroller chip.

To facilitate support for the growing number of Arduino and Arduino-
compatible boards, the Arduino IDE added a Boards Manager in release
1.6. The Boards Manager was developed to enable people to easily add and
remove board details from their installation. It also enables you to update

the board support files if newer versions are available, or choose the version
you use if you need to use a particular one. The Arduino IDE no longer
includes the description files for all the Arduino boards, so even if you
download the latest IDE you may not get the descriptions for the board you
have.

The Boards Manager also enables third parties to add the details of their
boards to the system. If their board descriptions are available online in the
correct format, you can add the location as one of the places for Boards
Manager to use to populate the list it produces. This means those files will
also get checked whenever the Boards Manager updates its details, so you
get notified of updates and can use the same mechanism to update them
once they are installed. To do this, go to Arduino→Preferences and click
the icon to the right of the Additional Boards Manager URLs field, and the
Additional Boards Manager URL dialog will appear as shown in Figure 1-
12.

Preferences after clicking the icon to the right of the Additional Boards Manager URLs entry

If the people who made the board provide a URL to add to Arduino, paste it
into the “additional URLs” dialog box (on a separate line if there are any
other entries). If there isn’t an explicit URL, click the text below the box to
go to the web page that maintains a list of unofficial Arduino board
description URLs and see if you can find a link there.

If you want to use a Teensy board, you need to download a separate
installer program from the Teensy website. It is important that you use a
Teensy installer that has support for the IDE version that you are using. A
compatible version is usually produced within a week or two of a new
Arduino release.

See Also

https://oreil.ly/Ceziq
https://www.pjrc.com/teensy
https://oreil.ly/J_kfi

Quick start guides for various Arduino boards

1.8 Using a 32-Bit Arduino (or Compatible)
Problem
You want 32-bit performance in the Uno form factor.

Solution
The Arduino Zero (Figure 1-13) has the familiar pin layout of the Uno but
has much more memory and a faster processor. If you have trouble
obtaining a Zero, Adafruit’s Metro M0 Express and SparkFun’s RedBoard
Turbo are compatible alternatives.

The Arduino/Genuino Zero board

https://oreil.ly/KyWcO

Despite the similar physical layout of the pins, there are a number of
differences. What distinguishes these boards from the Uno is that they use a
32-bit ARM chip, the Microchip SAMD21. The following sketch, similar to
the previous recipe, highlights some significant differences between the
ARM-based boards and the Uno:

NOTE
If you’re not hearing any change in values as you adjust the light, you will need to play with the
values for low and high. If you are using a phototransistor and aren’t getting changes in the blink
rate, try a value of 10 for low. If your ambient light is from a fluorescent or LED source, you may
hear a distinct warbling to the sound due to flicker in such sources that are visually imperceptible.

/*

 * Zero wave sketch

 */

const int outputPin = A0; // headphones connected to analog 0

const int sensorPin = A1; // connect sensor to analog input 1

const int low = 200;

const int high = 800;

const int sampleCount = 16; // number of samples used to render one cycle

const int minDur = 1000000/(sampleCount*500); // period in uS for 500 Hz

const int maxDur = 1000000/(sampleCount*50); // period for 50 Hz

// table of values for 16 samples of one sine wave cycle

static int sinewave[sampleCount] = {

 0x1FF,0x2B6,0x355,0x3C7,0x3FF,0x3C7,0x355,0x2B6,

 0x1FF,0x148,0x0A9,0x037,0x000,0x037,0x0A9,0x148

};

void setup()

{

 analogWriteResolution(10); // set the Arduino DAC resolution to maximum

}

void loop()

{

 int sensorReading = analogRead(sensorPin); // read the analog input

 int duration = map(sensorReading, low, high, minDur, maxDur);

 duration = constrain(duration, minDur, maxDur);

 duration = constrain(duration, minDur, maxDur);

 for(int sample=0; sample < sampleCount; sample++) {

 analogWrite(outputPin, sinewave[sample]);

 delayMicroseconds(duration);

 }

}

Before you can load sketches on the Zero, Adafruit Metro M0 or M4, or
SparkFun RedBoard, open the Arduino Boards Manager and install the
appropriate package (see Recipe 1.7). If you are using an Adafruit or
SparkFun board, you’ll need to add its board manager URL to the Arduino
IDE first. See Adafruit or SparkFun for details. After you’ve installed
support for your SAMD board, use the Tools menu to configure the
Arduino IDE to use that board and set the correct serial port for connecting
to it. Connect a resistor, potentiometer, and photoresistor (also known as a
light-dependent resistor) as shown in Figure 1-14. Next, upload the code
using the Arduino IDE.

Connections for audio output with the photoresistor circuit for the Zero board

https://oreil.ly/l2paC
https://oreil.ly/DLM0a

These SAMD-Based Boards Are Not 5-Volt Tolerant
You must not connect more than 3.3 volts to their I/O pins or you can damage the board!

Discussion
Although the wiring may appear similar to Figure 1-8 at first glance, the
sensor input and audio output use different pins. These boards have a
digital-to-analog converter (DAC) that can create more realistic audio than
the binary output of standard digital pins. However, the DAC is only
available on analog pin 0 so the sensor input is here connected to analog pin
1.

Another difference that may not be obvious from the figure is that these
boards can only drive up to 7 mA on a pin, compared to 40 mA on the Uno.
And because the pin voltage ranges from 0 to 3.3 volts, compared to the 0-
to 5-volt range of the Uno, the maximum power delivered to a pin is almost
10 times less than the Uno. For that reason, the output pins should be
connected to headphones or an amplifier input as they will not drive a
speaker directly.

The sketch uses a lookup table of 16 samples per sine wave cycle, however
these boards are fast enough to handle much higher resolutions, and you can
increase the number of samples to improve the purity of the signal.

See Also
Arduino Zero quick start guide

More on audio with Arduino in Chapter 9

https://oreil.ly/JhTie

Arduino Programming

2.0 Introduction
Though much of an Arduino project will involve integrating the Arduino
board with supporting hardware, you need to be able to tell the board what
to do with the rest of your project. This chapter introduces core elements of
Arduino programming, shows nonprogrammers how to use common
language constructs, and provides an overview of the language syntax for
readers who are not familiar with C or C++, the language that Arduino uses.

Since making the examples interesting requires making Arduino do
something, the recipes use physical capabilities of the board that are
explained in detail in later chapters. If any of the code in this chapter is not
clear, feel free to jump forward, particularly to Chapter 4 for more on serial
output and Chapter 5 for more on using digital and analog pins. You don’t
need to understand all the code in the examples, though, to see how to
perform the specific capabilities that are the focus of the recipes. Here are
some of the more common functions used in the examples that are covered
in the next few chapters:

Serial.println(value);

Prints the value to the Arduino IDE’s Serial Monitor so you can view
Arduino’s output on your computer; see Recipe 4.1.

pinMode(pin, mode);

Configures a digital pin to read (input) or write (output) a digital value;
see the introduction to Chapter 5.

digitalRead(pin);

Reads a digital value (HIGH or LOW) on a pin set for input; see Recipe
5.1.

digitalWrite(pin, value);

Writes the digital value (HIGH or LOW) to a pin set for output; see Recipe
5.1.

2.1 A Typical Arduino Sketch
Problem
You want to understand the fundamental structure of an Arduino program.
We’ll show this structure in the following sketch, which programs an
Arduino to continually flash an LED light.

Solution
Programs for Arduino are usually referred to as sketches; the first users
were artists and designers, and sketch highlights the quick-and-easy way to
have an idea realized. The terms sketch and program are interchangeable.
Sketches contain code—the instructions the board will carry out. Code that
needs to run only once (such as to set up the board for your application)
must be placed in the setup function. Code to be run continuously after the
initial setup has finished goes into the loop function. Here is a typical
sketch:

// The setup() method runs once, when the sketch starts

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // initialize the onboard LED as an output

}

// the loop() method runs over and over again,

void loop()

{

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on

 delay(1000); // wait a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off

 delay(1000); // wait a second

}

When the Arduino IDE finishes uploading the code, and every time you
power on the board after you’ve uploaded this code, it starts at the top of

the sketch and carries out the instructions sequentially. It runs the code in
setup once and then goes through the code in loop. When it gets to the end
of loop (marked by the closing bracket, }) it calls the loop function again,
and does so over and over again until you disconnect power or reset the
board.

Discussion
This example continuously flashes an LED by writing HIGH and LOW outputs
to a pin. See Chapter 5 to learn more about using Arduino pins. When the
sketch begins, the code in setup sets the pin mode (so it’s capable of
lighting an LED). After the code in setup is completed, the code in loop is
repeatedly called (to flash the LED) for as long as the Arduino board is
powered on.

You don’t need to know this to write Arduino sketches, but experienced
C/C++ programmers may wonder where the expected main() entry point
function has gone. It’s there, but it’s hidden under the covers by the Arduino
build environment. The build process creates an intermediate file that
includes the sketch code and the following additional statements. Here’s
what the main function looks like for 8-bit boards (32-bit boards are
similar):

int main(void)

{

 init();

 initVariant();

#if defined(USBCON)

 USBDevice.attach();

#endif

 setup();

 for (;;)

 {

 loop();

 if (serialEventRun) serialEventRun();

 }

 return 0;

}

The first thing that happens is a call to an init() function that initializes
the Arduino hardware. After that, initVariant() gets called. This is a
rarely used hook to give makers of Arduino-compatible boards a way to
invoke their own custom initialization routines. If the microcontroller on the
board has dedicated USB hardware, main will prepare (attach) it for use.

Next, your sketch’s setup() function is called. Finally, your loop()
function is called over and over. Because the for loop never terminates, the
return statement is never executed.

NOTE
Right after each call to loop, the main function will call serialEventRun if it’s supported on
your board (it’s not available on boards that are based on the ATmega32U4 such as the Leonardo).
This allows you to add a special function called serialEvent in your sketch that will be called
whenever data is available on the serial port (see Recipe 4.3).

See Also
Recipe 1.4 explains how to upload a sketch to the Arduino board.

Chapter 17 and the Arduino CLI sketch build process page provide more on
the build process.

2.2 Using Simple Primitive Types (Variables)
Problem
Arduino has different types of variables to efficiently represent values. You
want to know how to select and use these Arduino data types.

Solution

https://oreil.ly/c8YQW

Although the int (short for integer) data type is the most common choice
for the numeric values encountered in Arduino applications, you can use
Tables 2-1 and 2-2 to determine the data type that fits the range of values
your application expects. Table 2-1 shows data types for 8-bit boards, and
Table 2-2 shows data types for 32-bit boards.

Arduino data types for 8-bit boards such as the Uno

Numeric
types

Bytes Range Use

int 2 –32768 to 32767 Represents positive and negative integer values.

unsigned

int

2 0 to 65535 Represents only positive values; otherwise, similar to
int.

long 4 –2147483648 to
2147483647

Represents a very large range of positive and
negative values.

unsigned

long

4 4294967295 Represents a very large range of positive values.

float 4 3.4028235E+38 to
–3.4028235E+38

Represents numbers with fractions; use to
approximate real-world measurements.

double 4 Same as float In Arduino, double is just another name for float.

bool 1 false (0) or true
(1)

Represents true and false values.

char 1 –128 to 127 Represents a single character. Can also represent a
signed numeric value between –128 and 127.

byte 1 0 to 255 Similar to char, but for unsigned values.

Other types Use

String Represents a sequence of characters typically used to contain text.

void Used only in function declarations where no value is returned.

Arduino data types for 32-bit boards such as the Zero and 101

yp f

Numeric
types

Bytes Range Use

short int 2 –32768 to 32767 Same as int on 8-bit boards.

unsigned

short int

2 0 to 65535 Same as unsigned int on 8-bit
boards.

int 4 –2147483648 to 2147483647 Represents positive and negative
integer values.

unsigned

int

4 0 to 4294967295 Represents only positive values;
otherwise, similar to int.

long 4 –2147483648 to 2147483647 Same as int.

unsigned

long

4 4294967295 Same as unsigned int.

float 4 ±3.4028235E+38 Represents numbers with fractions; use
to approximate real-world
measurements.

double 8 ±1.7976931348623158E+308 32-bit boards have much greater range
and precision than 8-bit boards.

bool 1 false (0) or true (1) Represents true and false values.

char 1 –128 to 127 Represents a single character. Can also
represent a signed value between –128
and 127.

byte 1 0 to 255 Similar to char, but for unsigned
values.

Other types Use

String Represents a sequence of characters typically used to contain text.

void Used only in function declarations where no value is returned.

Discussion

Except in situations where maximum performance or memory efficiency is
required, variables declared using int will be suitable for numeric values if
the values do not exceed the range (shown in Table 2-1) and if you don’t
need to work with fractional values. Most of the official Arduino example
code declares numeric variables as int. But sometimes you do need to
choose a type that specifically suits your application. This is especially
important if you are calling library functions that return values other than
int. Take, for example, the millis function shown in Recipe 2.10 and
other recipes. It returns an unsigned long value. If you use an int on an
8-bit board to store the results of that function, you won’t get a warning, but
you will get the wrong results because an int is not large enough to hold
the maximum value of a long. Instead, after you reach 32,767, it will roll
over to -32,768. If you were to try to stuff a long into an unsigned int,
you’ll roll over to zero after you pass the maximum value for an unsigned
int (65,535).

Sometimes you need negative numbers and sometimes you don’t, so
numeric types come in two varieties: signed and unsigned. unsigned
values are always positive. Variables without the keyword unsigned in
front are signed so that they can represent negative and positive values. One
reason to use unsigned values is when the range of signed values will not
fit the range of the variable (an unsigned variable has twice the capacity of
a signed variable). Another reason programmers choose to use unsigned
types is to clearly indicate to people reading the code that the value
expected will never be a negative number.

On a 32-bit board an int requires twice as many bytes as on an 8-bit board,
however, memory is ample on 32-bit boards, so most code for 8-bit will run
on 32-bit boards. A rare exception is code that assumes that ints will
always be represented in memory using 2 bytes, something well-written
code and libraries should not do.

bool (boolean) types have two possible values: true or false. They are
commonly used to store values that represent a yes/no condition. You may
also see bool types used in place of the built-in constants HIGH and LOW,

which are used to modify (with digitalWrite()) or determine (with
digitalRead()) the state of a digital I/O pin. For example, the statement
digitalWrite(LED_BUILTIN, HIGH); will transmit power to the pin that
the built-in LED is connected to. Using LOW instead of HIGH will turn off the
power. You can use true or false in place of HIGH or LOW, and you are
likely to find examples of this in code you find online. You will also see
examples where 1 and 0 are used (1 is equivalent to true and 0 is equivalent
to false). However, it is a bad habit to make assumptions about the
underlying value of a constant, so you should always use the constants HIGH
and LOW. It is extremely unlikely that you would ever come across an
Arduino variant where HIGH was equal to false. But there are many other
constants you will come across, and most of them do not have such an
explicit and obvious relationship to their underlying values.

See Also
The Arduino reference provides details on data types.

2.3 Using Floating-Point Numbers
Problem
Floating-point numbers are used for values expressed with decimal points
(this is the way to represent fractional values). You want to calculate and
compare these values in your sketch.

Solution
The following code shows how to declare floating-point variables,
illustrates problems you can encounter when comparing floating-point
values, and demonstrates how to overcome them:

/*

 * Floating-point example

 * This sketch initialized a float value to 1.1

 * It repeatedly reduces the value by 0.1 until the value is 0

https://oreil.ly/xRLxx

 */

float value = 1.1;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 value = value - 0.1; // reduce value by 0.1 each time through the loop

 if(value == 0)

 {

 Serial.println("The value is exactly zero");

 }

 else if(almostEqual(value, 0))

 {

 Serial.print("The value ");

 Serial.print(value,7); // print to 7 decimal places

 Serial.println(" is almost equal to zero, restarting countdown");

 value = 1.1;

 }

 else

 {

 Serial.println(value);

 }

 delay(250);

}

// returns true if the difference between a and b is small

bool almostEqual(float a, float b)

{

 const float DELTA = .00001; // max difference to be almost equal

 if (a == 0) return fabs(b) <= DELTA;

 if (b == 0) return fabs(a) <= DELTA;

 return fabs((a - b) / max(fabs(a), fabs(b))) <= DELTA;

}

Discussion
Floating-point math is not exact, and values returned can have a small
approximation error. The error occurs because floating-point values cover a
huge range, so the internal representation of the value can only hold an

approximation. Because of this, you need to test if the values are within a
range of tolerance rather than exactly equal.

The Serial Monitor output from this sketch is as follows:

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

The value -0.0000001 is almost equal to zero, restarting countdown

1.00

0.90

The output starts over from the beginning (1.00) and continues the
countdown.

You may expect the code to print "The value is exactly zero" after
value is 0.1 and then 0.1 is subtracted from it. But value never equals
exactly zero; it gets very close, but that is not good enough to pass the test:
if (value == 0). This is because the only memory-efficient way that
floating-point numbers can contain the huge range in values they can
represent is by storing an approximation of the number.

The solution to this is to check if a variable is close to the desired value, as
shown in this recipe’s Solution.

The almostEqual function tests if the variable value is within a margin of
the desired target and returns true if so. The acceptable range is set with
the constant DELTA; you can change this to smaller or larger values as
required. The function named fabs (short for floating-point absolute value)
returns the absolute value of a floating-point variable, and this is used to
test the difference between the given parameters.

Before the almostEqual function compares the difference between a and b
to DELTA, it scales that difference by the maximum value of either a or b.
This is necessary to account for the fact that the precision of floating-point
values varies by their magnitude. In fact, because this code compares a
value to 0, this expression is not necessary because the logic in the
preceding two lines takes over when either a or b is 0. Table 2-3 shows
what would happen at different orders of magnitude for pairs of Start and
Comparison values. Equal At shows the value reached by the starting value
when they are considered equal. Unscaled Difference shows the difference
between a and b when almostEqual determines they are almost equal.
Scaled Difference shows the difference that the final line in almostEqual
uses to make that determination. As you can see, by the time you get up to
100, the unscaled value exceeds the DELTA of 0.00001.

Counting down in floating point

Start Comparison Equal at Unscaled difference Scaled difference
11.1 10 9.9999962 0.0000038 0.0000004

101.1 100 100.0000153 0.0000153 0.0000002

1001.1 1000 1000.0002441 0.0002441 0.0000002

NOTE
Floating point approximates numbers because it only uses 32 bits to hold all values within a huge
range. Eight bits are used for the decimal multiplier (the exponent), and that leaves 24 bits for the
sign and value—only enough for seven significant decimal digits.

WARNING
Although float and double are exactly the same on Arduino Uno, doubles do have a higher
precision on 32-bit boards and many other platforms. If you are importing code that uses float
and double from another platform, check that there is sufficient precision for your application.

See Also
The Arduino reference for float

2.4 Working with Groups of Values
Problem
You want to create and use a group of values (called arrays). The arrays
may be a simple list or they could have two or more dimensions. You want
to know how to determine the size of the array and how to access the
elements in the array.

Solution
This sketch creates two arrays—an array of integers for pins connected to
switches and an array of pins connected to LEDs, as shown in Figure 2-1:

/*

 array sketch

 an array of switches controls an array of LEDs

 see Chapter 5 for more on using switches

 see Chapter 7 for information on LEDs

 */

int inputPins[] = {2, 3, 4, 5}; // create an array of pins for switch inputs

int ledPins[] = {10, 11, 12, 13}; // create array of output pins for LEDs

void setup()

{

 for (int index = 0; index < 4; index++)

 {

 pinMode(ledPins[index], OUTPUT); // declare LED as output

 pinMode(inputPins[index], INPUT_PULLUP); // declare as input

 }

}

void loop() {

 for (int index = 0; index < 4; index++)

 {

 int val = digitalRead(inputPins[index]); // read input value

 if (val == LOW) // check if the switch is

https://oreil.ly/BHmBd

() //

pressed

 {

 digitalWrite(ledPins[index], HIGH); // LED on if switch is pressed

 }

 else

 {

 digitalWrite(ledPins[index], LOW); // turn LED off

 }

 }

}

NOTE
If you’re familiar with Arduino’s INPUT mode, you may be used to wiring the button up with a
pull-down resistor that connects the input pin to ground. But with the INPUT_PULLUP mode, you
don’t need this resistor in your circuit, because this mode enables Arduino’s internal pull-up
resistors. The difference with the INPUT_PULLUP mode is that when the button is pressed,
digitalRead returns LOW rather than HIGH.

Connections for LEDs and switches

Discussion
Arrays are collections of consecutive variables of the same type. Each
variable in the collection is called an element. The number of elements is
called the size of the array.

The Solution demonstrates a common use of arrays in Arduino code:
storing a collection of pins. Here the pins connect to switches and LEDs (a

topic covered in more detail in Chapter 5). The important parts of this
example are the declaration of the array and access to the array elements.

The following line of code declares (creates) an array of integers with four
elements and initializes each element. The first element is set equal to 2, the
second to 3, and so on:

int inputPins[] = {2,3,4,5};

If you don’t initialize values when you declare an array (for example, when
the values will only be available when the sketch is running), you must set
each element individually. You can declare the array as follows:

int inputPins[4];

If you declare the array outside of a function, this declares an array of four
elements with the initial value of each element set to zero. (If you declare it
inside of a function, such as with setup() or loop(), the elements will be
set to seemingly random values.) The number within the square brackets
([]) is the size, and this sets the number of elements. This array has a size
of four and can hold, at most, four integer values. The size can be omitted if
the array declaration contains initializers (as shown in the first example)
because the compiler figures out how big to make the array by counting the
number of initializers.

TIP
Because Arduino’s programming environment accepts C or C++ syntax, it is governed by the
conventions of those languages. In C and C++, arrays that are declared globally (outside of a
function) but are not initialized will have their elements initialized to 0. If they are declared within
a function and not initialized, their elements will be undefined, and will probably contain
whatever happens to be sitting inside the memory that the array element points to. Uninitialized
variables (such as int i;) may often be set to zero, but there is no guarantee of this, so it’s
always important to initialize variables before you try to use their values.

The first element of the array is arrayname[0]:

int firstElement = inputPins[0]; // this is the first element

inputPins[0] = 2; // set the value of the first element to 2

The last element is one less than the size, so for a four-element array, the
last element is element 3:

int lastElement = inputPins[3]; // this is the last element

It may seem odd that an array with a size of four has the last element
accessed using array[3], but because the first element is array[0], the
four elements are:

inputPins[0],inputPins[1],inputPins[2],inputPins[3]

In the previous sketch, the four elements are accessed using a for loop:

for (int index = 0; index < 4; index++)

{

 pinMode(ledPins[index], OUTPUT); // declare LED as output

 pinMode(inputPins[index], INPUT_PULLUP); // declare as input

}

This loop will step through the variable index with values starting at 0 and
ending at 3. It is a common mistake to accidentally access an element that is
beyond the actual size of the array. This is a bug that can have many
different symptoms, and care must be taken to avoid it. One way to keep
your loops under control is to set the size of an array by using a constant as
follows:

const int PIN_COUNT = 4; // define a constant for the number of elements

int inputPins[PIN_COUNT] = {2,3,4,5};

int ledPins[PIN_COUNT] = {10, 11, 12, 13};

/* ... */

for(int index = 0; index < PIN_COUNT; index++)

{

 pinMode(ledPins[index], OUTPUT);

 pinMode(inputPins[index], INPUT_PULLUP);

}

WARNING
The compiler will not report an error if you accidentally try to store or read beyond the size of the
array, but it’s likely that your sketch will mysteriously crash if you do. You must be careful that
you only access elements that are within the bounds you have set. Using a constant to set the size
of an array and in code referring to its elements helps your code stay within the bounds of the
array.

Another use of arrays is to hold a string of text characters. In Arduino code,
these are called character strings (strings for short). A character string
consists of one or more characters, followed by the null character (the value
0) to indicate the end of the string.

NOTE
The null at the end of a character string is not the same as the character 0. The null has an ASCII
value of 0, whereas 0 has an ASCII value of 48.

Methods to use strings are covered in Recipes 2.5 and 2.6.

See Also
Recipe 5.2; Recipe 7.1

2.5 Using Arduino String Functionality
Problem
You want to manipulate text. You need to copy it, add bits together, and
determine the number of characters.

Solution

The previous recipe mentioned how arrays of characters can be used to
store text: these character arrays are usually called strings. Arduino has a
String object that adds rich functionality for storing and manipulating text.
Note that the “S” in the String object’s name is uppercase.

TIP
The word String with an uppercase S refers to the Arduino text capability provided by the Arduino
String library. The word string with a lowercase s refers to the group of characters rather than the
Arduino String functionality.

This recipe demonstrates how to use Arduino Strings.

Load the following sketch onto your board, and open the Serial Monitor to
view the results:

/*

 Basic_Strings sketch

 */

String text1 = "This text";

String text2 = " has more characters";

String text3; // to be assigned within the sketch

void setup()

{

 Serial.begin(9600);

 while(!Serial); // Wait for serial port (Leonardo, 32-bit boards)

 Serial.print("text1 is ");

 Serial.print(text1.length());

 Serial.println(" characters long.");

 Serial.print("text2 is ");

 Serial.print(text2.length());

 Serial.println(" characters long.");

 text1.concat(text2);

 Serial.println("text1 now contains: ");

 Serial.println(text1);

}

void loop()

{

}

WHY NOT SERIAL?
For the Arduino Uno and most 8-bit boards, when you open the Serial Monitor in the Arduino
IDE, it resets the board, which means that you will see any serial output that is generated in the
setup function shortly after you open the Serial Monitor. However, on the Leonardo, and on
SAMD-based boards, opening the serial port does not automatically reset the board, meaning
you won’t be able to open the Serial Monitor quick enough to capture the output. For this
reason, you will see the while(!Serial); line in several setup functions in this chapter and
throughout the book. See “Serial Hardware Behavior” for more details.

Discussion
This sketch creates three variables of type String, called text1, text2,
and text3. Variables of type String have built-in capabilities for
manipulating text. The statement text1.length() returns (provides the
value of) the length (number of characters) in the string text1.

text1.concat(text2) combines the contents of strings; in this case, it
appends the contents of text2 to the end of text1 (concat is short for
concatenate).

The Serial Monitor will display the following:

text1 is 9 characters long.

text2 is 20 characters long.

text1 now contains:

This text has more characters

Another way to combine strings is to use the string addition operator. Add
these two lines to the end of the setup code:

text3 = text1 + " and more";

 Serial.println(text3);

The new code will result in the Serial Monitor adding the following line to
the end of the display:

This text has more characters and more

You can use the indexOf and lastIndexOf functions to find an instance of
a particular character in a string. Like arrays, Arduino strings are indexed
beginning with 0.

TIP
You will come across Arduino sketches that use arrays of characters or pointers to a sequence of
characters rather than the String type. See Recipe 2.6 for more on using arrays of characters
without the help of the Arduino String functionality. See Recipe 17.4 for instructions on storing
string literals in flash memory rather than Arduino’s main working RAM memory.

If you see a line such as the following:

char oldString[] = "this is a character array";

the code is using C-style character arrays (see Recipe 2.6). If the declaration
looks like this:

String newString = "this is a string object";

the code uses Arduino Strings. To convert a C-style character array to an
Arduino String, just assign the contents of the array to the String object:

char oldString[] = "I want this character array in a String object";

String newString = oldString;

To use any of the functions listed in Table 2-4, you need to invoke them
upon an existing string object, as in this example:

int len = myString.length();

Brief overview of Arduino String functions

Function What it does

charAt(n) Returns the nth character of the String

compareTo(S2) Compares the String to the given String S2

concat(S2) Returns a new String that is the combination of the String and
S2

endsWith(S2) Returns true if the String ends with the characters of S2

equals(S2) Returns true if the String is an exact match for S2 (case-
sensitive)

equalsIgnoreCase(S2) Same as equals but is not case-sensitive

getBytes(buffer,len) Copies len(gth) characters into the supplied byte buffer

indexOf(S) Returns the index of the supplied String (or character) or –1 if
not found

lastIndexOf(S) Same as indexOf but starts from the end of the String

length() Returns the number of characters in the String

remove(index) Removes the character in the String at the given index

remove(index, count) Removes the specified number of characters from the String
starting at the given index

replace(A,B) Replaces all instances of String (or character) A with B

reserve(count) Sets aside (allocates) the specified number of bytes to make
subsequent String operations more efficient

setCharAt(index,c) Stores the character c in the String at the given index

startsWith(S2) Returns true if the String starts with the characters of S2

substring(index) Returns a String with the characters starting from index to the
end of the String

substring(index,to) Same as above, but the substring ends at the character location
before the to position

Function What it does
toCharArray(buffer,len)

Copies up to len characters of the String to the supplied buffer

toFloat() Returns the floating-point value of the numeric digits in the
String

toInt() Returns the integer value of the numeric digits in the String

toLowerCase() Returns a String with all characters converted to lowercase

toUpperCase() Returns a String with all characters converted to uppercase

trim() Returns a String with all leading and trailing whitespace
removed

See the Arduino reference pages for more about the usage and variants for
these functions.

Choosing between Arduino Strings and C character arrays
Arduino’s built-in String data type is easier to use than C character arrays,
but this is achieved through complex code in the String library, which
makes more demands on your Arduino, and is, by nature, more prone to
problems.

The String data type is so flexible because it makes use of dynamic
memory allocation. That is, when you create or modify a String, Arduino
requests a new region of memory from the C library, and when you’re done
using a String, Arduino needs to release that memory. This usually works
smoothly, but 8-bit Arduino boards have so little working RAM (2K on the
Arduino Uno) that even small memory leaks can have a big impact on your
sketch. A memory leak occurs when, through a bug in a library or incorrect
usage of it, memory that you allocate is not released. When this happens,
the memory available to Arduino will slowly decrease (until you reboot the
Arduino). A related issue is memory fragmentation: as you repeatedly
allocate and release memory, Arduino will have successively smaller

contiguous blocks of free memory, which could cause a String allocation
to fail even if there’s otherwise sufficient RAM.

Even if there are no memory leaks, it’s complicated to write code to check
if a String request failed due to insufficient memory (the String functions
mimic those in Processing, but unlike that platform, Arduino does not have
runtime error exception handling). Running out of dynamic memory is a
bug that can be very difficult to track down because the sketch can run
without problems for days or weeks before it starts misbehaving due to
insufficient memory.

If you use C character arrays, you are in control of memory usage: you’re
allocating a fixed (static) amount of memory at compile time so you don’t
get memory leaks. Your Arduino sketch will have the same amount of
memory available to it all the time it’s running. And if you do try to allocate
more memory than is available, finding the cause is easier because there are
tools that tell you how much static memory you have allocated (see the
reference to avr-objdump in Recipe 17.1).

However, with C character arrays, it’s easier for you to have another
problem: C will not prevent you from modifying memory beyond the
bounds of the array. So if you allocate an array as myString[4], and assign
myString[4] = 'A' (remember, myString[3] is the end of the array),
nothing will stop you from doing this. But who knows what piece of
memory myString[4] refers to? And who knows whether assigning 'A' to
that memory location will cause you a problem? Most likely, it will cause
your sketch to misbehave.

So, Arduino’s built-in String library, by virtue of using dynamic memory,
runs the risk of eating up your available memory. C’s character arrays
require care on your part to ensure that you do not exceed the bounds of the
arrays you use. So use Arduino’s built-in String library if you need rich-text
handling capability and you won’t be creating and modifying Strings over
and over again. If you need to create and modify them in a loop that is
constantly repeating, you’re better off allocating a large C character array

and writing your code carefully so you don’t write past the bounds of that
array.

Another instance where you may prefer C character arrays over Arduino
Strings is in large sketches that need most of the available RAM or flash.
The Arduino StringToInt example code uses almost 2 KB more flash than
the code using a C character array and atoi to convert to an int. The
Arduino String version also needs a bit more RAM to store allocation
information in addition to the actual string.

If you do suspect that the String library, or any other library that makes use
of dynamically allocated memory, might be leaking memory, you can
determine how much memory is free at any given time; see Recipe 17.2.
Check the amount of RAM when your sketch starts, and monitor it to see
whether it’s decreasing over time. If you suspect a problem with the String
library, search the list of open bugs for “String.”

See Also
The Arduino distribution provides String example sketches
(File→Examples→Strings).

The String reference page

Tutorials for the String library

2.6 Using C Character Strings
Problem
You want to understand how to use raw character strings: you want to know
how to create a string, find its length, and compare, copy, or append strings.
The core C language does not support the Arduino-style String capability,
so you want to understand code from other platforms written to operate
with primitive character arrays.

Solution

https://oreil.ly/Adyxc
https://oreil.ly/GRq1L
https://oreil.ly/XhtcM

Arrays of characters are sometimes called character strings (or simply
strings for short). Recipe 2.4 describes Arduino arrays in general. This
recipe describes functions that operate on character strings. If you have
done any C or C++ programming, you may be used to adding #include
<string.h> to your code in order to get access to these functions. The
Arduino IDE does this for you under the hood, so you don’t need the
#include.

You declare strings like this:

char stringA[8]; // declare a string of up to 7 chars plus terminating null

char stringB[8] = "Arduino"; // as above and initialize the string to

"Arduino"

char stringC[16] = "Arduino"; // as above, but string has room to grow

char stringD[] = "Arduino"; // the compiler inits string and calculates size

Use strlen (short for string length) to determine the number of characters
before the terminating null:

int length = strlen(string); // return the number of characters in the string

length will be 0 for stringA and 7 for the other strings shown in the
preceding code. The null that indicates the end of the string is not counted
by strlen.

Use strcpy (short for string copy) to copy one string to another:

strcpy(destination, source); // copy string source to destination

Use strncpy (like strcpy, but with a limit) to limit the number of
characters to copy (useful to prevent writing more characters than the
destination string can hold). You can see this used in Recipe 2.7:

// copy up to 6 characters from source to destination

strncpy(destination, source, 6);

Use strcat (short for string concatenate) to append one string to the end of
another:

// append source string to the end of the destination string

strcat(destination, source);

NOTE
Always make sure there is enough room in the destination when copying or concatenating strings.
Don’t forget to allow room for the terminating null.

Use strcmp (short for string compare) to compare two strings. You can see
this used in Recipe 2.7:

if(strcmp(str, "Arduino") == 0)

{

 // do something if the variable str is equal to "Arduino"

}

Discussion
Text is represented in the Arduino environment using an array of characters
called strings. A string consists of a number of characters followed by a null
(the value 0). The null is not displayed, but it is needed to indicate the end
of the string to the software.

See Also
The str* functions described in this recipe are part of C’s string.h
library. See one of the many online C/C++ reference pages, such as
cplusplus.com and the C++ Referencepage.

2.7 Splitting Comma-Separated Text into
Groups

https://oreil.ly/oYYXf
https://oreil.ly/T0HJ2

Problem
You have a string that contains two or more pieces of data separated by
commas (or any other separator). You want to split the string so that you
can use each individual part.

Solution
This sketch prints the text found between each comma:

/*

 * SplitSplit sketch

 * split a comma-separated string

 */

String text = "Peter,Paul,Mary"; // an example string

String message = text; // holds text not yet split

int commaPosition; // the position of the next comma in the string

void setup()

{

 Serial.begin(9600);

 while(!Serial); // Wait for serial port (Leonardo, 32-bit boards)

 Serial.println(message); // show the source string

 do

 {

 commaPosition = message.indexOf(',');

 if(commaPosition != -1)

 {

 Serial.println(message.substring(0,commaPosition));

 message = message.substring(commaPosition+1, message.length());

 }

 else

 { // here after the last comma is found

 if(message.length() > 0)

 Serial.println(message); // if there is text after the last comma,

 // print it

 }

 }

 while(commaPosition >=0);

}

void loop()

{

}

The Serial Monitor will display the following:

Peter,Paul,Mary

Peter

Paul

Mary

Discussion
This sketch uses String functions to extract text from between commas.
The following code:

commaPosition = message.indexOf(',');

sets the variable commaPosition to the position of the first comma in the
String named message (it will be set to –1 if no comma is found). If there
is a comma, the substring function is used to print the text from the
beginning of the string up to, but excluding, the comma. The text that was
printed, and its trailing comma, are removed from message in this line:

message = message.substring(commaPosition+1, message.length());

substring returns a string starting from commaPosition+1 (the position
just after the first comma) up to the length of the message. This results in
that message containing only the text following the first comma. This is
repeated until no more commas are found (commaPosition will be equal to
–1).

If you are an experienced programmer, you can also use the low-level
functions that are part of the standard C library. The following sketch has
similar functionality to the preceding one using Arduino strings:

/*

 * strtok sketch

 * split a comma-separated string

 */

const int MAX_STRING_LEN = 20; // set this to the largest string

 // you will process

char stringList[] = "Peter,Paul,Mary"; // an example string

char stringBuffer[MAX_STRING_LEN+1]; // static buffer for computation/output

void setup()

{

 Serial.begin(9600);

 while(!Serial); // Wait for serial port (Leonardo, 32-bit boards)

 char *str;

 char *p;

 strncpy(stringBuffer, stringList, MAX_STRING_LEN); // copy source string

 Serial.println(stringBuffer); // show the source string

 for(str = strtok_r(stringBuffer, ",", &p); // split using comma

 str; // while str is not null

 str = strtok_r(NULL, ",", &p) // get subsequent tokens

)

 {

 Serial.println(str);

 }

}

void loop()

{

}

TIP
Although you can use pointers with Arduino, it’s generally discouraged in sketches because it
makes it harder for beginners to understand your code. In practice, you will rarely see pointers or
any advanced C functionality in example sketches. For more information on recommended
Arduino coding style, see the Arduino Style Guide.

The core functionality comes from the function named strtok_r (the name
of the version of strtok that comes with the Arduino compiler). The first
time you call strtok_r, you pass it the string you want to tokenize

https://oreil.ly/a5mv9

(separate into individual values). But strtok_r overwrites the characters in
this string each time it finds a new token, so it’s best to pass a copy of the
string as shown in this example. Each call that follows uses a NULL to tell
the function that it should move on to the next token. In this example, each
token is printed to the serial port. *p is a pointer that strtok_r uses to keep
track of the string it’s working on. You declare it as *p but you pass it into
the strtok_r function as &p.

If your tokens consist only of numbers, see Recipe 4.5. This shows how to
extract numeric values separated by commas in a stream of serial
characters.

See Also
See AVR Libc home page for more on C string functions such as strtok_r
and strcmp.

Recipe 2.5

See Man7.org for an online reference to the C/C++ functions strtok_r and
strcmp.

2.8 Converting a Number to a String
Problem
You need to convert a number to a string, perhaps to show the number on an
LCD or other display.

Solution
The String variable will convert numbers to strings of characters. You can
use literal values, or the contents of a variable. For example, the following
code will work:

String myNumber = String(1234);

https://oreil.ly/-Zehk
https://oreil.ly/sKSld

As will this:

int value = 127;

String myReadout = "The reading was ";

myReadout.concat(value);

Or this:

int value = 127;

String myReadout = "The reading was ";

myReadout += value;

Discussion
If you are converting a number to display as text on an LCD or serial
device, the simplest solution is to use the conversion capability built into
the LCD and Serial libraries (see Recipe 4.2). But perhaps you are using a
device that does not have this built-in support (see Chapter 13) or you want
to manipulate the number as a string in your sketch.

The Arduino String class automatically converts numerical values when
they are assigned to a String variable. You can combine (concatenate)
numeric values at the end of a string using the concat function or the string
+ operator.

TIP
The + operator is used with number types as well as strings, but it behaves differently with each.

The following code results in number having a value of 13:

int number = 12;

 number += 1;

With a String, as shown here:

String textNumber = "12";

 textNumber += 1;

textNumber is the text string "121".

Prior to the introduction of the String class, it was common to find
Arduino code using the itoa or ltoa function. The names come from
“integer to ASCII” (itoa) and “long to ASCII” (ltoa). The String version
described earlier is easier to use, but the following can be used if you prefer
working with C character arrays as described in Recipe 2.6.

itoa and ltoa take three parameters: the value to convert, the buffer that
will hold the output string, and the number base (10 for a decimal number,
16 for hex, and 2 for binary).

The following sketch illustrates how to convert numeric values using ltoa:

/*

 * NumberToString

 * Creates a string from a given number

 */

char buffer[12]; // long data type has 11 characters (including the

 // minus sign) and a terminating null

void setup()

{

 Serial.begin(9600);

 while(!Serial);

 long value = 12345;

 ltoa(value, buffer, 10);

 Serial.print(value);

 Serial.print(" has ");

 Serial.print(strlen(buffer));

 Serial.println(" digits");

 value = 123456789;

 ltoa(value, buffer, 10);

 Serial.print(value);

 Serial.print(" has ");

 Serial.print(strlen(buffer));

 Serial.println(" digits");

}

void loop()

{

}

Your buffer must be large enough to hold the maximum number of
characters in the string. For 16-bit base 10 (decimal) integers, that is seven
characters (five digits, a possible minus sign, and a terminating 0 that
always signifies the end of a string); 32-bit long integers need 12-character
buffers (10 digits, the minus sign, and the terminating 0). No warning is
given if you exceed the buffer size; this is a bug that can cause all kinds of
strange symptoms, because the overflow will corrupt some other part of
memory that may be used by your program. The easiest way to handle this
is to always use a 12-character buffer and always use ltoa because this will
work on both 16-bit and 32-bit values.

2.9 Converting a String to a Number
Problem
You need to convert a string to a number. Perhaps you have received a value
as a string over a communication link and you need to use this as an integer
or floating-point value.

Solution
There are a number of ways to solve this. If the string is received as serial
stream data, it can be converted using the parseInt function. See the
Discussion section of this recipe or Recipe 4.3 for examples of how to do
this using the serial port.

Another approach to converting text strings representing numbers is to use
the C language conversion function called atoi (for int variables) or atol
(for long variables).

This sketch terminates the incoming digits on any character that is not a
digit (or if the buffer is full). After you upload the sketch, open the Serial
Monitor and type some numeric characters, then press Enter or Return. For
this to work, though, you’ll need to enable the newline option in the Serial
Monitor or type some nondigit characters before you press Enter or Return:

/*

 * StringToNumber

 * Creates a number from a string

 */

int blinkDelay; // blink rate determined by this variable

char strValue[6]; // must be big enough to hold all the digits and the

 // 0 that terminates the string

int index = 0; // the index into the array storing the received digits

void setup()

{

 Serial.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT); // enable LED pin as output

}

void loop()

{

 if(Serial.available())

 {

 char ch = Serial.read();

 if(index < 5 && isDigit(ch)){

 strValue[index++] = ch; // add the ASCII character to the string;

 }

 else

 {

 // here when buffer full or on the first nondigit

 strValue[index] = 0; // terminate the string with a 0

 blinkDelay = atoi(strValue); // use atoi to convert the string to an

int

 index = 0;

 }

 }

 blink();

}

void blink()

{

 digitalWrite(LED_BUILTIN, HIGH);

 delay(blinkDelay/2); // wait for half the blink period

 digitalWrite(LED_BUILTIN, LOW);

 delay(blinkDelay/2); // wait for the other half

}

Discussion
The obscurely named atoi (for ASCII to int) and atol (for ASCII to
long) functions convert a string into integers or long integers. To use them,
you have to receive and store the entire string in a character array before
you can call the conversion function. The code creates a character array
named strValue that can hold up to five digits (it’s declared as char
strValue[6] because there must be room for the terminating null). It fills
this array with digits from Serial.read until it gets the first character that
is not a valid digit. The array is terminated with a null and the atoi
function is called to convert the character array into the variable
blinkDelay.

A function called blink is called that uses the value stored in blinkDelay.

As mentioned in the warning in Recipe 2.4, you must be careful not to
exceed the bounds of the array. If you are not sure how to do that, see the
Discussion section of that recipe.

Arduino also offers the parseInt function that can be used to get integer
values from Serial and Ethernet (or any object that derives from the
Stream class). The following fragment will convert sequences of numeric
digits into numbers. It is similar to the solution but does not need a buffer
(and does not limit the number of digits to five):

void loop()

{

 if(Serial.available())

 {

 int newValue = Serial.parseInt();

 if (newValue != 0) {

 blinkDelay = newValue;

 Serial.print("New delay: ");

 Serial.println(blinkDelay);

 }

 }

 blink();

}

NOTE
Stream-parsing methods such as parseInt use a timeout to return control to your sketch if data
does not arrive within the desired interval. The default timeout is one second but this can be
changed by calling the setTimeout method:

Serial.setTimeout(1000 * 60); // wait up to one minute

parseInt (and all other stream methods) will return whatever value was obtained prior to the
timeout if no delimiter was received. The return value will consist of whatever values were
collected; if no digits were received, the return value will be zero.

See Also
Documentation for atoi can be found at the AVR Libc site.

There are many online C/C++ reference pages covering these low-level
functions, such as cplusplus or CPP Reference.

See Recipes 4.3 and 4.5 for more about using parseInt with Serial.

2.10 Structuring Your Code into Functional
Blocks
Problem
You want to know how to add functions to a sketch, and understand how to
plan the overall structure of a sketch.

Solution
Functions are used to organize the actions performed by your sketch into
functional blocks. Functions package functionality into well-defined inputs
(information given to a function) and outputs (information provided by a
function) that make it easier to structure, maintain, and reuse your code.

https://oreil.ly/JOGu-
https://oreil.ly/zzJ2O
https://oreil.ly/Gwo1a

You are already familiar with the two functions that are in every Arduino
sketch: setup and loop. You create a function by declaring its return type
(the information it provides), its name, and any optional parameters (values)
that the function will receive when it is called.

NOTE
The terms functions and methods are used to refer to well-defined blocks of code that can be
called as a single entity by other parts of a program. The C language refers to these as functions.
Object-oriented languages such as C++ that expose functionality through classes tend to use the
term method. Arduino uses a mix of styles (the example sketches tend to use C-like style; libraries
tend to be written to expose C++ class methods). In this book, the term function is usually used
unless the code is exposed through a class. Don’t worry; if that distinction is not clear to you, treat
both terms as the same.

Here is a simple function that just blinks an LED. It has no parameters and
doesn’t return anything (the void preceding the function indicates that
nothing will be returned):

// blink an LED once

void blink1()

{

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on

 delay(500); // wait 500 milliseconds

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off

 delay(500); // wait 500 milliseconds

}

The following version has a parameter (the integer named count) that
determines how many times the LED will flash:

// blink an LED the number of times given in the count parameter

void blink2(int count)

{

 while(count > 0) // repeat until count is no longer greater than zero

 {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on

 delay(500); // wait 500 milliseconds

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off

 delay(500); // wait 500 milliseconds

 count = count -1; // decrement count

 }

}

NOTE
Experienced programmers will note that both functions could be named blink because the
compiler will differentiate them by the type of values used for the parameter. This behavior is
called function overloading. The Arduino print function discussed in Recipe 4.2 is a common
example. Another example of overloading is in the discussion of Recipe 4.6.

That version checks to see if the value of count is 0. If not, it blinks the
LED and then reduces the value of count by one. This will be repeated
until count is no longer greater than 0.

TIP
A parameter is sometimes referred to as an argument in some documentation. For practical
purposes, you can treat these terms as meaning the same thing.

Here is an example sketch with a function that takes a parameter and returns
a value. The parameter determines the length of the LED on and off times
(in milliseconds). The function continues to flash the LED until a button is
pressed, and the number of times the LED flashed is returned from the
function. This sketch uses the same wiring as the pull-up sketch from
Recipe 5.2:

/*

 blink3 sketch

 Demonstrates calling a function with a parameter and returning a value.

 The LED flashes when the program starts and stops when a switch connected

 to digital pin 2 is pressed.

 The program prints the number of times that the LED flashes.

 */

const int inputPin = 2; // input pin for the switch

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(inputPin, INPUT);

 digitalWrite(inputPin,HIGH); // use internal pull-up resistor (Recipe 5.2)

 Serial.begin(9600);

}

void loop(){

 Serial.println("Press and hold the switch to stop blinking");

 int count = blink3(250); // blink the LED 250 ms on and 250 ms off

 Serial.print("The number of times the switch blinked was ");

 Serial.println(count);

 while(digitalRead(inputPin) == LOW)

 {

 // do nothing until they let go of the button

 }

}

// blink an LED using the given delay period

// return the number of times the LED flashed

int blink3(int period)

{

 int blinkCount = 0;

 while(digitalRead(inputPin) == HIGH) // repeat until switch is pressed

 // (it will go low when pressed)

 {

 digitalWrite(LED_BUILTIN, HIGH);

 delay(period);

 digitalWrite(LED_BUILTIN, LOW);

 delay(period);

 blinkCount = blinkCount + 1; // increment the count

 }

 // here when inputPin is no longer HIGH (means the switch is pressed)

 return blinkCount; // this value will be returned

}

NOTE
A function declaration is a prototype—a specification of the name, the types of values that may be
passed to the function, and the function’s return type. The Arduino build process creates the
declarations for you under the covers, so you do not need to follow the standard C requirement of
declaring the function separately.

Discussion
The code in this recipe’s Solution illustrates the three forms of function call
that you will come across. blink1 has no parameter and no return value. Its
form is:

void blink1()

{

 // implementation code goes here...

}

blink2 takes a single parameter but does not return a value:

void blink2(int count)

{

 // implementation code goes here...

}

blink3 has a single parameter and returns a value:

int blink3(int period)

{

 int result = 0;

 // implementation code goes here...

 return result; // this value will be returned

}

The data type that precedes the function name indicates the return type (or
no return type if void). When declaring the function (writing out the code
that defines the function and its action), you do not put a semicolon
following the parenthesis at the end. When you use (call) the function, you
do need a semicolon at the end of the line that calls the function.

Most of the functions you come across will be some variation on these
forms.

The data type identifier in front of the declaration tells the compiler (and
reminds the programmer) what data type the function returns. In the case of
blink1 and blink2, void indicates that it returns no value. In the case of

blink3, int indicates that it returns an integer. When creating functions,
choose the return type appropriate to the action the function performs.

NOTE
It is recommended that you give your functions meaningful names, and it is a common practice to
combine words by capitalizing the first letter of each word, except for the first word. Use
whatever style you prefer, but it helps others who read your code if you keep your naming style
consistent.

The blink2 function has a parameter called count (when the function is
called, count is given the value that is passed to the function). The blink3
function is different in that it is given a parameter called period.

The body of the function (the code within the curly brackets) performs the
action you want—for blink1, it blinks the LED on and then off. For
blink2, it iterates through a while loop the number of times specified by
count, blinking the LED each time through. For blink3, it flashes the LED
until you press a button, and then it returns a value to the calling function:
the number of times that the LED blinked before you pressed the button.

See Also
The Arduino function reference page

2.11 Returning More than One Value from a
Function
Problem
You want to return two or more values from a function. Recipe 2.10
provided examples for the most common form of a function, one that
returns just one value or none at all. But sometimes you need to modify or
return more than one value.

https://oreil.ly/Ww2Hw

Solution
There are various ways to solve this. The easiest to understand is to have
the function change some global variables and not actually return anything
from the function:

/*

 swap sketch

 demonstrates changing two values using global variables

 */

int x; // x and y are global variables

int y;

void setup() {

 Serial.begin(9600);

}

void loop(){

 x = random(10); // pick some random numbers

 y = random(10);

 Serial.print("The value of x and y before swapping are: ");

 Serial.print(x); Serial.print(","); Serial.println(y);

 swap();

 Serial.print("The value of x and y after swapping are: ");

 Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();

 delay(1000);

}

// swap the two global values

void swap()

{

 int temp;

 temp = x;

 x = y;

 y = temp;

}

The swap function changes two values by using global variables. Global
variables are easy to understand (global variables are values that are

accessible everywhere and anything can change them), but they are avoided
by experienced programmers because it’s easy to inadvertently modify the
value of a variable or to have a function stop working because you changed
the name or type of a global variable elsewhere in the sketch.

A safer and more elegant solution is to pass references to the values you
want to change and let the function use the references to modify the values.
This is done as follows:

/*

 functionReferences sketch

 demonstrates returning more than one value by passing references

 */

void setup() {

 Serial.begin(9600);

}

void loop(){

 int x = random(10); // pick some random numbers

 int y = random(10);

 Serial.print("The value of x and y before swapping are: ");

 Serial.print(x); Serial.print(","); Serial.println(y);

 swapRef(x,y);

 Serial.print("The value of x and y after swapping are: ");

 Serial.print(x); Serial.print(","); Serial.println(y);Serial.println();

 delay(1000);

}

// swap the two given values

void swapRef(int &value1, int &value2)

{

 int temp;

 temp = value1;

 value1 = value2;

 value2 = temp;

}

Finally, another option is to use a C structure, which can contain multiple
fields, allowing you to pass and return all kinds of data:

/*

 struct sketch

 demonstrates returning more than one value by using a struct

 */

struct Pair {

 int a, b;

};

void setup() {

 Serial.begin(9600);

}

void loop() {

 int x = random(10); // pick some random numbers

 int y = random(10);

 struct Pair mypair = {random(10), random(10)};

 Serial.print("The value of x and y before swapping are: ");

 Serial.print(mypair.a); Serial.print(","); Serial.println(mypair.b);

 mypair = swap(mypair);

 Serial.print("The value of x and y after swapping are: ");

 Serial.print(mypair.a); Serial.print(",");

 Serial.println(mypair.b);Serial.println();

 delay(1000);

}

// swap the two given values

Pair swap(Pair pair)

{

 int temp;

 temp = pair.a;

 pair.a = pair.b;

 pair.b = temp;

 return pair;

}

Discussion
The swapRef function is similar to the functions with parameters described
in Recipe 2.10, but the ampersand (&) symbol indicates that the parameters
are references. This means changes in values within the function will also
change the value of the variable that is given when the function is called.

You can see how this works by first running the code in this recipe’s
Solution and verifying that the parameters are swapped. Then modify the
code by removing the two ampersands in the function definition.

The changed line should look like this:

void swapRef(int value1, int value2)

Running the code shows that the values are not swapped—changes made
within the function are local to the function and are lost when the function
returns.

The swapPair function uses a C language feature called a struct (or
structure). A structure contains any number of primitive types or pointers.
The amount of memory reserved for a struct is equivalent to the size of its
elements (on an 8-bit Arduino, a Pair would take up four bytes, eight on a
32-bit board). If you are familiar with object-oriented programming, it may
be tempting to think of structs as similar to classes, but structs are
nothing more than the data they contain.

2.12 Taking Actions Based on Conditions
Problem
You want to execute a block of code only if a particular condition is true.
For example, you may want to light an LED if a switch is pressed or if an
analog value is greater than some threshold.

Solution
The following code uses the wiring shown in Recipe 5.2:

/*

 * Pushbutton sketch

 * a switch connected to digital pin 2 lights the built-in LED

 */

const int inputPin = 2; // choose the input pin (for a pushbutton)

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // declare LED pin as output

 pinMode(inputPin, INPUT_PULLUP); // declare pushbutton pin as input

}

void loop()

{

 int val = digitalRead(inputPin); // read input value

 if (val == LOW) // Input is LOW when the button is pressed

 {

 digitalWrite(LED_BUILTIN, HIGH); // turn LED on if switch is pressed

 }

}

Discussion
The if statement is used to test the value of digitalRead. An if statement
must have a test within the parentheses that can only be true or false. In the
example in this recipe’s Solution, it’s val == LOW, and the code block
following the if statement is only executed if the expression is true. A code
block consists of all code within the curly brackets (or if you don’t use curly
brackets, the block is just the next executable statement terminated by a
semicolon).

If you want to do one thing if a statement is true and another if it is false,
use the if...else statement:

/*

 * Pushbutton sketch

 * a switch connected to pin 2 lights the built-in LED

 */

const int inputPin = 2; // choose the input pin (for a pushbutton)

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT); // declare LED pin as output

 pinMode(inputPin, INPUT_PULLUP); // declare pushbutton pin as input

}

void loop()

{

 int val = digitalRead(inputPin); // read input value

 if (val == LOW) // Input is LOW when the button is

pressed

 {

 // do this if val is LOW

 digitalWrite(LED_BUILTIN, HIGH); // turn LED on if switch is pressed

 }

 else

 {

 // else do this if val is not LOW

 digitalWrite(LED_BUILTIN, LOW); // turn LED off

 }

}

See Also
See the discussion on Boolean types in Recipe 2.2.

2.13 Repeating a Sequence of Statements
Problem
You want to repeat a block of statements while an expression is true.

Solution
A while loop repeats one or more instructions while an expression is true:

/*

 * Repeat

 * blinks while a condition is true

 */

const int sensorPin = A0; // analog input 0

void setup()

{

 Serial.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT); // enable LED pin as output

}

void loop()

{

 while(analogRead(sensorPin) > 100)

 {

 blink(); // call a function to turn an LED on and off

 Serial.print(".");

 }

 Serial.println(analogRead(sensorPin)); // this is not executed until after

 // the while loop finishes!!!

}

void blink()

{

 digitalWrite(LED_BUILTIN, HIGH);

 delay(100);

 digitalWrite(LED_BUILTIN, LOW);

 delay(100);

}

This code will execute the statements in the block within the curly brackets
({}) while the value from analogRead is greater than 100. This could be
used to flash an LED as an alarm while some value exceeded a threshold.
The LED is off when the sensor value is 100 or less; it flashes continuously
when the value is greater than 100.

Discussion
Curly brackets define the extent of the code block to be executed in a loop.
If curly brackets are not used, only the first line of code will be repeated in
the loop, so you should use this style sparingly (or not at all):

while(analogRead(sensorPin) > 100)

 blink(); // line immediately following the loop expression is executed

 Serial.print("."); // this is executed only after the while loop finishes!

The do...while loop is similar to the while loop, but the instructions in
the code block are executed before the condition is checked. Use this form
when you must have the code executed at least once, even if the expression
is false:

do

{

 blink(); // call a function to turn an LED on and off

 Serial.print(".");

}

while (analogRead(sensorPin) > 100);

The preceding code will flash the LED at least once and will keep flashing
it as long as the value read from a sensor is greater than 100. If the value is
not greater than 100, the LED will only flash once. This code could be used
in a battery-charging circuit, if it were called once every 10 seconds or so: a
single flash shows that the circuit is active, whereas continuous flashing
indicates the battery is charged.

WARNING
Only the code within a while or do loop will run until the conditions permit exit. If your sketch
needs to break out of a loop in response to some other condition such as a timeout, sensor state, or
other input, you can use break:

while(analogRead(sensorPin) > 100)

{

 blink();

 Serial.print(".");

 if(Serial.available())

 {

 while(Serial.available())

 {

 // consume any pending serial input

 Serial.read();

 }

 break; // any serial input breaks out of while loop

 }

}

See Also
Chapters 4 and 5

2.14 Repeating Statements with a Counter
Problem
You want to repeat one or more statements a certain number of times. The
for loop is similar to the while loop, but you have more control over the
starting and ending conditions.

Solution
This sketch counts from zero to three by printing the value of the variable i
in a for loop:

/*

 ForLoop sketch

 demonstrates for loop

*/

void setup() {

 Serial.begin(9600);

}

void loop(){

 Serial.println("for(int i=0; i < 4; i++)");

 for(int i=0; i < 4; i++)

 {

 Serial.println(i);

 }

 delay(1000);

}

The Serial Monitor output from this is as follows (it will be displayed over
and over):

for(int i=0; i < 4; i++)

0

1

2

3

Discussion

A for loop consists of three parts: initialization, conditional test, and
iteration (a statement that is executed at the end of every pass through the
loop). Each part is separated by a semicolon. In the code in this recipe’s
Solution, int i=0; initializes the variable i to 0; i < 4; tests the variable
to see if it’s less than 4; and i++ increments i.

A for loop can use an existing variable, or it can create a variable for
exclusive use inside the loop. This version uses the value of the variable j
created earlier in the sketch:

int j;

 Serial.println("for(j=0; j < 4; j++)");

 for(j=0; j < 4; j++)

 {

 Serial.println(j);

 }

This is almost the same as the earlier example, but it does not have the int
keyword in the initialization part because the variable j was already
defined. The output of this version is similar to the output of the earlier
version:

for(j=0; j < 4; j++)

0

1

2

3

You control when the loop stops in the conditional test. The previous
example tests whether the loop variable is less than 4 and will terminate
when the condition is no longer true.

TIP
If your loop variable starts at 0 and you want it to repeat four times, your conditional statement
should test for a value less than 4. The loop repeats while the condition is true, and there are four
values that are less than 4 with a loop starting at 0.

The following code tests if the value of the loop variable is less than or
equal to 4. It will print the digits from 0 to 4:

Serial.println("for(int i=0; i <= 4; i++)");

 for(int i=0; i <= 4; i++)

 {

 Serial.println(i);

 }

The third part of a for loop is the iterator statement that gets executed at the
end of each pass through the loop. This can be any valid C/C++ statement.
The following increases the value of i by two on each pass:

 Serial.println("for(int i=0; i < 4; i+= 2)");

 for(int i=0; i < 4; i+=2) {

 Serial.println(i);

 }

That expression only prints the values 0 and 2.

The iterator expression can be used to cause the loop to count from high to
low, in this case from 3 to 0:

Serial.println("for(int i=3; i >= 0 ; i--)");

 for(int i=3; i >= 0 ; i--)

 {

 Serial.println(i);

 }

Like the other parts of a for loop, the iterator expression can be left blank
(you must always have the two semicolons separating the three parts even if
they are blank).

This version only increments i when an input pin is high. The for loop
does not change the value of i; it is only changed by the if statement after
Serial.print—you’ll need to define inPin and set it to INPUT with
pinMode():

pinMode(2, INPUT_PULLUP); // this goes in setup()

 /* ... */

 Serial.println("for(int i=0; i < 4;)");

 for(int i=0; i < 4;)

 {

 Serial.println(i);

 if(digitalRead(2) == LOW) {

 i++; // only increment the value if the button is pressed

 }

 }

See Also
The Arduino reference for the for statement

2.15 Breaking Out of Loops
Problem
You want to terminate a loop early based on some condition you are testing.

Solution
Use the break statement as shown in the following sketch:

/*

 * break sketch

 * Demonstrates the use of the break statement

 */

const int switchPin = 2; // digital input 2

void setup()

{

 Serial.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT); // enable LED pin as output

 pinMode(switchPin, INPUT_PULLUP); // enable button pin as input

}

void loop()

{

https://oreil.ly/dL5vO

 while(true) // endless loop

 {

 if(digitalRead(switchPin) == LOW)

 {

 break; // exit the loop if the switch is pressed

 }

 blink(); // call a function to turn an LED on and off

 }

}

void blink()

{

 digitalWrite(LED_BUILTIN, HIGH);

 delay(100);

 digitalWrite(LED_BUILTIN, LOW);

 delay(100);

}

Discussion
This code is similar to the one using while loops, but it uses the break
statement to exit the loop if a digital pin goes high. For example, if a switch
is connected on the pin as shown in Recipe 5.2, the loop will exit and the
LED will stop flashing even though the condition in the while loop is true.

See Also
The Arduino reference for the break statement

An interrupt is a facility built into the microcontroller hardware that allows
you to take action more or less immediately when a pin state changes. See
Recipe 18.2 for more details.

2.16 Taking a Variety of Actions Based on a
Single Variable
Problem
You need to do different things depending on some value. You could use
multiple if and else if statements, but the code soon gets complex and

https://oreil.ly/-6MsQ

difficult to understand or modify. Additionally, you may want to test for a
range of values.

Solution
The switch statement provides for the selection of a number of
alternatives. It is functionally similar to multiple if/else if statements but
is more concise:

/*

 * SwitchCase sketch

 * example showing switch statement by switching on chars from the serial port

 *

 * sending the character 1 blinks the LED once, sending 2 blinks twice

 * sending + turns the LED on, sending - turns it off

 * any other character prints a message to the Serial Monitor

 */

void setup()

{

 Serial.begin(9600); // Initialize serial port to send and

 // receive at 9600 baud

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 if (Serial.available()) // Check to see if at least one

 // character is available

 {

 char ch = Serial.read();

 switch(ch)

 {

 case '1':

 blink();

 break;

 case '2':

 blink();

 blink();

 break;

 case '+':

 digitalWrite(LED_BUILTIN, HIGH);

 break;

 case '-':

 digitalWrite(LED_BUILTIN, LOW);

 break;

 case '\n': // newline, safe to ignore

 break;

 case '\r': // carriage return, safe to ignore

 break;

 default:

 Serial.print(ch);

 Serial.println(" was received but not expected");

 break;

 }

 }

}

void blink()

{

 digitalWrite(LED_BUILTIN, HIGH);

 delay(500);

 digitalWrite(LED_BUILTIN, LOW);

 delay(500);

}

Discussion
The switch statement evaluates the variable ch received from the serial
port and branches to the label that matches its value. The labels must be
numeric constants. Because the char data type is represented as a numeric
value (see Recipe 2.2), it is permitted. However, you can’t use strings in a
case statement, and no two labels can have the same value. If you don’t
have a break statement following each expression, the execution will fall
through into the statement:

case '1':

 blink(); // no break statement before the next label

 case '2':

 blink(); // case '1' will continue here

 blink();

 break; // break statement will exit the switch expression

If the break statement at the end of case '1': was removed (as shown in
the preceding code), when ch is equal to the character 1 the blink function

will be called three times. Accidentally forgetting the break is a common
mistake. Intentionally leaving out the break is sometimes handy; it can be
confusing to others reading your code, so it’s a good practice to clearly
indicate your intentions with comments in the code.

TIP
If your switch statement is misbehaving, check to ensure that you have not forgotten the break
statements.

The default: label is used to catch values that don’t match any of the case
labels. If there is no default label, the switch expression will not do
anything if there is no match.

See Also
The Arduino reference for the switch and case statements

2.17 Comparing Character and Numeric
Values
Problem
You want to determine the relationship between values.

Solution
Compare integer values using the relational operators shown in Table 2-5.

Relational and equality operators

Operator Test for Example

== Equal to 2 == 3 // evaluates to false

!= Not equal to 2 != 3 // evaluates to true

https://oreil.ly/pPLn-

Operator Test for Example

> Greater than 2 > 3 // evaluates to false

< Less than 2 < 3 // evaluates to true

>= Greater than or equal to 2 >= 3 // evaluates to false

<= Less than or equal to 2 <= 3 // evaluates to true

The following sketch demonstrates the results of using the comparison
operators:

/*

 * RelationalExpressions sketch

 * demonstrates comparing values

 */

int i = 1; // some values to start with

int j = 2;

void setup() {

 Serial.begin(9600);

}

void loop(){

 Serial.print("i = ");

 Serial.print(i);

 Serial.print(" and j = ");

 Serial.println(j);

 if(i < j)

 Serial.println(" i is less than j");

 if(i <= j)

 Serial.println(" i is less than or equal to j");

 if(i != j)

 Serial.println(" i is not equal to j");

 if(i == j)

 Serial.println(" i is equal to j");

 if(i >= j)

 Serial.println(" i is greater than or equal to j");

 if(i > j)

 Serial.println(" i is greater than j");

 Serial.println();

 i = i + 1;

 if(i > j + 1)

 {

 delay(10000); // long delay after i is no longer close to j

 }

 else

 {

 delay(1000); // short delay

 }

}

Here is the output:

i = 1 and j = 2

 i is less than j

 i is less than or equal to j

 i is not equal to j

i = 2 and j = 2

 i is less than or equal to j

 i is equal to j

 i is greater than or equal to j

i = 3 and j = 2

 i is not equal to j

 i is greater than or equal to j

 i is greater than j

Discussion
Note that the equality operator is the double equals sign, ==. One of the
most common programming mistakes is to confuse this with the assignment
operator, which uses a single equals sign.

The following expression will compare the value of i to 3. The programmer
intended this:

if(i == 3) // test if i equals 3

But suppose they put this in the sketch:

if(i = 3) // single equals sign used by mistake!!!!

This will always return true, because i will be set to 3, so they will be
equal when compared.

You can also perform these sorts of comparisons on character values
because they are represented as numeric values (see Recipe 2.2). This will
evaluate to true:

if ('b' > 'a')

As will this, because the numeric value of 'a' is 97 in the ASCII character
set that Arduino uses:

if ('a' == 97)

However, strings cannot be directly compared to numeric values:

String word1 = String("Hello");

char word2[] = "World";

if (word1 > 'G') // This will not compile

{

 Serial.println("word1 > G");

}

if (word2 >= 'W') // This also will not compile

{

 Serial.println("word2 >= W");

}

But you can always compare a number or char against a single character
from a string:

if (word1.charAt(0) > 'G')

{

 Serial.println("word1[0] > G");

}

if (word2[0] >= 'W')

{

 Serial.println("word2[0] >= W");

}

See Also

The Arduino reference for conditional and comparison operators

The Arduino ASCII chart reference

2.18 Comparing Strings
Problem
You want to see if two character strings are identical.

Solution
There is a function to compare strings, called strcmp (short for string
compare). Here is a fragment showing its use:

char string1[] = "left";

 char string2[] = "right";

 if(strcmp(string1, string2) == 0)

 {

 Serial.println("strings are equal");

 }

Discussion
strcmp returns the value 0 if the strings are equal and a value greater than
zero if the first character that does not match has a greater value in the first
string than in the second. It returns a value less than zero if the first
nonmatching character in the first string is less than in the second. Usually
you only want to know if they are equal, and although the test for zero may
seem unintuitive at first, you’ll soon get used to it.

Bear in mind that strings of unequal length will not be evaluated as equal
even if the shorter string is contained in the longer one. So:

if (strcmp("left", "leftcenter") == 0) // this will evaluate to false

You can compare strings up to a given number of characters by using the
strncmp function. You give strncmp the maximum number of characters to

https://oreil.ly/CZ4U0
https://oreil.ly/uNpYu

compare and it will stop comparing after that many characters:

if (strncmp("left", "leftcenter", 4) == 0) // this will evaluate to true

Unlike character strings, Arduino Strings can be directly compared as
follows:

String stringOne = String("this");

if (stringOne == "this")

{

 Serial.println("this will be true");

}

if (stringOne == "that")

{

 Serial.println("this will be false");

}

For more see the tutorial on Arduino string comparison.

See Also
More information on strcmp is available at cplusplus.

See Recipe 2.5 for an introduction to the Arduino String.

2.19 Performing Logical Comparisons
Problem
You want to evaluate the logical relationship between two or more
expressions. For example, you want to take a different action depending on
the conditions of an if statement.

Solution
Use the logical operators as outlined in Table 2-6.

Logical operators

https://oreil.ly/M48_D
https://oreil.ly/rkoUk

Symbol Function CommentsSymbol Function Comments

&& Logical
And

Evaluates as true if the conditions on both sides of the && operator are
true

|| Logical Or Evaluates as true if the condition on at least one side of the ||
operator is true

! Not Evaluates as true if the expression is false, and false if the
expression is true

Discussion
Logical operators return true or false values based on the logical
relationship. The examples that follow assume you have sensors wired to
digital pins 2 and 3 as discussed in Chapter 5.

The logical And operator && will return true if both its two operands are
true, and false otherwise:

if(digitalRead(2) && digitalRead(3))

 blink(); // blink if both pins are HIGH

The logical Or operator || will return true if either of its two operands are
true, and false if both operands are false:

if(digitalRead(2) || digitalRead(3))

 blink(); // blink if either pin is HIGH

The Not operator ! has only one operand, whose value is inverted—it
results in false if its operand is true and true if its operand is false:

if(!digitalRead(2))

 blink(); // blink if the pin is not HIGH

2.20 Performing Bitwise Operations
Problem

You want to set or clear certain bits in a value.

Solution
Use the bit operators as outlined in Table 2-7. The 0b prefix indicates binary
representation of numbers and is used to disambiguate between the decimal
and binary numbers in the table.

Bit operators

Symbol Function Result Example

& Bitwise
And

Sets bits in each place to 1 if both bits are 1;
otherwise, bits are set to 0.

3 & 1 equals 1

(0b11 & 0b01
equals 0b01)

| Bitwise Or Sets bits in each place to 1 if either bit is 1. 3 | 1 equals 3

(0b11 | 0b01
equals 0b11)

^ Bitwise
Exclusive
Or

Sets bits in each place to 1 only if one of the two
bits is 1.

3 ^ 1 equals 2

(0b11 ^ 0b01
equals 0b10)

~ Bitwise
Negation

Inverts the value of each bit. The result depends on
the number of bits in the data type.

~1 equals 254

(~00000001
equals 11111110)

Here is a sketch that demonstrates the example values shown in Table 2-7:

/*

 * bits sketch

 * demonstrates bitwise operators

 */

void setup() {

 Serial.begin(9600);

}

void loop(){

 Serial.print("3 & 1 equals "); // bitwise And 3 and 1

 Serial.print(3 & 1); // print the result

 Serial.print(" decimal, or in binary: ");

 Serial.println(3 & 1 , BIN); // print the binary representation of the

result

 Serial.print("3 | 1 equals "); // bitwise Or 3 and 1

 Serial.print(3 | 1);

 Serial.print(" decimal, or in binary: ");

 Serial.println(3 | 1 , BIN); // print the binary representation of the

result

 Serial.print("3 ^ 1 equals "); // bitwise exclusive or 3 and 1

 Serial.print(3 ^ 1); Serial.print(" decimal, or in binary: ");

 Serial.println(3 ^ 1 , BIN); // print the binary representation of the

result

 byte byteVal = 1;

 int intVal = 1;

 byteVal = ~byteVal; // do the bitwise negate

 intVal = ~intVal;

 Serial.print("~byteVal (1) equals "); // bitwise negate an 8-bit value

 Serial.println(byteVal, BIN); // print the binary representation of the

result

 Serial.print("~intVal (1) equals "); // bitwise negate a 16-bit value

 Serial.println(intVal, BIN); // print the binary representation of the

result

 delay(10000);

}

This is what is displayed on the Serial Monitor:

3 & 1 equals 1 decimal, or in binary: 1

3 | 1 equals 3 decimal, or in binary: 11

3 ^ 1 equals 2 decimal, or in binary: 10

~byteVal (1) equals 11111110

~intVal (1) equals 11111111111111111111111111111110

Discussion

Bitwise operators are used to set or test bits. When you “And” or “Or” two
values, the operator works on each individual bit. It is easier to see how this
works by looking at the binary representation of the values.

The decimal integer 3 is binary 11, and the decimal integer 1 is binary 1.
Bitwise And operates on each bit. The rightmost bits are both 1, so the
result of And-ing these is 1. Moving to the left, the next bits are 1 and 0;
And-ing these results in 0. All the remaining bits are 0, so the bitwise result
of these will be 0. In other words, for each bit position where there is a 1 in
both places, the result will have a 1; otherwise, it will have a 0. So, 11 & 01
equals 1. Binary numbers are often written with leading zeros because it
makes it easier to evaluate the effect of bitwise operations at a glance, but
the leading zeros are not significant.

Tables 2-8, 2-9, and 2-10 should help to clarify the bitwise And, Or, and
Exclusive Or values.

Bitwise And

Bit 1 Bit 2 Bit 1 and Bit 2

0 0 0

0 1 0

1 0 0

1 1 1

Bitwise Or

Bit 1 Bit 2 Bit 1 or Bit 2

0 0 0

0 1 1

1 0 1

1 1 1

Bitwise Exclusive Or

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

0 1 1

1 0 1

1 1 0

All the bitwise expressions operate on two values, except for the negation
operator. This simply flips each bit, so 0 becomes 1 and 1 becomes 0. In the
example, the byte (8-bit) value 00000001 becomes 11111110. The int
value has 16 bits, so when each is flipped, the result is 15 ones followed by
a single zero.

See Also
The Arduino reference for the bitwise And, Or, and Exclusive Or operators

2.21 Combining Operations and Assignment
Problem
You want to understand and use compound operators. It is not uncommon to
see published code that uses expressions that do more than one thing in a
single statement. You want to understand a += b, a >>= b, and a &= b.

Solution
Table 2-11 shows the compound assignment operators and their equivalent
full expression.

Compound operators

Operator Example Equivalent expression

https://oreil.ly/qSJEx

Operator Example Equivalent expression

+= value += 5; value = value + 5; // add 5 to value

-= value -= 4; value = value - 4; // subtract 4 from value

*= value *= 3; value = value * 3; // multiply value by 3

/= value /= 2; value = value / 2; // divide value by 2

>>= value >>= 2; value = value >> 2; // shift value right two places

<<= value <<= 2; value = value << 2; // shift value left two places

&= mask &= 2; mask = mask & 2; // binary-and mask with 2

|= mask |= 2; mask = mask | 2; // binary-or mask with 2

Discussion
These compound statements are no more efficient at runtime than the
equivalent full expression, and if you are new to programming, using the
full expression is clearer. Experienced coders often use the shorter form, so
it is helpful to be able to recognize the expressions when you run across
them.

See Also
See the Arduino Reference home page for an index to the reference pages
for compound operators.

https://oreil.ly/z-1_h

Mathematical Operations

3.0 Introduction
Almost every sketch uses mathematical operations to manipulate the value
of variables. This chapter provides a brief overview of the most common
mathematical operations. If you are already familiar with C or C++, you
may be tempted to skip this chapter, but we suggest you review it because
there are some idioms used by Arduino programmers that you may
encounter even if you don’t use them yourself (such as the use of bitSet to
change the value of a bit). If you are new to C and C++, see one of the C
reference books mentioned in the Preface.

3.1 Adding, Subtracting, Multiplying, and
Dividing
Problem
You want to perform simple math on values in your sketch. You want to
control the order in which the operations are performed and you may need
to handle different variable types.

Solution
Use the following code:

int myValue;

myValue = 1 + 2; // addition

myValue = 3 - 2; // subtraction

myValue = 3 * 2; // multiplication

myValue = 3 / 2; // division (the result is 1)

Discussion

Addition, subtraction, and multiplication for integers work much as you
expect.

Integer division truncates the fractional remainder in the division example
shown in this recipe’s Solution; myValue will equal 1 after the division (see
Recipe 2.3 if your application requires fractional results):

int value = 1 + 2 * 3 + 4;

Compound statements, such as the preceding statement, may appear
ambiguous, but the precedence (order) of every operator is well defined.
Multiplication and division have a higher precedence than addition and
subtraction, so the result will be 11. It’s advisable to use parentheses in your
code to make the desired calculation precedence clear. int value = 1 +
(2 * 3) + 4; produces the same result but is easier to read.

Use parentheses if you need to alter the precedence, as in this example:

int value = ((1 + 2) * 3) + 4;

The result will be 13. The expression in the inner parentheses is calculated
first, so 1 gets added to 2, this then gets multiplied by 3, and finally is added
to 4, yielding 13.

You’ll need to make sure your result will not exceed the maximum size of
the destination variable, because the Arduino IDE will not warn you about
that, unless you enable warnings in File→Preferences. See Recipe 2.2.
However, even if you use the correct type, you can still overflow the size of
the destination variable. Consider this code:

// 60 seconds in a minute, 60 minutes in an hour, 24 hours in a day

long seconds_per_day = 60 * 60 * 24;

In theory, that should be fine because the result is 86,400, which can fit in a
long data type. But the value that’s really stored in seconds_per_day is
20,864. 86,400 is enough to overflow an integer twice (86,400 – 32,768 * 2
= 20,864). The overflow happens because the Arduino IDE’s C compiler

sees an arithmetic expression composed of integers, and doesn’t know any
better. You must tell the compiler that it should treat the whole expression
like a long by appending L to the first value that is evaluated in the
expression:

long seconds_per_day = 60L * 60 * 24;

If, for some reason, you are using parentheses, remember that innermost
parentheses are evaluated first, so this will overflow:

long seconds_per_day_plus_one = 1L + 60 * (60 * 24);

However, this will run correctly:

long seconds_per_day_plus_one = 1 + 60 * (60L * 24);

NOTE
Floating-point arithmetic is subject to all the imprecisions described in Recipe 2.3. For example,
the following code, which divides 36.3 by 3 and prints the result to 10 decimal places, would
display 12.0999994277:

Serial.println(36.3/3, 10);

See Recipe 3.3 for a trick you can use to display an accurate calculation.

See Also
Recipe 2.2; Recipe 2.3

3.2 Incrementing and Decrementing Values
Problem
You want to increase or decrease the value of a variable.

Solution
Use the following code:

int myValue = 0;

myValue = myValue + 1; // this adds one to the variable myValue

myValue += 1; // this does the same as the above

myValue = myValue - 1; // this subtracts one from the variable myValue

myValue -= 1; // this does the same as the above

myValue = myValue + 5; // this adds five to the variable myValue

myValue += 5; // this does the same as the above

Discussion
Increasing and decreasing the values of variables is one of the most
common programming tasks, and Arduino has operators to make this easy.
Increasing a value by one is called incrementing, and decreasing it by one is
called decrementing. The longhand way to do this is as follows:

myValue = myValue + 1; // this adds one to the variable myValue

But you can also combine the increment and decrement operators with the
assign operator, like this:

myValue += 1; // this does the same as the above

If you are incrementing or decrementing a value by 1, you can use the
abbreviated increment and decrement operators ++ or --:

myValue++; // this does the same as the above

When the increment or decrement operators appear after a variable, they are
known as the post-increment or post-decrement operators because they
perform their operation after the variable is evaluated. If they appear before
the identifier (pre-increment or pre-decrement), they modify the value
before the variable is evaluated:

int myVal = 1;

Serial.println(myVal++); // prints 1

Serial.println(myVal); // prints 2

Serial.println(++myVal); // prints 3

Serial.println(myVal); // prints 3

See Also
Recipe 3.1

3.3 Finding the Remainder After Dividing Two
Values
Problem
You want to find the remainder after you divide two integer values.

Solution
Use the % symbol (the modulus operator) to get the remainder:

int myValue0 = 20 % 10; // get the modulus(remainder) of 20 divided by 10

int myValue1 = 21 % 10; // get the modulus(remainder) of 21 divided by 10

myValue0 equals 0 (20 divided by 10 has a remainder of 0). myValue1
equals 1 (21 divided by 10 has a remainder of 1).

Discussion
The modulus operator is surprisingly useful, particularly when you want to
see if a value is a multiple of a number. For example, the code in this
recipe’s Solution can be enhanced to detect when a value is a multiple of
10:

for (int myValue = 0; myValue <= 100; myValue += 5)

{

 if (myValue % 10 == 0)

 {

 Serial.println("The value is a multiple of 10");

 }

}

The preceding code takes the modulus of the myValue variable and
compares the result to zero (see Recipe 2.17). If the result is zero, a
message is printed saying the value is a multiple of 10.

Here is a similar example, but by using 2 with the modulus operator, the
result can be used to check if a value is odd or even:

for (int myValue = 0; myValue <= 10; myValue++)

{

 if (myValue % 2 == 0)

 {

 Serial.println("The value is even");

 }

 else

 {

 Serial.println("The value is odd");

 }

}

This example calculates the hour on a 24-hour clock for any given number
of hours offset:

void printOffsetHour(int hourNow, int offsetHours)

{

 Serial.println((hourNow + offsetHours) % 24);

}

You can also use the modulus operator to help simulate floating-point
operations. For example, consider the problem described in Recipe 3.1
where dividing 36.3 by 3 yields 12.0999994277 rather than the expected
12.1. You can multiply the two values by 10, then perform the division as
an integer operation to get the integer part:

int int_part = 363/30; // result: 12

Next, you can calculate the remainder, multiply it by 100, then divide by the
divisor to get the fractional part:

int remainder = 363 % 30; // result: 3

int fractional_part = remainder * 100 / 30;

Finally, print the integer and fractional part separated by a period (full stop)
to get 12.10:

Serial.print(int_part); Serial.print("."); Serial.println(fractional_part);

See Also
The Arduino reference for % (the modulus operator)

3.4 Determining the Absolute Value
Problem
You want to get the absolute value of a number.

Solution
abs(x) computes the absolute value of x. The following example takes the
absolute value of the difference between readings on two analog input ports
(see Chapter 5 for more on analogRead()):

int x = analogRead(A0);

int y = analogRead(A1);

if (abs(x-y) > 10)

{

 Serial.println("The analog values differ by more than 10");

}

Discussion
abs(x-y); returns the absolute value of the difference between x and y. It
is used for integer (and long integer) values. To return the absolute value of
floating-point values, see Recipe 2.3.

https://oreil.ly/ffecV

See Also
The Arduino reference for abs

3.5 Constraining a Number to a Range of
Values
Problem
You want to ensure that a value is always within some lower and upper
limit.

Solution
constrain(x, min, max) returns a value that is within the bounds of min
and max:

int myConstrainedValue = constrain(myValue, 100, 200);

Discussion
myConstrainedValue is set to a value that will always be greater than or
equal to 100 and less than or equal to 200. If myValue is less than 100, the
result will be 100; if it is more than 200, it will be set to 200.

Table 3-1 shows some example output values using a min of 100 and a max
of 200.

Output from constrain with min = 100 and max =
200

myValue (the input value) constrain(myValue, 100, 200)

99 100

100 100

150 150

https://oreil.ly/uDEs7

myValue (the input value) constrain(myValue, 100, 200)

200 200

201 200

See Also
Recipe 3.6

3.6 Finding the Minimum or Maximum of
Some Values
Problem
You want to find the minimum or maximum of two or more values.

Solution
min(x,y) returns the smaller of two numbers. max(x,y) returns the larger
of two numbers:

int myValue = analogRead(A0);

int myMinValue = min(myValue, 200); // myMinValue will be the smaller of

 // myVal or 200

int myMaxValue = max(myValue, 100); // myMaxValue will be the larger of

 // myVal or 100

Discussion
Table 3-2 shows some example output values using a min of 200. The table
shows that the output is the same as the input (myValue) until the value
becomes greater than 200.

Output from min(myValue, 200)

myValue (the input value) min(myValue, 200)

myValue (the input value) min(myValue, 200)

99 99

100 100

150 150

200 200

201 200

Table 3-3 shows the output using a max of 100. The table shows that the
output is the same as the input (myValue) when the value is greater than or
equal to 100.

Output from max(myValue, 100)

myValue (the input value) max(myValue, 100)

99 100

100 100

150 150

200 200

201 201

Use min when you want to limit the upper bound. That may be
counterintuitive, but by returning the smaller of the input value and the
minimum value, the output from min will never be higher than the
minimum value (200 in the example).

Similarly, use max to limit the lower bound. The output from max will never
be lower than the maximum value (100 in the example).

If you want to find the min or max value from more than two values, you
can cascade the values as follows:

// myMinValue will be the smaller of the three analog readings:

int myMinValue = min(analogRead(0), min(analogRead(1), analogRead(2)));

In this example, the minimum value is found for analog ports 1 and 2, and
then the minimum of that and port 0. This can be extended for as many
items as you need, but take care to position the parentheses correctly. The
following example gets the maximum of four values:

int myMaxValue = max(analogRead(0),

 max(analogRead(1),

 max(analogRead(2), analogRead(3))));

See Also
Recipe 3.5

3.7 Raising a Number to a Power
Problem
You want to raise a number to a power.

Solution
pow(x, y) returns the value of x raised to the power of y:

int myValue = pow(3,2);

This calculates 32, so myValue will equal 9.

Discussion
The pow function can operate on integer or floating-point values and it
returns the result as a floating-point value:

Serial.println(pow(3,2)); // this prints 9.00

int z = pow(3,2);

Serial.println(z); // this prints 9

The first output is 9.00 and the second is 9; they are not exactly the same
because the first print displays the output as a floating-point number and
the second treats the value as an integer before printing, and therefore
displays without the decimal point. If you use the pow function, you may
want to read Recipe 2.3 to understand the difference between these and
integer values.

Here is an example of raising a number to a fractional power:

float s = pow(2, 1.0 / 12); // the twelfth root of two

The twelfth root of two is the same as 2 to the power of 0.083333. The
resultant value, s, is 1.05946 (this is the ratio of the frequency of two
adjacent notes on a piano).

3.8 Taking the Square Root
Problem
You want to calculate the square root of a number.

Solution
The sqrt(x) function returns the square root of x:

Serial.println(sqrt(9)); // this prints 3.00

Discussion
The sqrt function returns a floating-point number (see the pow function
discussed in Recipe 3.7).

3.9 Rounding Floating-Point Numbers Up
and Down
Problem

You want the next smallest or largest integer value of a floating-point
number (floor or ceil).

Solution
floor(x) returns the largest integral value that is not greater than x.
ceil(x) returns the smallest integer that is not less than x.

Discussion
These functions are used for rounding floating-point numbers; use
floor(x) to get the largest integer that is not greater than x. Use ceil to
get the smallest integer that is greater than x.

Here is some example output using floor:

Serial.println(floor(1)); // this prints 1.00

 Serial.println(floor(1.1)); // this prints 1.00

 Serial.println(floor(0)); // this prints 0.00

 Serial.println(floor(.1)); // this prints 0.00

 Serial.println(floor(-1)); // this prints -1.00

 Serial.println(floor(-1.1)); // this prints -2.00

Here is some example output using ceil:

Serial.println(ceil(1)); // this prints 1.00

 Serial.println(ceil(1.1)); // this prints 2.00

 Serial.println(ceil(0)); // this prints 0.00

 Serial.println(ceil(.1)); // this prints 1.00

 Serial.println(ceil(-1)); // this prints -1.00

 Serial.println(ceil(-1.1)); // this prints -1.00

You can round to the nearest integer as follows:

int result = round(1.1);

NOTE
You can truncate a floating-point number by casting (converting) to an int, but this does not
round correctly. Negative numbers such as –1.9 should round down to –2, but when cast to an int
they are rounded up to –1. The same problem exists with positive numbers: 1.9 should round up to
2 but will round down to 1. Use floor, ceil, and round to get the correct results.

3.10 Using Trigonometric Functions
Problem
You want to get the sine, cosine, or tangent of an angle given in radians or
degrees.

Solution
sin(x) returns the sine of angle x. cos(x) returns the cosine of angle x.
tan(x) returns the tangent of angle x.

Discussion
Angles are specified in radians and the result is a floating-point number (see
Recipe 2.3). The following example illustrates the trig functions:

float deg = 30; // angle in degrees

 float rad = deg * PI / 180; // convert to radians

 Serial.println(rad); // print the radians

 Serial.println(sin(rad), 5); // print the sine

 Serial.println(cos(rad), 5); // print the cosine

This converts the angle into radians and prints the sine and cosine. Here is
the output with annotation added:

0.52 30 degrees is 0.5235988 radians, println only shows two decimal places

0.50000 sine of 30 degrees is .5000000, displayed here to 5 decimal places

0.86603 cosine is .8660254, which rounds up to 0.86603 at 5 decimal places

Although the sketch calculates these values using the full precision of
floating-point numbers, the Serial.print and Serial.println routines
show the values of floating-point numbers to two decimal places by default,
but you can specify a precision as the second argument (5 in the case of sine
and cosine in this example) as discussed in Recipe 2.3.

The conversion from radians to degrees and back again is textbook
trigonometry. PI is the familiar constant for π (3.14159265...). PI and 180
are both constants, and Arduino provides some precalculated constants you
can use to perform degree/radian conversions:

rad = deg * DEG_TO_RAD; // a way to convert degrees to radians

deg = rad * RAD_TO_DEG; // a way to convert radians to degrees

Using deg * DEG_TO_RAD looks more efficient than deg * PI / 180, but
it’s not, since the Arduino compiler is smart enough to recognize that PI /
180 is a constant (the value will never change), so it substitutes the result of
dividing PI by 180, which happens to be the same value as the constant
DEG_TO_RAD (0.017453292519...). Use whichever approach you prefer.

See Also
The Arduino references for sin, cos, and tan

3.11 Generating Random Numbers
Problem
You want to get a random number, either ranging from zero up to a
specified maximum or constrained between a minimum and maximum
value you provide.

Solution
Use the random function to return a random number. Calling random with a
single parameter sets the upper bound; the values returned will range from

https://oreil.ly/7RvuR
https://oreil.ly/iPiVA
https://oreil.ly/Xm-lN

zero to one less than the upper bound:

int minr = 50;

int maxr = 100;

long randnum = random(maxr); // random number between 0 and maxr -1

Calling random with two parameters sets the lower and upper bounds; the
values returned will range from the lower bound (inclusive) to one less than
the upper bound:

long randnum = random(minr, maxr); // random number between minr and maxr -1

Discussion
Although there appears to be no obvious pattern to the numbers returned,
the values are not truly random. Exactly the same sequence will repeat each
time the sketch starts. In many applications, this does not matter. But if you
need a different sequence each time your sketch starts, use the function
randomSeed(seed) with a different seed value each time (if you use the
same seed value, you’ll get the same sequence). This function starts the
random number generator at some arbitrary place based on the seed
parameter you pass:

randomSeed(1234); // change the starting sequence of random numbers

Here is an example that uses the different forms of random number
generation available on Arduino:

// Random

// demonstrates generating random numbers

int randNumber;

void setup()

{

 Serial.begin(9600);

 while(!Serial);

 // Print random numbers with no seed value

 Serial.println("Print 20 random numbers between 0 and 9");

 for(int i=0; i < 20; i++)

 {

 randNumber = random(10);

 Serial.print(randNumber);

 Serial.print(" ");

 }

 Serial.println();

 Serial.println("Print 20 random numbers between 2 and 9");

 for(int i=0; i < 20; i++)

 {

 randNumber = random(2,10);

 Serial.print(randNumber);

 Serial.print(" ");

 }

 // Print random numbers with the same seed value each time

 randomSeed(1234);

 Serial.println();

 Serial.println("Print 20 random numbers between 0 and 9 after constant seed

");

 for(int i=0; i < 20; i++)

 {

 randNumber = random(10);

 Serial.print(randNumber);

 Serial.print(" ");

 }

 // Print random numbers with a different seed value each time

 randomSeed(analogRead(0)); // read from an analog port with nothing

connected

 Serial.println();

 Serial.println("Print 20 random numbers between 0 and 9 after floating seed

");

 for(int i=0; i < 20; i++)

 {

 randNumber = random(10);

 Serial.print(randNumber);

 Serial.print(" ");

 }

 Serial.println();

 Serial.println();

}

void loop()

{

}

Here is the output from this code as run on an Uno (you may get different
results on different architectures):

Print 20 random numbers between 0 and 9

7 9 3 8 0 2 4 8 3 9 0 5 2 2 7 3 7 9 0 2

Print 20 random numbers between 2 and 9

9 3 7 7 2 7 5 8 2 9 3 4 2 5 4 3 5 7 5 7

Print 20 random numbers between 0 and 9 after constant seed

8 2 8 7 1 8 0 3 6 5 9 0 3 4 3 1 2 3 9 4

Print 20 random numbers between 0 and 9 after floating seed

0 9 7 4 4 7 7 4 4 9 1 6 0 2 3 1 5 9 1 1

If you press the reset button on your Arduino to restart the sketch, the first
three lines of random numbers will be unchanged. (You may need to close
and reopen the Serial Monitor after you press the reset button.) Only the last
line changes each time the sketch starts, because it sets the seed to a
different value by reading it from an unconnected analog input port as a
seed to the randomSeed function. If you are using analog port 0 for
something else, change the argument for analogRead to an unused analog
port.

In general, the preceding example is the start and end of the options you
have available for random number generation on an Arduino without
external hardware. It may seem that an unconnected analog input port is a
good, or at least acceptable, way to seed your random number generator.
However, the analog-to-digital converter on most Arduino boards will
return at most a 10-bit value, which can only hold 1,024 different values.
This is far too small a range of values to seed a random number generator
for strong random numbers. Additionally, a floating analog pin is not quite
as random as you might think it would be. It is likely to exhibit somewhat
consistent patterns, and can certainly be influenced by anyone who can get
within proximity of your Arduino.

It would be difficult to generate truly random numbers on an Arduino, but
like most computers, you can generate cryptographically strong
pseudorandom numbers, or random numbers that are “random enough” to
be suitable for use in cryptographic applications. Some Arduino boards,
such as the Arduino WiFi Rev2, MKR Vidor 4000, and MKR WiFi

1000/1010 include the Atmel ECC508 or ECC608 crypto chip that has
hardware support for cryptographic functions, including a strong random
number generator. You can access it by installing the ArduinoECCX08
library using Arduino’s Library Manager (see Recipe 16.2 for instructions
on installing libraries). For strong random number generation on any
Arduino, check out Rhys Weatherley’s Crypto library, in particular the
RNG class.

See Also
Arduino references for random and randomSeed

3.12 Setting and Reading Bits
Problem
You want to read or set a particular bit in a numeric variable.

Solution
Use the following functions:

bitSet(x, bitPosition)

Sets (writes a 1 to) the given bitPosition of variable x

bitClear(x, bitPosition)

Clears (writes a 0 to) the given bitPosition of variable x

bitRead(x, bitPosition)

Returns the value (as 0 or 1) of the bit at the given bitPosition of
variable x

bitWrite(x, bitPosition, value)

Sets the given value (as 0 or 1) of the bit at the given bitPosition of
variable x

https://oreil.ly/80KEp
https://oreil.ly/33djZ
https://oreil.ly/lDIp7
https://oreil.ly/zYbaF

bit(bitPosition)

Returns the value of the given bit position: bit(0) is 1, bit(1) is 2,
bit(2) is 4, and so on

In all these functions, bitPosition 0 is the least significant (rightmost)
bit.

Here is a sketch that uses these functions to manipulate the bits of an 8-bit
variable called flags. It uses each of the eight bits as an independent flag
that can be toggled on and off:

// bitFunctions

// demonstrates using the bit functions

byte flags = 0;

// these examples set, clear, or read bits in a variable called flags

// bitSet example

void setFlag(int flagNumber)

{

 bitSet(flags, flagNumber);

}

// bitClear example

void clearFlag(int flagNumber)

{

 bitClear(flags, flagNumber);

}

// bitPosition example

int getFlag(int flagNumber)

{

 return bitRead(flags, flagNumber);

}

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 flags = 0; // clear all flags

 showFlags();

 setFlag(2); // set some flags

 setFlag(5);

 showFlags();

 clearFlag(2);

 showFlags();

 delay(10000); // wait a very long time

}

// reports flags that are set

void showFlags()

{

 for(int flag=0; flag < 8; flag++)

 {

 if (getFlag(flag) == true)

 Serial.print("* bit set for flag "); else

 Serial.print("bit clear for flag ");

 Serial.println(flag);

 }

 Serial.println();

}

This code will print the following every 10 seconds:

bit clear for flag 0

bit clear for flag 1

bit clear for flag 2

bit clear for flag 3

bit clear for flag 4

bit clear for flag 5

bit clear for flag 6

bit clear for flag 7

bit clear for flag 0

bit clear for flag 1

* bit set for flag 2

bit clear for flag 3

bit clear for flag 4

* bit set for flag 5

bit clear for flag 6

bit clear for flag 7

bit clear for flag 0

bit clear for flag 1

bit clear for flag 2

bit clear for flag 3

bit clear for flag 4

* bit set for flag 5

bit clear for flag 6

bit clear for flag 7

Discussion
Reading and setting bits is a common task, and many of the Arduino
libraries use this functionality. One of the more common uses of bit
operations is to efficiently store and retrieve binary values (on/off,
true/false, 1/0, high/low, etc.).

TIP
Arduino defines the constants true and HIGH as 1 and false and LOW as 0.

The state of eight switches can be packed into a single 8-bit value instead of
requiring eight bytes or integers. The example in this recipe’s Solution
shows how eight values can be individually set or cleared in a single byte.

The term flag is a programming term for values that store the state of some
aspect of a program. In this sketch, the flag bits are read using bitRead, and
they are set or cleared using bitSet or bitClear. These functions take two
parameters: the first is the value to read or write (flags in this example),
and the second is the bit position indicating where the read or write should
take place. Bit position 0 is the least significant (rightmost) bit; position 1 is
the second position from the right, and so on. So:

bitRead(2, 1); // returns 1 : 2 is binary 10 and bit in position 1 is 1

bitRead(4, 1); // returns 0 : 4 is binary 100 and bit in position 1 is 0

There is also a function called bit that returns the value of each bit
position:

bit(0) is equal to 1;

bit(1) is equal to 2;

bit(2) is equal to 4;

...

bit(7) is equal to 128

See Also
The Arduino references for bit and byte functions:

lowByte

highByte

bitRead

bitWrite

bitSet

bitClear

bit

3.13 Shifting Bits
Problem
You need to perform bit operations that shift bits left or right in a byte, int,
or long.

Solution
Use the << (bit-shift left) and >> (bit-shift right) operators to shift the bits of
a value.

Discussion
This fragment sets variable x equal to 6. It shifts the bits left by one and
prints the new value (12). Then that value is shifted right two places (and in
this example becomes equal to 3):

https://oreil.ly/aHPmW
https://oreil.ly/9M2Ob
https://oreil.ly/gGWGT
https://oreil.ly/H5NO0
https://oreil.ly/GTzsQ
https://oreil.ly/3waji
https://oreil.ly/YPNrk

int x = 6;

x = x << 1; // 6 shifted left once is 12

Serial.println(x);

x = x >> 2; // 12 shifted right twice is 3

Serial.println(x);

Here is how this works: 6 shifted left one place equals 12, because the
decimal number 6 is 0110 in binary. When the digits are shifted left, the
value becomes 1100 (decimal 12). Shifting 1100 right two places becomes
0011 (decimal 3). You may notice that shifting a number left by n places is
the same as multiplying the value by 2 raised to the power of n. Shifting a
number right by n places is the same as dividing the value by 2 raised to the
power of n. In other words, the following pairs of expressions are the same:

x << 1 is the same as x * 2.
x << 2 is the same as x * 4.
x << 3 is the same as x * 8.
x >> 1 is the same as x / 2.
x >> 2 is the same as x / 4.
x >> 3 is the same as x / 8.

The Arduino controller chip can shift bits more efficiently than it can
multiply and divide, and you may come across code that uses the bit shift to
multiply and divide:

int c = (a << 1) + (b >> 2); //add (a times 2) plus (b divided by 4)

The expression (a << 1) + (b >> 2); does not look much like (a * 2)
+ (b / 4);, but both expressions do the same thing. Indeed, the Arduino
compiler is smart enough to recognize that multiplying an integer by a
constant that is a power of two is identical to a shift and will produce the
same machine code as the version using shift. The source code using
arithmetic operators is easier for humans to read, so it is preferred when the
intent is to multiply and divide.

See Also
Arduino references for bit and byte functions: lowByte, highByte,
bitRead, bitWrite, bitSet, bitClear, and bit (see Recipe 3.12)

3.14 Extracting High and Low Bytes in an int
or long
Problem
You want to extract the high byte or low byte of an integer; for example,
when sending integer values as bytes on a serial or other communication
line.

Solution
Use lowByte(i) to get the least significant byte from an integer. Use
highByte(i) to get the most significant byte from an integer.

The following sketch converts an integer value into low and high bytes:

/*

 * ByteOperators sketch

 */

int intValue = 258; // 258 in hexadecimal notation is 0x102

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 int loWord,hiWord;

 byte loByte, hiByte;

 hiByte = highByte(intValue);

 loByte = lowByte(intValue);

 Serial.println(intValue, DEC);

 Serial.println(intValue, HEX);

p (,);

 Serial.println(loByte, DEC);

 Serial.println(hiByte, DEC);

 delay(10000); // wait a very long time

}

Discussion
The example sketch prints intValue followed by the low byte and high
byte (with annotations added):

258 the integer value to be converted

102 the value in hexadecimal notation

2 the low byte

1 the high byte

To extract the byte values from a long, the 32-bit long value first gets
broken into two 16-bit words that can then be converted into bytes as shown
in the earlier code. At the time of this writing, the standard Arduino library
did not have a function to perform this operation on a long, but you can add
the following lines to your sketch to provide this:

#define highWord(w) ((w) >> 16)

#define lowWord(w) ((w) & 0xffff)

These are macro expressions: highWord performs a 16-bit shift operation to
produce a 16-bit value, and lowWord masks the lower 16 bits using the
bitwise And operator (see Recipe 2.20).

TIP
The number of bits in an int varies on different platforms. On Arduino it is 16 bits, but in other
environments it is 32 bits. The term word as used here refers to a 16-bit value.

This code converts the 32-bit value 16909060 (hexadecimal 0x1020304) to
its 16-bit constituent high and low values:

long longValue = 16909060;

 int loWord = lowWord(longValue);

 int hiWord = highWord(longValue);

 Serial.println(loWord, DEC);

 Serial.println(hiWord, DEC);

This prints the following values:

772 772 is 0x0304 in hexadecimal

258 258 is 0x0102 in hexadecimal

Note that 772 in decimal is 0x0304 in hexadecimal, which is the low-order
word (16 bits) of the longValue 0x1020304. You may recognize 258 from
the first part of this recipe as the value produced by combining a high byte
of 1 and a low byte of 2 (0x0102 in hexadecimal).

See Also
Arduino references for bit and byte functions: lowByte, highByte,
bitRead, bitWrite, bitSet, bitClear, and bit (see Recipe 3.12)

3.15 Forming an int or long from High and
Low Bytes
Problem
You want to create a 16-bit (int) or 32-bit (long) integer value from
individual bytes; for example, when receiving integers as individual bytes
over a serial communication link. This is the inverse operation of Recipe
3.14.

Solution
Use the word(h,l) function to convert two bytes into a single Arduino
integer. Here is the code from Recipe 3.14 expanded to convert the
individual high and low bytes back into an integer:

/*

 * Forming an int or long with byte operations sketch

 */

int intValue = 0x102; // 258

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 int aWord;

 byte loByte, hiByte;

 hiByte = highByte(intValue);

 loByte = lowByte(intValue);

 Serial.println(intValue, DEC);

 Serial.println(loByte, DEC);

 Serial.println(hiByte, DEC);

 aWord = word(hiByte, loByte); // convert the bytes back into a word

 Serial.println(aWord, DEC);

 delay(10000); // wait a very long time

}

Discussion
The word(high,low) expression assembles a high and low byte into a 16-
bit value. The code in this recipe’s Solution takes the low and high bytes
formed as shown in Recipe 3.14 and assembles them back into a word. The
output is the integer value, the low byte, the high byte, and the bytes
converted back to an integer value:

258

2

1

258

Arduino does not have a function to convert a 32-bit long value into two
16-bit words (at the time of this writing), but you can add your own

makeLong() capability by adding the following line to the top of your
sketch:

#define makeLong(hi, low) ((hi) << 16 & (low))

This defines a command that will shift the high value 16 bits to the left and
add it to the low value:

#define makeLong(hi, low) (((long) hi) << 16 | (low))

#define highWord(w) ((w) >> 16)

#define lowWord(w) ((w) & 0xffff)

// declare a value to test

long longValue = 0x1020304; // in decimal: 16909060

 // in binary : 00000001 00000010 00000011

00000100

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 int loWord,hiWord;

 Serial.println(longValue,DEC); // this prints 16909060

 loWord = lowWord(longValue); // convert long to two words

 hiWord = highWord(longValue);

 Serial.println(loWord,DEC); // print the value 772

 Serial.println(hiWord,DEC); // print the value 258

 longValue = makeLong(hiWord, loWord); // convert the words back to a long

 Serial.println(longValue,DEC); // this again prints 16909060

 delay(10000); // wait a very long time

}

The output is:

16909060

772

258

16909060

NOTE
The term word refers to 16 bits when compiling for 8-bit boards such as the Uno; when compiling
for 32-bit boards a word is 32 bits and a half word is 16 bits. Although the underlying architecture
is different, the preceding code will return high and low 16-bit values on both 8-bit and 32-bit
boards.

See Also
The Arduino references for bit and byte functions: lowByte, highByte,
bitRead, bitWrite, bitSet, bitClear, and bit (see Recipe 3.12)

Serial Communications

4.0 Introduction
Serial communications provide an easy and flexible way for your Arduino
board to interact with your computer and other devices. This chapter
explains how to send and receive information using this capability.

Chapter 1 described how to connect the Arduino USB serial port to your
computer to upload sketches. The upload process sends data from your
computer to Arduino, and Arduino sends status messages back to the
computer to confirm the transfer is working. The recipes here show how
you can use that same communication link to send and receive any
information between Arduino and your computer or another serial device.

Serial communications are also a handy tool for debugging. You can send
debug messages from Arduino to the computer and display them on your
computer screen or send them to another device such as a Raspberry Pi or
another Arduino. You can also use an external LCD display to show these
messages, but in all likelihood, you’d use I2C or SPI to communicate with
that kind of display (see Chapter 13).

The Arduino IDE (described in Recipe 1.3) provides a Serial Monitor
(shown in Figure 4-1) to display serial data sent from Arduino. You can also
send data from the Serial Monitor to Arduino by entering text in the text
box to the left of the Send button. Arduino also includes a Serial Plotter that
can graph serial data sent from Arduino (see Recipe 4.1).

Arduino Serial Monitor screen

You can set the speed at which data is transmitted (the baud rate, measured
in bits per second) using the drop-down box on the bottom right. Make sure
to set it to whatever value you use with Serial.begin(). The default rate
of 9,600 bits per second is fine for many cases, but if you are working with
a device that needs a higher speed, you can pass a number higher than 9,600
to Serial.begin().

You can use the drop-down to the left of the baud rate to automatically send
a newline (ASCII character 10), carriage return (ASCII character 13), a
combination of newline and carriage return (“Both NL & CR”), or no
terminator (“No line ending”) at the end of each message.

Your Arduino sketch can use the serial port to indirectly access (usually via
a proxy program written in a language like Processing or Python) all the
resources (memory, screen, keyboard, mouse, network connectivity, etc.)
that your computer has. Your computer can also use the serial link to

interact with certain sensors or other devices connected to Arduino. If you
want to talk to multiple devices using serial communications, either you
need more than one serial port or you’ll need to use software serial to
emulate a serial port using Arduino pins (see “Emulate Serial Hardware
with Digital Pins”).

NOTE
Many sensors and output devices that support serial communications also support SPI or I2C (see
Chapter 13). While serial communications are well understood and somewhat universal, consider
using SPI or I2C if either or both are supported by the sensor or output device you want to
connect. Both protocols offer more flexibility when communicating with multiple devices.

Implementing serial communications involves hardware and software. The
hardware provides the electrical signaling between Arduino and the device
it is talking to. The software uses the hardware to send bytes or bits that the
connected hardware understands. The Arduino serial libraries insulate you
from most of the hardware complexity, but it is helpful for you to
understand the basics, especially if you need to troubleshoot any difficulties
with serial communications in your projects.

Serial Hardware
Serial hardware sends and receives data as electrical pulses that represent
sequential bits. The zeros and ones that carry the information that makes up
a byte can be represented in various ways. The scheme used by Arduino is 0
volts to represent a bit value of 0, and 5 volts (or 3.3 volts) to represent a bit
value of 1.

NOTE
Using a device’s low voltage (generally 0 volts) to signify 0 and a high voltage (3.3 or 5 volts in
the case of Arduino) to signify 1 is very common. This is referred to as the TTL level because that
was how signals were represented in one of the first implementations of digital logic, called
Transistor-Transistor Logic (TTL). In most implementations, a 1 can be signaled using less than
the device’s high voltage, and 3.3 volts is generally more than enough to signal a 1. This means
that you can transmit from a 3.3V board and receive the signal on a 5V board in most cases.
However, if you want to transmit serial data from a 5V to a 3.3V board, you will need to use a
level shifter or a voltage divider to avoid damaging the 3.3V board. See Recipes 4.13 and 5.11 for
examples of voltage dividers.

Some boards, such as the Modern Device Bare Bones Board and the (now-
discontinued) Adafruit Boarduino and Arduino Pro, Mini, and Pro Mini, do
not have USB support and require an adapter for connecting to your
computer that converts TTL to USB. The Adafruit CP2104 Friend (Adafruit
part number 3309), Modern Device USB BUB board (Modern Device part
MD022X), and FTDI USB TTL Adapter all work well.

Some serial devices use the RS-232 standard for serial connection. These
usually have a nine-pin connector, and an adapter is required to use them
with the Arduino. RS-232 uses voltage levels that will damage Arduino
digital pins, so you will need to obtain an RS-232 to TTL adapter to use it.
Arduino has an Arduino RS-232 tutorial, and lots of information and links
are available at the Serial Port Central website.

An Arduino Uno has a single hardware serial port, but serial
communication is also possible using software libraries to emulate
additional ports (communication channels) to provide connectivity to more
than one device. Software serial requires a lot of help from the Arduino
controller to send and receive data, so it’s not as fast or efficient as
hardware serial.

The Leonardo and many 32-bit boards (such as the Arduino Zero, Adafruit
Metro M0, and SparkFun RedBoard Turbo) have a second hardware serial
port in addition to USB serial. The Teensy 3 board from PJRC has three
serial ports in addition to USB serial. The Teensy 4.0 board has seven serial
ports (in addition to USB serial).

https://oreil.ly/2FhMP
https://oreil.ly/IVXKQ
https://oreil.ly/cB1Jr
http://www.pjrc.com/teensy

The Arduino Mega has four hardware serial ports that can communicate
with up to four different serial devices. Only one of these has a USB
adapter built in (you could wire a USB-TTL adapter to any of the other
serial ports if you want more than one USB connection).

Table 4-1 shows the pins used for serial ports on various Arduino and
Arduino-compatible boards. The pin numbers shown are for digital, rather
than analog, pins.

Serial (digital) pins for selected boards

Board Serial
RX/TX

Serial1
RX/TX

Serial2 RX/TX Serial3
RX/TX

Arduino MKR 1010 USB only 13/14 none none

Arduino Uno WiFi Rev2 USB only 0/1 Connected to WiFi
module

none

Arduino Nano Every USB only 0/1 none none

Arduino Nano 33 BLE Sense USB only 0/1 none none

Arduino Uno Rev3 0/1 (Also
USB)

none none none

Adafruit Metro Express (M0) USB only 0/1 none none

Arduino Zero/SparkFun
RedBoard Turbo

USB onlya 0/1 none none

Adafruit Itsy Bitsy M4 Express USB only 0/1 none none

PJRC Teensy 3.2 USB only 0/1 9/10 7/8

PJRC Teensy 4.0 USB only 0/1 7/8 15/14

Arduino Due 0/1 (Also
USB)

19/18 17/16 15/14

Arduino Mega 2560 Rev2 0/1 (Also
USB)

19/18 17/16 15/14

Arduino Leonardo USB only 0/1 none none

Board Serial
RX/TX

Serial1
RX/TX

Serial2 RX/TX Serial3
RX/TX

Use SerialUSB instead of Serial.

NOTE
Some Teensy boards support more than three hardware serial ports, and some allow you to modify
which pins are used for serial communications. See PJRC for more details.

Serial Hardware Behavior
The number of serial ports isn’t the only variable between boards. There are
some fundamental differences in behavior, as well. Most boards based on
the AVR ATmega chips, including the Uno, original Nano, and Mega, have
a chip to convert the hardware serial port on the Arduino chip to USB for
connection to the hardware serial port. On these boards, when you open a
connection to the serial port (such as by opening the Serial Monitor or
accessing the serial port from a program running on a computer connected
to the board via USB), the board will automatically reset, causing the sketch
to start from the beginning.

On some 8-bit boards (Leonardo and compatibles) and most 32-bit boards,
USB serial is provided by the same processor that you run your sketches on.
Because of how they are designed, opening the USB serial port does not
reset these boards. As a result, your sketch will begin sending data to the
USB serial port faster than you can open the serial port. This means that if
you have any serial output commands (Serial.print or Serial.println)
in your setup() function, you won’t see it in the Serial Monitor because
you can’t open the Serial Monitor quickly enough. (You could put a delay
in your setup function, but there is another way.)

Additionally, the Leonardo and compatibles have another behavior that
makes working with the serial port tricky: when you first power it up, it will
flash an LED for several seconds to tell you that it’s in a special mode

a

https://oreil.ly/csezT

where it allows you to load a sketch over USB. So you will not be able to
open the serial port to send or receive data until it’s done waiting.

On boards that do not reset automatically when you open the serial port,
you can add the following code to your setup function (right after the call
to Serial.begin()). This will pause execution until the serial port has
been opened so you can see serial output that you send in setup:

while(!Serial) {
 ; // wait for serial port to connect
}

You can skip the curly brackets and consolidate it down to
while(!Serial); but this may be confusing to novice programmers who
read your code.

Because the while(!Serial); command will pause execution of the
sketch until you open the serial port, this approach should not be used in
environments where your Arduino-based solution is expected to run
independently; for example when running on batteries without a USB
connection. Table 4-2 shows USB serial behavior for various boards.

USB serial behavior for various boards

Board while(!Serial); needed? Resets when
serial
accessed?

Arduino
MKR 1010

Yes No

Arduino Uno
WiFi Rev2

No Yes

Arduino
Nano Every

No; Requires a delay(800); after Serial.begin() and you
must open the Serial Monitor before uploading in order to see
all serial output.

No

Arduino
Nano 33
BLE Sense

Yes No

Board while(!Serial); needed? Resets when
serial
accessed?

Arduino Uno
Rev3

No Yes

Adafruit
Metro
Express
(M0)

Yes No

Adafruit Itsy
Bitsy M4
Express

Yes No

PJRC Teensy
3.2

Yes No

PJRC Teensy
4.0

Yes No

Arduino
Mega 2560
Rev3

No Yes

Arduino
Leonardo

Yes No

Emulate Serial Hardware with Digital Pins
You will usually use the built-in Arduino Serial library to communicate
with the hardware serial ports. Serial libraries simplify the use of the serial
ports by insulating you from hardware complexities.

Sometimes you need more serial ports than the number of hardware serial
ports available. If this is the case, you can use an additional software serial
library that uses software to emulate serial hardware. Recipes 4.11 and 4.12
show how to use a software serial library to communicate with multiple
devices.

Message Protocols

The hardware or software serial libraries handle sending and receiving
information. This information often consists of groups of variables that
need to be sent together. For the information to be interpreted correctly, the
receiving side needs to recognize where each message begins and ends.
Meaningful serial communication, or any kind of machine-to-machine
communication, can only be achieved if the sending and receiving sides
fully agree on how information is organized in the message. The formal
organization of information in a message and the range of appropriate
responses to requests is called a communications protocol. You can
establish a protocol over any underlying data transfer system, such as serial
communications, but these same principles apply to other means of data
transfer, such as Ethernet or WiFi networking.

Messages can contain one or more special characters that identify the start
of the message—this is called the header. One or more characters can also
be used to identify the end of a message—this is called the footer. The
recipes in this chapter show examples of messages in which the values that
make up the body of a message can be sent in either text or binary format.

Sending and receiving messages in text format involves sending commands
and numeric values as human-readable letters and words. Numbers are sent
as the string of digits that represent the value. For example, if the value is
1234, the characters 1, 2, 3, and 4 are sent as individual characters.

Binary messages comprise the bytes that the computer uses to represent
values. Binary data is usually more efficient (requiring fewer bytes to be
sent), but the data is not as human-readable as text, which makes it more
difficult to debug. For example, Arduino represents 1234 as the bytes 4 and
210 (4 * 256 + 210 = 1234). If you were to look at these characters in the
Serial Monitor, they wouldn’t be readable because the ASCII character 4 is
a control character and the ASCII character 210 is in the extended range of
ASCII characters, so it will probably display an accented character or
something else depending on your configuration. If the device you are
connecting to sends or receives only binary data, that is what you will have
to use, but if you have the choice, textual messages are easier to implement
and debug.

There are many ways to approach software problems, and some of the
recipes in this chapter show two or three different ways to achieve a similar
result. The differences (e.g., sending text instead of raw binary data) may
offer a balance between simplicity and efficiency. Where choices are
offered, pick the solution that you find easiest to understand and adapt—this
will probably be the first solution covered. Alternatives may be a little more
efficient, or they may be more appropriate for a specific protocol that you
want to connect to, but the “right way” is the one you find easiest to get
working in your project.

THE PROCESSING DEVELOPMENT ENVIRONMENT
Some of the examples in this chapter use the Processing language to send and receive serial
messages on a computer talking to Arduino.

Processing is a free, open source tool that uses a similar development environment to Arduino,
but instead of running your sketches on a microcontroller, your Processing sketches run on your
computer. You can read more about Processing and download everything you need at the
Processing website.

Processing is based on the Java language, but the Processing code samples in this book should
be easy to translate into other environments that support serial communications. Processing
comes with some example sketches illustrating communication between Arduino and
Processing. SimpleRead is a Processing example that includes Arduino code. In Processing,
select File→Examples→Libraries→Serial→SimpleRead to see an example that reads data from
the serial port and changes the color of a rectangle when a switch connected to Arduino is
pressed and released.

Arduino Serial Notes
Here are a few things you should be aware of when working with serial data
in Arduino:

Serial.flush waits for all outgoing data to be sent rather than
discarding received data (which was the behavior in older versions of
Arduino). You can use the following statement to discard all data in the
receive buffer: while(Serial.read() >= 0) ; // flush the
receive buffer.

http://processing.org/

Serial.write and Serial.print do not block. Older versions of
Arduino would wait until all characters were sent before returning.
Instead, characters that you send using Serial.write or Serial.print
(and println) are transmitted in the background (from an interrupt
handler), allowing your sketch code to immediately resume processing.
This is usually a good thing (it can make the sketch more responsive),
but sometimes you want to wait until all characters are sent. You can
achieve this by calling Serial.flush() immediately following
Serial.write() or Serial.print()/println().

Serial print functions return the number of characters printed. This is
useful when text output needs to be aligned or for applications that send
data that includes the total number of characters sent.

There is a built-in parsing capability for streams such as serial to easily
extract numbers and find text. See the Discussion section of Recipe 4.5
for more on using this capability with serial.

The SoftwareSerial library bundled with Arduino can be very helpful;
see Recipes 4.11 and 4.12.

The Serial.peek function lets you “peek” at the next character in the
receive buffer. Unlike Serial.read, the character is not removed from
the buffer with Serial.peek.

4.1 Sending Information from Arduino to
Your Computer
Problem
You want to send text and data to be displayed on your PC, Mac, or other
device (such as a Raspberry Pi) using the Arduino IDE or the serial terminal
program of your choice.

Solution
This sketch prints sequential numbers on the Serial Monitor:

/*
 * SerialOutput sketch
 * Print numbers to the serial port
*/
void setup()
{
 Serial.begin(9600); // send and receive at 9600 baud
}

int number = 0;

void loop()
{
 Serial.print("The number is ");
 Serial.println(number); // print the number

 delay(500); // delay half second between numbers
 number++; // to the next number
}

Connect Arduino to your computer just as you did in Chapter 1 and upload
this sketch. Click the Serial Monitor icon in the IDE and you should see the
output displayed as follows:

The number is 0
The number is 1
The number is 2

Discussion
To display text and numbers from your sketch on a computer via a serial
link, put the Serial.begin(9600) statement in setup(), and then use
Serial.print() statements to print the text and values you want to see.
You can then view the output in the Serial Monitor as shown in Figure 4-2.

Arduino Serial Monitor screen

To get a graphical display of the number being sent back, close the Serial
Monitor window and Select Tools→Serial Plotter. A window will open and
draw a graph of the values as they are received from the board. The plotter
can isolate the numbers from the text, and identify multiple numbers
separated by alpha characters and plot them separately using different color
traces. Figure 4-3 shows the Serial Plotter.

Serial Plotter

Your sketch must call the Serial.begin() function before it can use serial
input or output. The function takes a single parameter: the desired
communication speed. You must use the same speed for the sending side
and the receiving side, or you will see gobbledygook (or nothing at all) on
the screen. This example and most of the others in this book use a speed of
9,600 baud (baud is a measure of the number of bits transmitted per
second). The 9,600 baud rate is approximately 1,000 characters per second.
You can send at lower or higher rates (the range is 300 to 115,200 or higher
depending on your board’s capabilities), but make sure both sides use the
same speed. The Serial Monitor sets the speed using the baud rate drop-
down (at the bottom right of the Serial Monitor window in Figure 4-2). If
your output looks something like this:

`3??f<ÌxÌ▯▯▯ü`³??f<

you should check that the selected baud rate on the Serial Monitor on your
computer matches the rate set by Serial.begin() in your sketch.

TIP
If your send and receive serial speeds are set correctly but you are still getting unreadable text,
check that you have the correct board selected in the IDE Tools→Board menu. There are chip
speed variants of some boards, so if you have selected the wrong one, change it to the correct one
and upload to the board again.

You can transmit text using the Serial.print() function. Strings (text
within double quotes) will be printed as is (but without the quotes). For
example, the following code:

Serial.print("The number is ");

prints this:

The number is

The values (numbers) that you print depend on the type of variable; see
Recipe 4.2 for more about this. For example, printing an integer will print
its numeric value, so if the variable number is 1, the following code:

Serial.println(number);

will print whatever the current value of number happens to be:

1

In the example sketch, the number printed will be 0 when the loop starts
and will increase by one each time through the loop. The ln at the end of
println causes the next print statement to start on a new line.

NOTE
Keep in mind that there are two different serial port behaviors you will encounter with Arduino
and Arduino-compatible boards: the Uno and most other AVR ATmega-based boards will reset
when you open the serial port. This means that you will always see the count begin at zero in the
Serial Monitor or Plotter. The Arduino Leonardo, as well as ARM-based boards, do not
automatically reset when you open the serial port. This means that the sketch will begin counting
as soon as it is powered up. As a result, the value that you see when you first open the Serial
Monitor or Plotter depends on when you open the serial connection to the board. See “Serial
Hardware Behavior” for more details.

That should get you started printing text and the decimal value of integers.
See Recipe 4.2 for more details on print formatting options.

You may want to consider a third-party terminal program that has more
features than Serial Monitor. Displaying data in text or binary format (or
both), displaying control characters, and logging to a file are just a few of
the additional capabilities available from the many third-party terminal
programs. Here are some that have been recommended by Arduino users:

CoolTerm
An easy-to-use freeware terminal program for Windows, Mac, and
Linux

CuteCom
An open source terminal program for Linux

Bray Terminal
A free executable for the PC

GNU screen
An open source virtual screen management program that supports serial
communications; included with Linux and macOS

moserial
Another open source terminal program for Linux

PuTTY

https://oreil.ly/dk66x
https://oreil.ly/HnoJd
https://oreil.ly/0Sm7j
https://oreil.ly/5u8Di
https://oreil.ly/HCyPU
https://oreil.ly/m6mpW

An open source SSH program for Windows and Linux that supports
serial communications

RealTerm
An open source terminal program for the PC

ZTerm
A shareware program for the Mac

You can use a liquid crystal display (LCD) as a serial output device,
although it will be very limited in functionality. Check the documentation to
see how your display handles carriage returns, as some displays may not
automatically advance to a new line after println statements. Also, when
you are using an LCD display, you will be connecting to it using the TTL
serial pins (digital 0 and 1) rather than a USB connection. On most AVR
ATmega boards like the Uno, these pins correspond to the Serial object so
you can use the code shown in the Solution unchanged. However, on the
Leonardo or certain ARM-based boards (SAMD-based boards, for
example), pins 0 and 1 correspond to the Serial1 object, so you’ll need to
change Serial to Serial1 in order for it to work on those boards. See
Table 4-1 for a list of Serial object pin configurations for a variety of
boards.

See Also
The Arduino LiquidCrystal library for text LCDs uses underlying print
functionality similar to the Serial library, so you can use many of the
suggestions covered in this chapter with that library (see Chapter 11).

4.2 Sending Formatted Text and Numeric
Data from Arduino
Problem

https://oreil.ly/q9cAq
https://oreil.ly/Ebb1B

You want to send serial data from Arduino displayed as text, decimal
values, hexadecimal, or binary.

Solution
You can print data to the serial port in many different formats; here is a
sketch that demonstrates all the format options available with the serial
print functions print() and println:

/*
 SerialFormatting
 Print values in various formats to the serial port
*/
char chrValue = 65; // these are the starting values to print
byte byteValue = 65;
int intValue = 65;
float floatValue = 65.0;
char c1 = 4;
char c2 = 210;

void setup()
{
 while(!Serial); // Wait until serial port's open on Leonardo and SAMD boards
 Serial.begin(9600);
}

void loop()
{
 Serial.print("chrValue: ");
 Serial.print(chrValue); Serial.print(" ");
 Serial.write(chrValue); Serial.print(" ");
 Serial.print(chrValue, DEC);
 Serial.println();

 Serial.print("byteValue: ");
 Serial.print(byteValue); Serial.print(" ");
 Serial.write(byteValue); Serial.print(" ");
 Serial.print(byteValue, DEC);
 Serial.println();

 Serial.print("intValue: ");
 Serial.print(intValue); Serial.print(" ");
 Serial.print(intValue, DEC); Serial.print(" ");
 Serial.print(intValue, HEX); Serial.print(" ");

 Serial.print(intValue, OCT); Serial.print(" ");
 Serial.print(intValue, BIN);
 Serial.println();

 Serial.print("floatValue: ");
 Serial.println(floatValue);
 Serial.println();

 delay(1000); // delay a second between numbers
 chrValue++; // to the next value
 byteValue++;
 intValue++;
 floatValue += 1;
}

The output is as follows:

chrValue: A A 65
byteValue: 65 A 65
intValue: 65 65 41 101 1000001
floatValue: 65.00

chrValue: B B 66
byteValue: 66 B 66
intValue: 66 66 42 102 1000010
floatValue: 66.00
...

Discussion
Printing a text string is simple: Serial.print("hello world"); sends the
text string “hello world” to a device at the other end of the serial port. If you
want your output to print a newline after the output, use
Serial.println() instead of Serial.print().

Printing numeric values can be more complicated. The way that byte and
integer values are printed depends on the type of variable and an optional
formatting parameter. The Arduino language is very easygoing about how
you can refer to the value of different data types (see Recipe 2.2 for more
on data types). But this flexibility can be confusing, because even when the
numeric values are similar, the compiler considers them to be separate types

with different behaviors. For example, printing a char, byte, and int of the
same value will not necessarily produce the same output.

Here are some specific examples; all of them create variables that have
similar values:

char asciiValue = 'A'; // ASCII A has a value of 65
char chrValue = 65; // an 8-bit signed character, this also is ASCII 'A'
byte byteValue = 65; // an 8-bit unsigned character, this also is ASCII
'A'
int intValue = 65; // a 16-bit signed integer set to a value of 65
float floatValue = 65.0; // float with a value of 65

Table 4-3 shows what you will see when you print variables using Arduino
routines.

Output formats using Serial.print

Data
type

print (val) print (val,DEC) write
(val)

print
(val,HEX)

print
(val,OCT)

print
(val,BIN)

char A 65 A 41 101 1000001

byte 65 65 A 41 101 1000001

int 65 65 A 41 101 1000001

long Format of long
is the same as
int

float 65.00 Formatting not
supported for floating-
point values

double 65.00 double on Uno is same
as float

NOTE
The expression Serial.print(val,BYTE); is no longer supported in Arduino versions from 1.0.

If your code expects byte variables to behave the same as char variables (that is, for them to print
as ASCII), you will need to change this to Serial.write(val);.

The sketch in this recipe uses a separate line of source code for each print
statement. This can make complex print statements bulky. For example, to
print the following line:

At 5 seconds: speed = 17, distance = 120

you’d typically have to code it like this:

Serial.print("At ");
Serial.print(t);
Serial.print(" seconds: speed = ");
Serial.print(s);
Serial.print(", distance = ");
Serial.println(d);

That’s a lot of code lines for a single line of output. You could combine
them like this:

Serial.print("At "); Serial.print(t); Serial.print(" seconds, speed = ");
Serial.print(s); Serial.print(", distance = ");Serial.println(d);

Or you could use the insertion-style capability of the compiler used by
Arduino to format your print statements. You can take advantage of some
advanced C++ capabilities (streaming insertion syntax and templates) that
you can use if you declare a streaming template in your sketch. This is most
easily achieved by including the Streaming library developed by Mikal
Hart. You can read more about this library at Mikal’s website, and you can
install it using the Arduino Library Manager (see Recipe 16.2).

If you use the Streaming library, the following gives the same output as the
lines shown earlier:

https://oreil.ly/PJWJR

Serial << "At " << t << " seconds, speed=" << s << ", distance=" << d << endl;

If you are an experienced programmer you may be wondering why Arduino
does not support printf. In part this is due to printf’s use of dynamic
memory and the shortage of RAM on the 8-bit boards. Recent 32-bit boards
have plenty of memory, however the Arduino team has been reluctant to
include the terse and easily abused syntax as part of the Arduino language’s
serial output capabilities.

Although Arduino does not include support for printf, you can use its
sibling sprintf to store formatted text in a character buffer, and then print
that buffer using Serial.print/println:

char buf[100];
sprintf(buf, "At %d seconds, speed = %d, distance = %d", t, s, d);
Serial.println(buf);

But sprintf can be dangerous. If the string you’re writing is larger than
your buffer, it will overflow. It’s anyone’s guess as to where the overflow
characters will be written, but almost certainly they will cause your sketch
to crash or otherwise misbehave. The snprintf function allows you to pass
an argument specifying the maximum number of characters (including the
null character that terminates all strings). You can specify the same length
you use to declare the array (in this case, 100), but if you do that, you need
to remember to change the length argument if you change the buffer length.
Instead, you can use the sizeof operator to calculate the length of the
buffer. Although a char is 1 byte in every case we can think of, it’s best
practice to divide the size of the array by the size of the data type it
contains, so sizeof (buf) / sizeof (buf[0]) will give you the length
of the array:

snprintf(buf, sizeof (buf) / sizeof (buf[0]),
 "At %d seconds, speed = %d, distance = %d", t, s, d);
Serial.println(buf);

NOTE
Even though you know that sizeof (buf[0]) is guaranteed to be 1, this is a good habit to get
into. Consider the following code, which prints 400:

long buf2[100];
Serial.println(sizeof (buf2));

You can get the correct result with sizeof (buf2) / sizeof (buf2[0]).

There is a cost associated with using sprintf or snprintf. First, you’ve
got the overhead of the buffer, 100 bytes in this case. Additionally, there is
the overhead of compiling the functionality into your sketch. On an
Arduino Uno, adding in this code increases your memory usage by 1,648
bytes, which is 5% of the Uno’s memory.

See Also
Chapter 2 provides more information on data types used by Arduino. The
Arduino web reference covers the serial commands as well as the streaming
(insertion-style) output.

4.3 Receiving Serial Data in Arduino
Problem
You want to receive data on Arduino from a computer or another serial
device; for example, to have Arduino react to commands or data sent from
your computer.

Solution
This sketch receives a digit (single characters 0 through 9) and blinks the
onboard LED at a rate proportional to the received digit value:

https://oreil.ly/8MGsb
https://oreil.ly/JqHPa

/*
 * SerialReceive sketch
 * Blink the LED at a rate proportional to the received digit value
*/
int blinkDelay = 0; // blink delay stored in this variable

void setup()
{
 Serial.begin(9600); // Initialize serial port to send and receive at 9600
baud
 pinMode(LED_BUILTIN, OUTPUT); // set this pin as output
}

void loop()
{
 if (Serial.available()) // Check to see if at least one character is
available
 {
 char ch = (char) Serial.read();
 if(isDigit(ch)) // is this an ASCII digit between 0 and 9?
 {
 blinkDelay = (ch - '0'); // ASCII value converted to numeric value
 blinkDelay = blinkDelay * 100; // actual delay is 100 ms *" received
digit
 }
 }
 blink();
}

// blink the LED with the on and off times determined by blinkDelay
void blink()
{
 digitalWrite(LED_BUILTIN, HIGH);
 delay(blinkDelay); // delay depends on blinkDelay value
 digitalWrite(LED_BUILTIN, LOW);
 delay(blinkDelay);
}

Upload the sketch and send messages using the Serial Monitor. Open the
Serial Monitor by clicking the Monitor icon (see Recipe 4.1) and type a
digit in the text box at the top of the Serial Monitor window. Clicking the
Send button will send the character typed into the text box; if you type a
digit, you should see the blink rate change.

Discussion
The Serial.read function returns an int value, so you should cast it to a
char for the comparisons that follow. Converting the received ASCII
characters to numeric values may not be obvious if you are not familiar
with the way ASCII represents characters. The following converts the
character ch to its numeric value:

blinkDelay = (ch - '0'); // ASCII value converted to numeric value

The ASCII characters '0' through '9' have a value of 48 through 57 (see
Appendix G). Converting '1' to the numeric value 1 is done by subtracting
'0' because '1' has an ASCII value of 49, so 48 (ASCII '0') must be
subtracted to convert this to the number 1. For example, if ch is
representing the character 1, its ASCII value is 49. The expression 49- '0'
is the same as 49-48. This equals 1, which is the numeric value of the
character 1.

In other words, the expression (ch - '0') is the same as (ch - 48); this
converts the ASCII value of the variable ch to a numeric value.

You can receive numbers with more than one digit using the parseInt and
parseFloat methods that simplify extracting numeric values from Serial.
(It also works with Ethernet and other objects derived from the Stream
class; see the introduction to Chapter 15 for more about stream-parsing with
the networking objects.)

Serial.parseInt() and Serial.parseFloat() read Serial characters
and return their numeric representation. Nonnumeric characters before the
number are ignored and the number ends with the first character that is not
a numeric digit (or "." if using parseFloat). If there aren’t any numeric
characters in the input, the functions return 0, so you should check for zero
values and handle them appropriately. If you have the Serial Monitor
configured to send a newline or carriage return (or both) when you click
Send, parseInt or parseFloat will try (and fail) to interpret the newline
or carriage return as a number, and return a zero. This would result in

blinkDelay being set to zero immediately after setting it to your intended
value, which would result in no blinking:

/*
* SerialParsing sketch
* Blink the LED at a rate proportional to the received digit value
*/

int blinkDelay = 0;

void setup()
{
 Serial.begin(9600); // Initialize serial port to send and receive at 9600
baud
 pinMode(LED_BUILTIN, OUTPUT); // set this pin as output
}

void loop()
{
 if (Serial.available()) // Check to see if at least one character is
available
 {
 int i = Serial.parseInt();
 if (i != 0) {
 blinkDelay = i;
 }
 }
 blink();
}

// blink the LED with the on and off times determined by blinkDelay
void blink()
{
 digitalWrite(LED_BUILTIN, HIGH);
 delay(blinkDelay); // delay depends on blinkDelay value
 digitalWrite(LED_BUILTIN, LOW);
 delay(blinkDelay);
}

See the Discussion of Recipe 4.5 for another example showing parseInt
used to find and extract numbers from Serial data.

Another approach to converting text strings representing numbers is to use
the C language conversion function called atoi (for int variables) or atol

(for long variables). These obscurely named functions convert a string into
integers or long integers. They provide more capability to manipulate the
incoming data at the cost of greater code complexity. To use these
functions, you have to receive and store the entire string in a character array
before you can call the conversion function.

This code fragment terminates the incoming digits on any character that is
not a digit (or if the buffer is full):

const int maxChars = 5; // an int string contains up to 5 digits and
 // is terminated by a 0 to indicate end of string
char strValue[maxChars+1]; // must be big enough for digits and terminating
null
int idx = 0; // index into the array storing the received digits

void loop()
{
 if(Serial.available())
 {
 char ch = (char) Serial.read();
 if(idx < maxChars && isDigit(ch)){
 strValue[idx++] = ch; // add the ASCII character to the string;
 }
 else
 {
 // here when buffer full or on the first nondigit
 strValue[idx] = 0; // terminate the string with a 0
 blinkDelay = atoi(strValue); // use atoi to convert the string to an int
 idx = 0;
 }
 }
 blink();
}

strValue is a numeric string built up from characters received from the
serial port.

TIP
See Recipe 2.6 for information about character strings.

atoi (short for ASCII to integer) is a function that converts a character
string to an integer (atol converts to a long integer).

Arduino also supports the serialEvent function that you can use to handle
incoming serial characters. If you have code within a serialEvent function
in your sketch, this will be called once each time through the loop function.
The following sketch performs the same function as the first sketch in this
recipe but uses serialEvent to handle the incoming characters:

/*
 * SerialEvent Receive sketch
 * Blink the LED at a rate proportional to the received digit value
 */
int blinkDelay = 0; // blink delay stored in this variable

void setup()
{
 Serial.begin(9600); // Initialize serial port to send and receive at 9600
baud
 pinMode(LED_BUILTIN, OUTPUT); // set this pin as output
}

void loop()
{
 blink();
}

void serialEvent()
{
 while(Serial.available())
 {
 char ch = (char) Serial.read();
 Serial.write(ch);
 if(isDigit(ch)) // is this an ASCII digit between 0 and 9?
 {
 blinkDelay = (ch - '0'); // ASCII value converted to numeric value
 blinkDelay = blinkDelay * 100; // actual delay is 100 ms times digit
 }
 }
}

// blink the LED with the on and off times determined by blinkDelay
void blink()
{

 digitalWrite(LED_BUILTIN, HIGH);
 delay(blinkDelay); // delay depends on blinkDelay value
 digitalWrite(LED_BUILTIN, LOW);
 delay(blinkDelay);
}

See Also
A web search for “atoi” or “atol” provides many references to these
functions (see the Wikipedia reference here).

4.4 Sending Multiple Text Fields from
Arduino in a Single Message
Problem
You want to send a message that contains more than one field’s worth of
information per message. For example, your message may contain values
from two or more sensors. You want to use these values in a program such
as Processing, running on a computer or a device such as a Raspberry Pi.

Solution
An easy way to do this is to send a text string with all the fields separated
by a delimiting (separating) character, such as a comma:

// CommaDelimitedOutput sketch

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 int value1 = 10; // some hardcoded values to send
 int value2 = 100;
 int value3 = 1000;

 Serial.print('H'); // unique header to identify start of message
 Serial.print(",");

https://oreil.ly/8kQqp

 Serial.print(value1,DEC);
 Serial.print(",");
 Serial.print(value2,DEC);
 Serial.print(",");
 Serial.print(value3,DEC);
 Serial.println(); // send a carriage return and line feed
 delay(100);
}

Here is the Processing sketch that reads this data from the serial port:

// Processing Sketch to read comma delimited serial
// expects format: H,1,2,3

import processing.serial.*;

Serial myPort; // Create object from Serial class
char HEADER = 'H'; // character to identify the start of a message
short LF = 10; // ASCII linefeed

// WARNING!
// If necessary change the definition below to the correct port
short portIndex = 0; // select the com port, 0 is the first port

void setup() {
 size(200, 200);
 println((Object[]) Serial.list());
 println(" Connecting to -> " + Serial.list()[portIndex]);
 myPort = new Serial(this, Serial.list()[portIndex], 9600);
}

void draw() {
 if (myPort.available() > 0) {

 String message = myPort.readStringUntil(LF); // read serial data
 if (message != null)
 {
 message = message.trim(); // Remove whitespace from start/end of string
 println(message);
 String [] data = message.split(","); // Split the comma-separated
message
 if (data[0].charAt(0) == HEADER && data.length == 4) // check validity
 {
 for (int i = 1; i < data.length; i++) // skip header (start at 1, not
0)
 {

 println("Value " + i + " = " + data[i]); // Print the field values
 }
 println();
 }
 }
 }
}

Discussion
The Arduino code in this recipe’s Solution will send the following text
string to the serial port (\r indicates a carriage return and \n indicates a line
feed):

H,10,100,1000\r\n

You must choose a separating character that will never occur within actual
data; for instance, if your data consists only of numeric values, a comma is
a good choice for a delimiter. You may also want to ensure that the
receiving side can determine the start of a message to make sure it has all
the data for all the fields. You do this by sending a header character to
indicate the start of the message. The header character must also be unique;
it should not appear within any of the data fields and it must also be
different from the separator character. The example here uses an uppercase
H to indicate the start of the message. The message consists of the header,
three comma-separated numeric values as ASCII strings, and a carriage
return and line feed.

The carriage return and line-feed characters are sent whenever Arduino
prints using the println() function, and this is used to help the receiving
side know that the full message string has been received. Because the
Processing code myPort.readStringUntil(LF) will include the carriage
return ('\r') that appears before the line feed, this sketch uses trim() to
remove any leading or trailing whitespace, which includes spaces, tabs,
carriage returns, and line feeds.

The Processing code reads the message as a string and uses the Java
split() method to create an array from the comma-separated fields.

NOTE
In most cases, the first serial port will be the one you want when using a Mac (or a PC without a
physical RS-232 port) and the last serial port will be the one you want when using a PC that has a
physical RS-232 port. The Processing sketch includes code that shows the ports available and the
one currently selected, so you need to check that this is the port connected to Arduino. You may
need to run the sketch once, get an error, and review the list of serial ports in the Processing
Console at the bottom of the screen to determine which value you should use for portIndex.

Using Processing to display sensor values can save hours of debugging time
by helping you to visualize the data. While CSV is a common and useful
format, JSON (JavaScript Object Notation) is more expressive and also is
human readable. JSON is a common data exchange format used for
exchanging messages across a network. The following sketch reads the
accelerometer from the Arduino WiFi Rev 2 or Arduino Nano 33 BLE
Sense (uncomment the corresponding include line) and sends it to the
serial port using JSON (for example: {'x': 0.66, 'y': 0.59, 'z':
-0.49, }):

/*
 AccelerometerToJSON. Sends JSON-formatted representation of
 accelerometer readings.
*/

#include <Arduino_LSM6DS3.h> // Arduino WiFi R2
//#include <Arduino_LSM9DS1.h> // Arduino BLE Sense

void setup() {
 Serial.begin(9600);
 while (!Serial);

 if (!IMU.begin()) {
 while (1) {
 Serial.println("Error: Failed to initialize IMU");
 delay(3000);
 }
 }
}

void loop() {
 float x, y, z;

 if (IMU.accelerationAvailable()) {
 IMU.readAcceleration(x, y, z);
 Serial.print("{");
 Serial.print("'x': "); Serial.print(x); Serial.print(", ");
 Serial.print("'y': "); Serial.print(y); Serial.print(", ");
 Serial.print("'z': "); Serial.print(z); Serial.print(", ");
 Serial.println("}");
 delay(200);
 }
}

The following Processing sketch adds real-time visual display of up to 12
values sent from Arduino. It displays floating-point values in a range from –
5 to +5:

/*
 * ShowSensorData.
 *
 * Displays bar graph of JSON sensor data ranging from -127 to 127
 * expects format as: "{'label1': value, 'label2': value,}\n"
 * for example:
 * {'x': 1.0, 'y': -1.0, 'z': 2.1,}
 */

import processing.serial.*;
import java.util.Set;

Serial myPort; // Create object from Serial class
PFont fontA; // font to display text
int fontSize = 12;
short LF = 10; // ASCII linefeed

int rectMargin = 40;
int windowWidth = 600;
int maxLabelCount = 12; // Increase this if you need to support more labels
int windowHeight = rectMargin + (maxLabelCount + 1) * (fontSize *2);
int rectWidth = windowWidth - rectMargin*2;
int rectHeight = windowHeight - rectMargin;
int rectCenter = rectMargin + rectWidth / 2;

int origin = rectCenter;
int minValue = -5;
int maxValue = 5;

float scale = float(rectWidth) / (maxValue - minValue);

// WARNING!
// If necessary change the definition below to the correct port
short portIndex = 0; // select the com port, 0 is the first port

void settings() {
 size(windowWidth, windowHeight);
}

void setup() {
 println((Object[]) Serial.list());
 println(" Connecting to -> " + Serial.list()[portIndex]);
 myPort = new Serial(this, Serial.list()[portIndex], 9600);
 fontA = createFont("Arial.normal", fontSize);
 textFont(fontA);
}

void draw() {

 if (myPort.available () > 0) {
 String message = myPort.readStringUntil(LF);
 if (message != null) {

 // Load the JSON data from the message
 JSONObject json = new JSONObject();
 try {
 json = parseJSONObject(message);
 }
 catch(Exception e) {
 println("Could not parse [" + message + "]");
 }

 // Copy the JSON labels and values into separate arrays.
 ArrayList<String> labels = new ArrayList<String>();
 ArrayList<Float> values = new ArrayList<Float>();
 for (String key : (Set<String>) json.keys()) {
 labels.add(key);
 values.add(json.getFloat(key));
 }

 // Draw the grid and chart the values
 background(255);
 drawGrid(labels);
 fill(204);
 for (int i = 0; i < values.size(); i++) {
 drawBar(i, values.get(i));
 }
 }
 }

}

// Draw a bar to represent the current sensor reading
void drawBar(int yIndex, float value) {
 rect(origin, yPos(yIndex)-fontSize, value * scale, fontSize);
}

void drawGrid(ArrayList<String> sensorLabels) {
 fill(0);

 // Draw the minimum value label and a line for it
 text(minValue, xPos(minValue), rectMargin-fontSize);
 line(xPos(minValue), rectMargin, xPos(minValue), rectHeight + fontSize);

 // Draw the center value label and a line for it
 text((minValue+maxValue)/2, rectCenter, rectMargin-fontSize);
 line(rectCenter, rectMargin, rectCenter, rectHeight + fontSize);

 // Draw the maximum value label and a line for it
 text(maxValue, xPos(maxValue), rectMargin-fontSize);
 line(
 xPos(maxValue), rectMargin, xPos(maxValue), rectHeight + fontSize);

 // Print each sensor label
 for (int i=0; i < sensorLabels.size(); i++) {
 text(sensorLabels.get(i), fontSize, yPos(i));
 text(sensorLabels.get(i), xPos(maxValue) + fontSize, yPos(i));
 }
}

// Calculate a y position, taking into account margins and font sizes
int yPos(int index) {
 return rectMargin + fontSize + (index * fontSize*2);
}

// Calculate a y position, taking into account the scale and origin
int xPos(int value) {
 return origin + int(scale * value);
}

Figure 4-4 shows how accelerometer values (x, y, z) are displayed. Bars
will appear as you wave the device.

Processing screen showing sensor data

The range of values and the origin of the graph can be easily changed if
desired. For example, to display bars originating at the lefthand axis with
values from 0 to 1,024, use the following:

int origin = rectMargin; // rectMargin is the left edge of the graphing area
int minValue = 0;
int maxValue = 1024;

If you don’t have an accelerometer, you can generate values with the
following simple sketch that displays analog input values. If you don’t have
any sensors to connect, running your fingers along the bottom of the analog
pins will produce levels that can be viewed in the Processing sketch. The
values range from 0 to 1,023, so change the origin and min and max values
in the Processing sketch, as described in the previous paragraph:

/*
 AnalogToJSON. Sends JSON-formatted representation of
 analog readings.

*/

void setup() {
 Serial.begin(9600);
 while (!Serial);
}

void loop() {
 Serial.print("{");
 Serial.print("'A0': "); Serial.print(analogRead(A0)); Serial.print(", ");
 Serial.print("'A1': "); Serial.print(analogRead(A1)); Serial.print(", ");
 Serial.print("'A2': "); Serial.print(analogRead(A2)); Serial.print(", ");
 Serial.print("'A3': "); Serial.print(analogRead(A3)); Serial.print(", ");
 Serial.print("'A4': "); Serial.print(analogRead(A4)); Serial.print(", ");
 Serial.print("'A5': "); Serial.print(analogRead(A5)); Serial.print(", ");
 Serial.println("}");
}

See Also
The Processing website provides more information on installing and using
this programming environment.

A number of books on Processing are also available:

Getting Started with Processing, Second Edition, by Casey Reas and
Ben Fry (Make)

Processing: A Programming Handbook for Visual Designers and Artists
by Casey Reas and Ben Fry (MIT Press)

Visualizing Data by Ben Fry (O’Reilly)

Processing: Creative Coding and Computational Art by Ira Greenberg
(Apress)

Making Things Talk by Tom Igoe (Make Community) (This book covers
Processing and Arduino and provides many examples of communication
code.)

4.5 Receiving Multiple Text Fields in a Single
Message in Arduino

http://processing.org/
http://shop.oreilly.com/product/0636920031406.do
http://oreilly.com/catalog/9780596514556/
http://shop.oreilly.com/product/0636920031369.do

Problem
You want to receive a message that contains more than one field. For
example, your message may contain an identifier to indicate a particular
device (such as a motor or other actuator) and what value (such as speed) to
set it to.

Solution
Arduino does not have the split() function used in the Processing code in
Recipe 4.4, but similar functionality can be implemented as shown in this
recipe. The following code receives a message with a single character H as
the header followed by three numeric fields separated by commas and
terminated by the newline character:

/*
 * SerialReceiveMultipleFields sketch
 * This code expects a message in the format: H,12,345,678
 * This code requires a newline character to indicate the end of the data
 * Set the serial monitor to send newline characters
 */

const int NUMBER_OF_FIELDS = 3; // how many comma separated fields we expect
int values[NUMBER_OF_FIELDS]; // array holding values for all the fields

void setup()
{
 Serial.begin(9600); // Initialize serial port to send and receive at 9600
baud
}

void loop()
{
 if (Serial.available())
 {
 if (Serial.read() == 'H') {

 // Read the values
 for (int i = 0; i < NUMBER_OF_FIELDS; i++)
 {
 values[i] = Serial.parseInt();
 }

 // Display the values in comma-separated format
 Serial.print(values[0]); // First value

 // Print the rest of the values with a leading comma
 for (int i = 1; i < NUMBER_OF_FIELDS; i++)
 {
 Serial.print(","); Serial.print(values[i]);
 }
 Serial.println();
 }
 }
}

Discussion
This sketch uses the parseInt method that makes it easy to extract numeric
values from serial and web streams. This is one example of how to use this
capability (Chapter 15 has more examples of stream parsing). You can test
this sketch by opening the Serial Monitor and sending a comma-separated
message like H1,2,3. parseInt ignores anything other than a minus sign
and a digit, so it doesn’t have to be comma-separated. You can use another
delimiter like H1/2/3. The sketch stores the numbers in an array, and then
prints them out, separated by commas.

NOTE
This sketch displays a comma-separated list in a way that may seem unusual at first. It prints the
first number received (for example, 1), and then prints the remaining numbers, each preceded by a
comma (for example, ,2 and then ,3). You could use fewer lines of code and print a comma after
each number, but you’d end up with 1,2,3, instead of 1,2,3. Many other programming
languages, including Processing, provide a join function that will combine an array into a
delimited string, but Arduino does not.

The stream-parsing functions will time out waiting for a character; the
default is one second. If no digits have been received and parseInt times
out, then it will return 0. You can change the timeout by calling
Stream.setTimeout(timeoutPeriod). The timeout parameter is a long

integer indicating the number of milliseconds, so the timeout range is from
1 ms to 2,147,483,647 ms.

Stream.setTimeout(2147483647); will change the timeout interval to
just under 25 days.

Following is a summary of the stream-parsing methods supported by
Arduino (not all are used in the preceding example):

bool find(char *target);

Reads from the stream until the given target is found. It returns true if
the target string is found. A return of false means the data has not been
found anywhere in the stream and that there is no more data available.
Note that Stream parsing takes a single pass through the stream; there is
no way to go back to try to find or get something else (see the
findUntil method).

bool findUntil(char *target, char *terminate);

Similar to the find method, but the search will stop if the terminate
string is found. Returns true only if the target is found. This is useful to
stop a search on a keyword or terminator. For example:

finder.findUntil("target", "\n");

will try to seek to the string "value", but will stop at a newline
character so that your sketch can do something else if the target is not
found.

long parseInt();

Returns the first valid (long) integer value. Leading characters that are
not digits or a minus sign are skipped. The integer is terminated by the
first nondigit character following the number. If no digits are found, the
function returns 0.

long parseInt(char skipChar);

Same as parseInt, but the given skipChar within the numeric value is
ignored. This can be helpful when parsing a single numeric value that
uses a comma between blocks of digits in large numbers, but bear in
mind that text values formatted with commas cannot be parsed as a
comma-separated string (for example, 32,767 would be parsed as
32767).

float parseFloat();

The float version of parseInt. All characters except digits, a decimal
point, or a leading minus sign are skipped.

size_t readBytes(char *buffer, size_t length);

Puts the incoming characters into the given buffer until timeout or
length characters have been read. Returns the number of characters
placed in the buffer.

size_t readBytesUntil(char terminator, char *buf, size_t

length);

Puts the incoming characters into the given buffer until the terminator
character is detected. Strings longer than the given length are truncated
to fit. The function returns the number of characters placed in the buffer.

See Also
Chapter 15 provides more examples of stream parsing used to find and
extract data from a stream. The ArduinoJson library lets you parse JSON-
formatted messages (see Recipe 4.4) in Arduino.

4.6 Sending Binary Data from Arduino
Problem
You need to send data in binary format, because you want to pass
information with the fewest number of bytes or because the application you
are connecting to only handles binary data.

https://arduinojson.org/

Solution
This sketch sends a header followed by two integer (two-byte) values as
binary data. The sketch uses short because it will be two bytes regardless
of whether you have an 8-bit or 32-bit board (see Recipe 2.2). The values
are generated using the Arduino random function (see Recipe 3.11).
Although random returns a long value, the argument of 599 means it will
never return a value over that number, which is small enough to fit in a
short:

/*
 * SendBinary sketch
 * Sends a header followed by two random integer values as binary data.
*/

short intValue; // short integer value (two bytes on all boards)

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.print('H'); // send a header character

 // send a random integer
 intValue = random(599); // generate a random number between 0 and 599
 // send the two bytes that comprise that integer
 Serial.write(lowByte(intValue)); // send the low byte
 Serial.write(highByte(intValue)); // send the high byte

 // send another random integer
 intValue = random(599); // generate a random number between 0 and 599
 // send the two bytes that comprise that integer
 Serial.write(lowByte(intValue)); // send the low byte
 Serial.write(highByte(intValue)); // send the high byte

 delay(1000);
}

Discussion

Sending binary data requires careful planning, because you will get
gibberish unless the sending side and the receiving side understand and
agree exactly how the data will be sent. Unlike text data, where the end of a
message can be determined by the presence of the terminating carriage
return (or another unique character you pick), it may not be possible to tell
when a binary message starts or ends by looking just at the data—data that
can have any value can therefore have the value of a header or terminator
character.

This can be overcome by designing your messages so that the sending and
receiving sides know exactly how many bytes are expected. The end of a
message is determined by the number of bytes sent rather than detection of
a specific character. This can be implemented by sending an initial value to
say how many bytes will follow. Or you can fix the size of the message so
that it’s big enough to hold the data you want to send. Doing either of these
is not always easy, as different platforms and languages can use different
sizes for the binary data types—both the number of bytes and their order
may be different from Arduino. For example, Arduino defines an int as
two bytes (16 bits) on 8-bit platforms, four bytes (32 bits) on a 32-bit
platform, and Processing (Java) defines an int as four bytes (short is the
Java type for a two-byte integer). Sending an int value as text (as seen in
earlier text recipes) simplifies this problem because each individual digit is
sent as a sequential digit (just as the number is written). The receiving side
recognizes when the value has been completely received by a carriage
return or other nondigit delimiter. Binary transfers can only know about the
composition of a message if it is defined in advance or specified in the
message.

This recipe’s Solution requires an understanding of the data types on the
sending and receiving platforms and some careful planning. Recipe 4.7
shows example code using the Processing language to receive these
messages.

Sending single bytes is easy; use Serial.write(byteVal). To send an
integer from Arduino you need to send the low and high bytes that make up

the integer (see Recipe 2.2 for more on data types). You do this using the
lowByte and highByte functions (see Recipe 3.14):

Serial.write(lowByte(intValue));
Serial.write(highByte(intValue));

Sending a long integer is done by breaking down the four bytes that
comprise a long in two steps. The long is first broken into two 16-bit
integers; each is then sent using the method for sending integers described
earlier:

long longValue = 2147483648;
int intValue;

First you send the lower 16-bit integer value:

intValue = longValue & 0xFFFF; // get the value of the lower 16 bits
Serial.write(lowByte(intValue));
Serial.write(highByte(intValue));

Then you send the higher 16-bit integer value:

intValue = longValue >> 16; // get the value of the higher 16 bits
Serial.write(lowByte(intValue));
Serial.write(highByte(intValue));

You may find it convenient to create functions to send the data. Here is a
function that uses the code shown earlier to print a 16-bit integer to the
serial port:

// function to send the given integer value to the serial port
void sendBinary(int value)
{
 // send the two bytes that comprise a two-byte (16-bit) integer
 Serial.write(lowByte(value)); // send the low byte
 Serial.write(highByte(value)); // send the high byte
}

The following function sends the value of a long (four-byte) integer by first
sending the two low (rightmost) bytes, followed by the high (leftmost)
bytes:

// function to send the given long integer value to the serial port
void sendBinary(long value)
{
 // first send the low 16-bit integer value
 int temp = value & 0xFFFF; // get the value of the lower 16 bits
 sendBinary(temp);
 // then send the higher 16-bit integer value:
 temp = value >> 16; // get the value of the higher 16 bits
 sendBinary(temp);
}

These functions to send binary int and long values have the same name:
sendBinary. The compiler distinguishes them by the type of value you use
for the parameter. If your code calls printBinary with a two-byte value,
the version declared as void sendBinary(int value) will be called. If
the parameter is a long value, the version declared as void
sendBinary(long value) will be called. This behavior is called function
overloading. Recipe 4.2 provides another illustration of this; the different
functionality you saw in Serial.print is due to the compiler
distinguishing the different variable types used.

You can also send binary data using structures. Structures are a mechanism
for organizing data, and if you are not already familiar with their use you
may be better off sticking with the solutions described earlier. For those
who are comfortable with the concept of structure pointers, the following
will send the bytes within a structure to the serial port as binary data. It
includes the header character in the struct, so it sends the same messages as
the Solution:

/*
 SendBinaryStruct sketch
 Sends a struct as binary data.
*/

typedef struct {

 char padding; // ensure same alignment on 8-bit and 32-bit
 char header;
 short intValue1;
 short intValue2;
} shortMsg;

void setup()
{
 Serial.begin(9600);
}

void loop()
{

 shortMsg myStruct = { 0, 'H', (short) random(599), (short) random(599) };
 sendStructure((byte *)&myStruct, sizeof(myStruct));

 delay(1000);
}

void sendStructure(byte *structurePointer, int structureLength)
{
 int i;
 for (i = 0 ; i < structureLength ; i++) {
 Serial.write(structurePointer[i]);
 }
}

NOTE
If you were to declare the shortMsg struct without the padding member, you might find that the
struct length is five bytes on one board, and six bytes on another board. That’s because the
compiler for one architecture might be perfectly happy to allow a five-byte structure, but another
might insert one or more extra bytes to ensure that the size of the struct is a multiple of the board’s
natural data size. By putting the padding at the front, you are ensuring that the char appears at an
even boundary (the second of two bytes), so the compiler is unlikely to insert padding between the
char and short values. But this trick isn’t always guaranteed to work, so you may need to
experiment. One other advantage of putting the padding before the header character is that the
code in Recipe 4.7 will ignore input until it sees an H character.

Sending data as binary bytes is more efficient than sending data as text, but
it will only work reliably if the sending and receiving sides agree exactly on

the composition of the data. Here is a summary of the important things to
check when writing your code:

Variable size
Make sure the size of the data being sent is the same on both sides. An
integer is two bytes on Arduino Uno and other 8-bit boards, and four
bytes on 32-bit boards and most other platforms. Always check your
programming language’s documentation on data type size to ensure
agreement. There is no problem with receiving a two-byte Arduino
integer as a four-byte integer in Processing as long as Processing
expects to get only two bytes. But be sure that the sending side does not
use values that will overflow the type used by the receiving side.

Byte order

Make sure the bytes within an int or long are sent in the order
expected by the receiving side. The solution uses the same byte order
that Arduino boards use internally, called little endian. This refers to the
order of the bytes, in which the least significant byte appears first.
Technically, ARM-based Arduino-compatible boards are bi-endian,
meaning that they can be configured to use big-endian or little-endian
mode, but in practice you are unlikely to encounter an Arduino board
that is not little endian. When you use lowByte and highByte to pick
apart an integer, you are in control of the order in which the bytes are
sent. But when you send a struct in binary format, it will use the
struct’s internal representation, which is impacted by the endianness of
your board. So, if you run the struct code with the Processing code from
Recipe 4.7 and don’t see the intended value (16,384), your struct may
be flipped around.

Synchronization
Ensure that your receiving side can recognize the beginning and end of
a message. If you start listening in the middle of a transmission stream,
you will not get valid data. This can be achieved by sending a sequence
of bytes that won’t occur in the body of a message. For example, if you

are sending binary values from analogRead, these can only range from
0 to 1,023, so the most significant byte must be less than 4 (the int
value of 1,023 is stored as the bytes 3 and 255); therefore, there will
never be data with two consecutive bytes greater than 3. So, sending
two bytes of 4 (or any value greater than 3) cannot be valid data and can
be used to indicate the start or end of a message.

Flow control
Either choose a transmission speed that ensures that the receiving side
can keep up with the sending side, or use some kind of flow control.
Flow control is a handshake that tells the sending side that the receiver
is ready to get more data.

See Also
Chapter 2 provides more information on the variable types used in Arduino
sketches.

See Recipe 3.15 for more on handling high and low bytes. Also, check the
Arduino references for lowByte and highByte.

For more on flow control, see the Wikipedia reference.

4.7 Receiving Binary Data from Arduino on a
Computer
Problem
You want to respond to binary data sent from Arduino in a programming
language such as Processing. For example, you want to respond to Arduino
messages sent in Recipe 4.6.

Solution
This recipe’s Solution depends on the programming environment you use
on your PC or Mac. If you don’t already have a favorite programming tool

https://oreil.ly/AwmWi
https://oreil.ly/W0TJE
https://oreil.ly/D4_2G

and want one that is easy to learn and works well with Arduino, Processing
is an excellent choice.

Here are the two lines of Processing code to read a byte, taken from the
Processing SimpleRead example (see this chapter’s introduction):

if (myPort.available() > 0) { // If data is available,
 val = myPort.read(); // read it and store it in val

As you can see, this is very similar to the Arduino code you saw in earlier
recipes.

The following is a Processing sketch that sets the size of a rectangle
proportional to the integer values received from the Arduino sketch in
Recipe 4.6:

/*
 * ReceiveBinaryData_P
 *
 * portIndex must be set to the port connected to the Arduino
 */
import processing.serial.*;

Serial myPort; // Create object from Serial class

// WARNING!
// If necessary change the definition below to the correct port
short portIndex = 0; // select the com port, 0 is the first port

char HEADER = 'H';
int value1, value2; // Data received from the serial port

void setup()
{
 size(600, 600);
 // Open whatever serial port is connected to Arduino.
 String portName = Serial.list()[portIndex];
 println((Object[]) Serial.list());
 println(" Connecting to -> " + portName);
 myPort = new Serial(this, portName, 9600);
}

void draw()
{

 // read the header and two binary *(16-bit) integers:
 if (myPort.available() >= 5) // If at least 5 bytes are available,
 {
 if(myPort.read() == HEADER) // is this the header
 {
 value1 = myPort.read(); // read the least significant
byte
 value1 = myPort.read() * 256 + value1; // add the most significant byte

 value2 = myPort.read(); // read the least significant
byte
 value2 = myPort.read() * 256 + value2; // add the most significant byte

 println("Message received: " + value1 + "," + value2);
 }
 }
 background(255); // Set background to white
 fill(0); // set fill to black

 // draw rectangle with coordinates based on the integers received from
Arduino
 rect(0, 0, value1,value2);
}

TIP
Make sure that you set portIndex to correspond to the serial port that Arduino is connected to.
You may need to run the sketch once, get an error, and review the list of serial ports in the
Processing console at the bottom of the screen to determine which value you should use for
portIndex.

Discussion
The Processing language influenced Arduino, and the two are intentionally
similar. The setup function in Processing is used to handle one-time
initialization, just like in Arduino. Processing has a display window, and
setup sets its size to 600 × 600 pixels with the call to size(600,600).

The line String portName = Serial.list()[portIndex]; selects the
serial port—in Processing, all available serial ports are contained in the
Serial.list object, and this example uses the value of a variable called

portIndex. println((Object[]) Serial.list()) prints all the
available ports, and the line myPort = new Serial(this, portName,
9600); opens the port selected as portName. Ensure that you set
portIndex to the serial port that is connected to your Arduino. Arduino is
usually the first port on a Mac; on a PC, it’s usually the last port if the PC
has a physical RS-232 port, otherwise it may be the first port. You can also
look at the list of ports in the Arduino IDE, which may display serial ports
in the same order that Processing enumerates them.

The draw function in Processing works like loop in Arduino; it is called
repeatedly. The code in draw checks if data is available on the serial port; if
so, bytes are read and converted to the integer value represented by the
bytes. A rectangle is drawn based on the integer values received.

See Also
You can read more about Processing on the Processing website.

4.8 Sending Binary Values from Processing
to Arduino
Problem
You want to send binary bytes, integers, or long values from Processing to
Arduino. For example, you want to send a message consisting of a message
identifier “tag” and two 16-bit values.

Solution
Use this code:

// Processing Sketch

/* SendingBinaryToArduino
 * Language: Processing
 */
import processing.serial.*;

http://processing.org/

Serial myPort; // Create object from Serial class

// WARNING!
// If necessary change the definition below to the correct port
short portIndex = 0; // select the com port, 0 is the first port

public static final char HEADER = 'H';
public static final char MOUSE_TAG = 'M';

void setup()
{
 size(512, 512);
 String portName = Serial.list()[portIndex];
 println((Object[]) Serial.list());
 myPort = new Serial(this, portName, 9600);
}

void draw(){
}

void serialEvent(Serial p) {
 // handle incoming serial data
 String inString = myPort.readStringUntil('\n');
 if(inString != null) {
 print(inString); // print text string from Arduino
 }
}

void mousePressed() {
 sendMessage(MOUSE_TAG, mouseX, mouseY);
}

void sendMessage(char tag, int x, int y){
 // send the given index and value to the serial port
 myPort.write(HEADER);
 myPort.write(tag);
 myPort.write((char)(x / 256)); // msb
 myPort.write(x & 0xff); //lsb
 myPort.write((char)(y / 256)); // msb
 myPort.write(y & 0xff); //lsb
}

TIP
Make sure that you set portIndex to correspond to the serial port that Arduino is connected to.
You may need to run the sketch once, get an error, and review the list of serial ports in the
Processing console at the bottom of the screen to determine which value you should use for
portIndex.

When the mouse is clicked in the Processing window, sendMessage will be
called with the 8-bit tag indicating that this is a mouse message and the two
16-bit mouse x and y coordinates. The sendMessage function sends the 16-
bit x and y values as two bytes, with the most significant byte first.

Here is the Arduino code to receive these messages and echo the results
back to Processing:

// BinaryDataFromProcessing
// These defines must mirror the sending program:
const char HEADER = 'H';
const char MOUSE_TAG = 'M';
const int TOTAL_BYTES = 6 ; // the total bytes in a message

void setup()
{
 Serial.begin(9600);
}

void loop(){
 if (Serial.available() >= TOTAL_BYTES)
 {
 if(Serial.read() == HEADER)
 {
 char tag = Serial.read();
 if(tag == MOUSE_TAG)
 {
 int x = Serial.read() * 256;
 x = x + Serial.read();
 int y = Serial.read() * 256;
 y = y + Serial.read();
 Serial.println("Got mouse msg:");
 Serial.print("x="); Serial.print(x);
 Serial.print(", y="); Serial.println(y);
 }

 else
 {
 Serial.print("Unknown tag: ");
 Serial.write(tag); Serial.println();
 }
 }
 }
}

Discussion
The Processing code sends a header byte to indicate that a valid message
follows. This is needed so Arduino can synchronize if it starts up in the
middle of a message or if the serial connection can lose data, such as with a
wireless link. The tag provides an additional check for message validity and
it enables any other message types you may want to send to be handled
individually. In this example, the function is called with three parameters: a
tag and the 16-bit x and y mouse coordinates.

The Arduino code checks that at least MESSAGE_BYTES have been received,
ensuring that the message is not processed until all the required data is
available. After the header and tag are checked, the 16-bit values are read as
two bytes, with the first multiplied by 256 to restore the most significant
byte to its original value.

If you would like to send Arduino’s serial output to another device, such as
an LCD serial character display, you could use a SoftwareSerial port or one
of your board’s additional serial ports, as shown in Recipe 4.11. You would
need to initialize the serial port in setup, and change all the Serial.write
and Serial.print/println statements to use that serial port. For example,
the following changes would send serial data to the Serial1 TX pin 1 of
the Arduino WiFi Rev 2, Leonardo, and most ARM-based Arduino
compatibles. You’d first add this to setup:

Serial1.begin(9600);

And change the print/println/write code at the end of loop as shown:

Serial1.println();
Serial1.println("Got mouse msg:");
Serial1.print("x="); Serial1.print(x);
Serial1.print(", y="); Serial1.print(y);

and:

Serial1.println();
Serial1.print("Unknown tag: ");
Serial1.write(tag); Serial1.println();

WARNING
The sending side and receiving side must use the same message size for binary messages to be
handled correctly. If you want to increase or decrease the number of bytes to send, change
TOTAL_BYTES in the Arduino code to match.

4.9 Sending the Values of Multiple Arduino
Pins
Problem
You want to send groups of binary bytes, integers, or long values from
Arduino. For example, you may want to send the values of the digital and
analog pins to Processing.

Solution
This recipe sends a header followed by an integer containing the bit values
of digital pins 2 to 13. This is followed by six integers containing the values
of analog pins 0 through 5. Chapter 5 has many recipes that set values on
the analog and digital pins that you can use to test this sketch:

/*
 * SendBinaryFields
 * Sends digital and analog pin values as binary data
 */

const char HEADER = 'H'; // a single character header to indicate
 // the start of a message

void setup()
{
 Serial.begin(9600);
 for(int i=2; i <= 13; i++)
 {
 pinMode(i, INPUT); // set pins 2 through 13 to inputs
 digitalWrite(i, HIGH); // turn on pull-ups
 }
}

void loop()
{
 Serial.write(HEADER); // send the header
 // put the bit values of the pins into an integer
 int values = 0;
 int bit = 0;

 for(int i=2; i <= 13; i++)
 {
 bitWrite(values, bit, digitalRead(i)); // set the bit to 0 or 1 depending
 // on value of the given pin
 bit = bit + 1; // increment to the next bit
 }
 sendBinary(values); // send the integer

 for(int i=0; i < 6; i++)
 {
 values = analogRead(i);
 sendBinary(values); // send the integer
 }
 delay(1000); //send every second
}

// function to send the given integer value to the serial port
void sendBinary(int value)
{
 // send the two bytes that comprise an integer
 Serial.write(lowByte(value)); // send the low byte
 Serial.write(highByte(value)); // send the high byte
}

Discussion

The code sends a header (the character H), followed by an integer holding
the digital pin values using the bitRead function to set a single bit in the
integer to correspond to the value of the pin (see Chapter 3). It then sends
six integers containing the values read from the six analog ports (see
Chapter 5 for more information). All the integer values are sent using
sendBinary, introduced in Recipe 4.6. The message is 15 bytes long—one
byte for the header, two bytes for the digital pin values, and 12 bytes for the
six analog integers. The code for the digital and analog inputs is explained
in Chapter 5.

Assuming analog pins have values of 0 on pin 0, 100 on pin 1, and 200 on
pin 2 through 500 on pin 5, and digital pins 2 through 7 are high and 8
through 13 are low, this is the decimal value of each byte that gets sent:

72 // the character 'H' - this is the header
 // two bytes in low high order containing bits representing pins 2-13
63 // binary 00111111 : this indicates that pins 2-7 are high
0 // this indicates that 8-13 are low

 // two bytes for each pin representing the analog value
0 // pin 0's analog value is 0 and this is sent as two bytes
0

100 // pin 1 has a value of 100, sent as a byte of 100 and a byte of 0
0
...
 // pin 5 has a value of 500
244 // the remainder when dividing 500 by 256
1 // the number of times 500 can be divided by 256

This Processing code reads the message and prints the values to the
Processing console:

// Processing Sketch

/*
 * ReceiveMultipleFieldsBinary_P
 *
 * portIndex must be set to the port connected to the Arduino
*/

import processing.serial.*;

Serial myPort; // Create object from Serial class
short portIndex = 0; // select the com port, 0 is the first port

char HEADER = 'H';

void setup()
{
 size(200, 200);
 // Open whatever serial port is connected to Arduino.
 String portName = Serial.list()[portIndex];
 println((Object[]) Serial.list());
 println(" Connecting to -> " + portName);
 myPort = new Serial(this, portName, 9600);
}

void draw()
{
int val;

 if (myPort.available() >= 15) // wait for the entire message to arrive
 {
 if(myPort.read() == HEADER) // is this the header
 {
 println("Message received:");
 // header found
 // get the integer containing the bit values
 val = readArduinoInt();
 // print the value of each bit
 for(int pin=2, bit=1; pin <= 13; pin++){
 print("digital pin " + pin + " = ");
 int isSet = (val & bit);
 if(isSet == 0) {
 println("0");
 }
 else{
 println("1");
 }
 bit = bit * 2; //shift the bit to the next higher binary place
 }
 println();
 // print the six analog values
 for(int i=0; i < 6; i ++){
 val = readArduinoInt();
 println("analog port " + i + "=" + val);
 }
 println("----");

p ();
 }
 }
}

// return integer value from bytes received from serial port (in low,high
order)
int readArduinoInt()
{
 int val; // Data received from the serial port

 val = myPort.read(); // read the least significant byte
 val = myPort.read() * 256 + val; // add the most significant byte
 return val;
}

TIP
Make sure that you set portIndex to correspond to the serial port that Arduino is connected to.
You may need to run the sketch once, get an error, and review the list of serial ports in the
Processing console at the bottom of the screen to determine which value you should use for
portIndex.

The Processing code waits for 15 characters to arrive. If the first character
is the header, it then calls the function named readArduinoInt to read two
bytes and transform them back into an integer by doing the complementary
mathematical operation that was performed by Arduino to get the individual
bits representing the digital pins. The six integers are then representing the
analog values. Note that the digital pins will all default to 1 (HIGH). This is
because the pull-ups have been enabled on them using INPUT_PULLUP. This
means that if you had a button connected to them, a value of 1 indicates the
button is not pressed, while 0 indicates it is pressed. Recipe 2.4 has a
discussion of this mode.

See Also
To send Arduino values back to the computer or drive the pins from the
computer (without making decisions on the board), consider using Firmata.
The Firmata library and example sketches (File→Examples→Firmata) are

http://www.firmata.org/

included in the Arduino software distribution, and a library is available to
use in Processing. You load the Firmata code onto Arduino, control whether
pins are inputs or outputs from the computer, and then set or read those
pins.

4.10 Logging Arduino Data to a File on Your
Computer
Problem
You want to create a file containing information received over the serial
port from Arduino. For example, you want to save the values of the digital
and analog pins at regular intervals to a logfile.

Solution
We covered sending information from Arduino to your computer in
previous recipes. This solution uses the same Arduino code explained in
Recipe 4.9. The Processing sketch that handles file logging is based on the
Processing sketch also described in that recipe.

This Processing sketch creates a file (using the current date and time as the
filename) in the same directory as the Processing sketch. Messages received
from Arduino are added to the file. Pressing any key saves the file and exits
the program:

/*
 * ReceiveMultipleFieldsBinaryToFile_P
 *
 * portIndex must be set to the port connected to the Arduino
 * based on ReceiveMultipleFieldsBinary, this version saves data to file
 * Press any key to stop logging and save file
 */

import processing.serial.*;
import java.util.*;
import java.text.*;

PrintWriter output;

DateFormat fnameFormat = new SimpleDateFormat("yyMMdd_HHmm");
DateFormat timeFormat = new SimpleDateFormat("hh:mm:ss");
String fileName;

Serial myPort; // Create object from Serial class
short portIndex = 0; // select the com port, 0 is the first port
char HEADER = 'H';

void setup()
{
 size(200, 200);
 // Open whatever serial port is connected to Arduino.
 String portName = Serial.list()[portIndex];
 println((Object[]) Serial.list());
 println(" Connecting to -> " + portName);
 myPort = new Serial(this, portName, 9600);
 Date now = new Date();
 fileName = fnameFormat.format(now);
 output = createWriter(fileName + ".txt"); // save the file in the sketch
folder
}

void draw()
{
 int val;

 if (myPort.available() >= 15) // wait for the entire message to arrive
 {
 if(myPort.read() == HEADER) // is this the header
 {
 String timeString = timeFormat.format(new Date());
 println("Message received at " + timeString);
 output.println(timeString);

 // get the integer containing the bit values
 val = readArduinoInt();
 // print the value of each bit
 for (int pin=2, bit=1; pin <= 13; pin++){
 print("digital pin " + pin + " = ");
 output.print("digital pin " + pin + " = ");
 int isSet = (val & bit);
 if (isSet == 0){
 println("0");
 output.println("0");
 }
 else
 {
 println("1");

p ();
 output.println("1");
 }
 bit = bit * 2; // shift the bit
 }
 // print the six analog values
 for (int i=0; i < 6; i ++){
 val = readArduinoInt();
 println("analog port " + i + "=" + val);
 output.println("analog port " + i + "=" + val);
 }
 println("----");
 output.println("----");
 }
 }
}

void keyPressed() {
 output.flush(); // Writes the remaining data to the file
 output.close(); // Finishes the file
 exit(); // Stops the program
}

// return the integer value from bytes received on the serial port
// (in low,high order)
int readArduinoInt()
{
 int val; // Data received from the serial port

 val = myPort.read(); // read the least significant byte
 val = myPort.read() * 256 + val; // add the most significant byte
 return val;
}

Don’t forget that you need to set portIndex to the serial port connected to
Arduino. If you choose the wrong value for portIndex, review the initial
output of the Processing sketch where it prints the list of available serial
ports and choose the correct one.

Discussion
The base name for the logfile is formed using the DateFormat function in
Processing:

DateFormat fnameFormat= new SimpleDateFormat("yyMMdd_HHmm");

The full filename is created with code that adds a directory and file
extension:

output = createWriter(fileName + ".txt");

To create the file and exit the sketch, you can press any key while the
Processing sketch main window is active. Don’t press the Escape key
because it will terminate the sketch without saving the file. The file will be
created in the same directory as the Processing sketch (the sketch needs to
be saved at least once to ensure that the directory exists). To find this
directory, choose Sketch→Show Sketch Folder in Processing.

createWriter is the Processing function that opens the file; this creates an
object (a unit of runtime functionality) called output that handles the actual
file output. The text written to the file is the same as what is printed to the
console in Recipe 4.9, but you can format the file contents as required by
using the standard string-handling capabilities of Processing. For example,
the following variation on the draw routine produces a comma-separated
file that can be read by a spreadsheet or database. The rest of the Processing
sketch can be the same, although you may want to change the extension
from .txt to .csv:

void draw()
{
 int val;

 if (myPort.available() >= 15) // wait for the entire message to arrive
 {
 if (myPort.read() == HEADER) // is this the header
 {
 String timeString = timeFormat.format(new Date());
 output.print(timeString);

 val = readArduinoInt();
 // print the value of each bit
 for (int pin=2, bit=1; pin <= 13; pin++){
 int isSet = (val & bit);
 if (isSet == 0){

 output.print(",0");
 }
 else
 {
 output.print(",1");
 }
 bit = bit * 2; // shift the bit
 }

 // output the six analog values delimited by a comma
 for (int i=0; i < 6; i ++){
 val = readArduinoInt();
 output.print("," + val);
 }
 output.println();
 }
 }
}

See Also
For more on createWriter, see the Processing page. Processing also
includes the Table object for creating, manipulating, and saving CSV files.

4.11 Sending Data to More than One Serial
Device
Problem
You want to send data to a serial device such as a serial LCD, but you are
already using the built-in serial-to-USB port to communicate with your
computer.

Solution
On a board with more than one serial port (see the introduction for some
suggestions) this is not a problem; first, you will need to wire the board to
the serial device as shown in Figure 4-5. Next, you can initialize two serial
ports and use Serial for the connection to your computer, and the other
(usually Serial1) for the device:

https://oreil.ly/1zHWE
https://oreil.ly/9sqXb

void setup() {
 // initialize two serial ports on a board that supports this
 Serial.begin(9600); // primary serial port
 Serial1.begin(9600); // Some boards have even more serial ports
}

Connecting a serial device to a built-in serial port’s transmit pin

WARNING
If you are using an Arduino or Arduino-compatible board that operates at 3.3V (such as a SAMD-
based board), you can safely transmit to a device that uses 5V. But if you are using a board that
operates at 5V (such as an Uno) with a device that uses 3.3V, you will eventually damage the
device unless you incorporate a voltage divider into the circuit to bring the voltage down. See
Recipes 4.13 and 5.11 for examples of voltage dividers.

On an ATmega328-based Arduino board (or similar), such as the Uno,
which has only one hardware serial port, you will need to create an
emulated or “soft” serial port using the SoftwareSerial library.

Select two available digital pins, one each for transmit and receive, and
connect your serial device to them. Connect the device’s transmit line to the
receive pin and the receive line to the transmit pin. For scenarios where you
are only sending data, such as when displaying characters on a Serial LCD
display, you only need to wire up the transmit (TX) pin to the device’s

receive (RX) pin, as shown in Figure 4-6, where we have selected pin 3 as
the transmit pin.

Connecting a serial device to a “soft” serial port

In your sketch, create a SoftwareSerial object and tell it which pins you
chose as your emulated serial port. In this example, we’re creating an object
named serial_lcd, which we instruct to use pins 2 and 3. Even though
we’re not going to be receiving any data from this serial connection, we
need to specify a receive pin, so you shouldn’t use pin 2 for anything else
when you are using the SoftwareSerial port:

/*
 * SoftwareSerialOutput sketch
 * Output data to a software serial port
 */

#include <SoftwareSerial.h>

const int rxpin = 2; // pin used to receive (not used in this
version)
const int txpin = 3; // pin used to send to LCD
SoftwareSerial serial_lcd(rxpin, txpin); // new serial port on pins 2 and 3

void setup()
{
 Serial.begin(9600); // 9600 baud for the built-in serial port

 serial_lcd.begin(9600); //initialize the software serial port also for 9600
}

int number = 0;

void loop()
{
 serial_lcd.print("Number: "); // send text to the LCD
 serial_lcd.println(number); // print the number on the LCD
 Serial.print("Number: ");
 Serial.println(number); // print the number on the PC console

 delay(500); // delay half second between numbers
 number++; // to the next number
}

To use the sketch with a built-in hardware serial port, connect the pins as
shown in Figure 4-5, then remove these lines:

#include <SoftwareSerial.h>
const int rxpin = 2;
const int txpin = 3;
SoftwareSerial serial_lcd(rxpin, txpin);

Finally, add this line in their place: #define serial_gps Serial1
(change Serial1 as needed if you are using a different port).

NOTE
Some of the boards that support multiple hardware serial ports, such as the Leonardo, Mega, and
Mega 2560, have restrictions on which pins you can use for SoftwareSerial receive (RX). Even
though we aren’t using the receive capability here, and even though you’d most likely use the
hardware serial pins for Serial1 on those boards (see Table 4-1), you should be aware that those
boards do not support the RX capability on pin 2, so if you were to try to read from a software
serial connection on one of those boards, you’d need to use a supported pin. Recipe 4.12 uses RX
pins that will work on a wide variety of boards.

This sketch assumes that a serial LCD has been connected to pin 3 as
shown in Figure 4-6, and that a serial console is connected to the built-in
port. The loop will repeatedly display the same message on each:

Number: 0
Number: 1
...

Discussion
The Arduino microcontroller contains at least one built-in hardware serial
port. On the Arduino Uno, this port is connected to the USB serial
connection, and is also wired to pins 0 (receive) and 1 (transmit), allowing
you to connect a device such as an LCD serial display to the Arduino. The
characters you transmit over the Serial object are displayed on the LCD.

NOTE
Although you can use a separate power supply for the serial device, you must connect the
Arduino’s ground pin to the device’s pin, thus giving the Arduino and the serial device a common
ground. In the Solution, we did this, but we also used the Arduino’s 5V output to power the
device.

In addition to the onboard USB serial connection, some boards support one
or more direct serial connections. On these boards, pins 0 and 1 are
typically tied to the Serial1 object, which allows you to maintain a USB
serial connection to your computer while you exchange data with the device
on pins 0 and 1. Some boards support additional serial ports on a different
set of pins (see Table 4-1 for a table of serial ports available on several
boards). All the pins that support serial input and output, in addition to
being general-purpose digital pins, are backed by universal asynchronous
receiver-transmitter (UART) hardware that’s built into the chip. This special
piece of hardware is responsible for generating the series of precisely timed
pulses its partner device sees as data and for interpreting the similar stream
that it receives in return.

Although ARM SAMD-based boards (M0 and M4 boards) have two
hardware-supported serial ports and the Mega has four such ports, the
Arduino Uno and most similar boards based on the ATmega328 have only
one. On the Uno and similar boards, you’ll need a software library that

emulates the additional ports for projects that require connections to two or
more serial devices. A “software serial” library effectively turns an arbitrary
pair of digital I/O pins into a new serial port.

To build your software serial port, you select a pair of pins that will act as
the port’s transmit and receive lines in much the same way that a hardware
serial port uses its assigned pins. In Figure 4-6, pins 3 and 2 are shown, but
any available digital pins can be used, with some exceptions for certain
boards. It’s wise to avoid using 0 and 1, because these are already being
driven by the built-in port.

The syntax for writing to the soft port is identical to that for the hardware
port. In the example sketch, data is sent to both the “real” and emulated
ports using print() and println():

serial_lcd.print("Number: "); // send text to the LCD
serial_lcd.println(number); // print the number on the LCD
Serial.print("Number: ");
Serial.println(number); // print the number on the PC console

TIP
If the combined text ("Number: ") and the number itself are longer than the width of your LCD
serial display, the output may be truncated or may scroll off the display. Many LCD character
displays have two rows of 20 characters each.

See Also
Nick Gammon maintains a transmit-only version of SoftwareSerial that lets
you avoid the need to allocate a pin for receiving data when you don’t need
it.

4.12 Receiving Serial Data from More than
One Serial Device
Problem

https://oreil.ly/ewtoN
https://oreil.ly/PBkw0

You want to receive data from a serial device such as a serial GPS, but you
are already using the built-in serial-to-USB port to communicate with your
computer.

Solution
On a board with more than one serial port (see the introduction for some
suggestions) this is not a problem; first, you will need to wire the board to
the serial device as shown in Figure 4-7. Next, you can initialize two serial
ports and use Serial for the connection to your computer, and the other
(usually Serial1) for the device:

void setup() {
 // initialize two serial ports on a board that supports this
 Serial.begin(9600); // primary serial port
 Serial1.begin(9600); // Some boards have even more serial ports
}

Connecting a serial device to a built-in serial port’s receive pin

WARNING
If you are using an Arduino or Arduino-compatible board that operates at 5V (such as an Uno),
you can safely receive data from a device that uses 3.3V. But if you are using a board that operates
at 3.3V (most ARM-based boards) with a device that uses 5V logic levels, you will eventually
damage your board unless you incorporate a voltage divider into the circuit to bring the voltage
down. See Recipes 4.13 and 5.11 for examples of voltage dividers.

On the Arduino Uno and other boards based on the ATmega328, which has
only one hardware serial port, you will need to create an emulated or “soft”
serial port using the SoftwareSerial library. You will be limited to slower
transfer speeds than with a built-in hardware serial port.

This problem is similar to the one in Recipe 4.11, and indeed the solution is
much the same. If your Arduino’s serial port is connected to the console and
you want to attach a second serial device, you must create an emulated port
using a software serial library. In this case, we will be receiving data from
the emulated port instead of writing to it, but the basic solution is very
similar.

Select two pins to use as your transmit and receive lines. This Solution uses
pins 8 and 9 because some boards (such as the Arduino Leonardo) can only
support SoftwareSerial receive on pins 8, 9, 10, 11, and 14. These also
happen to be among the pins that the Arduino Mega and Mega 2560 support
for SoftwareSerial receive. In practice, you would probably use the
hardware serial available on pins 0 and 1 (Serial1) on these boards (the
Mega boards have pins that support hardware serial as Serial2 and
Serial3). But we chose SoftwareSerial pins that would work on the widest
possible range of boards in case you decide to test this code on one of them.

Connect your GPS as shown in Figure 4-8.

Connecting a serial GPS device to a “soft” serial port

As you did in Recipe 4.11, create a SoftwareSerial object in your sketch
and tell it which pins to control. In the following example, we define a soft
serial port called serial_gps, using pins 8 and 9 for receive and transmit,
respectively. Even though we’re not going to be sending any data to this
serial device, we need to specify a transmit pin, so you shouldn’t use pin 9
for anything else when you are using the software serial port:

TIP
To use the following code with a built-in hardware serial port, connect the pins as shown in Figure
4-7, then remove these lines:

#include <SoftwareSerial.h>
const int rxpin = 8;
const int txpin = 9;
SoftwareSerial serial_gps(rxpin, txpin);

Finally, add this line in their place (change Serial1 if you are using a different port):

#define serial_gps Serial1

/*
 * SoftwareSerialInput sketch
 * Read data from a software serial port
 */

#include <SoftwareSerial.h>
const int rxpin = 8; // pin used to receive from GPS
const int txpin = 9; // pin used to send to GPS
SoftwareSerial serial_gps(rxpin, txpin); // new serial port on these pins

void setup()
{
 Serial.begin(9600); // 9600 baud for the built-in serial port
 serial_gps.begin(9600); // initialize the port, most GPS devices
 // use 9600 bits per second
}

void loop()
{
 if (serial_gps.available() > 0) // any character arrived yet?
 {
 char c = serial_gps.read(); // if so, read it from the GPS
 Serial.write(c); // and echo it to the serial console
 }
}

This short sketch simply forwards all incoming data from the GPS to the
Arduino Serial Monitor. If the GPS is functioning and your wiring is
correct, you should see GPS data displayed on the Serial Monitor.

Discussion
You initialize an emulated SoftwareSerial port by providing pin numbers
for transmit and receive. The following code will set up the port to receive
on pin 8 and send on pin 9:

const int rxpin = 8; // pin used to receive from GPS
const int txpin = 9; // pin used to send to GPS
SoftwareSerial serial_gps(rxpin, txpin); // new serial port on these pins

The syntax for reading an emulated port is very similar to that for reading
from a built-in port. First check to make sure a character has arrived from

the GPS with available(), and then read it with read().

It’s important to remember that software serial ports consume time and
resources. An emulated serial port must do everything that a hardware port
does, using the same processor your sketch is trying to do “real work” with.
Whenever a new character arrives, the processor must interrupt whatever it
is doing to handle it. This can be time-consuming. At 4,800 baud, for
example, it takes the Arduino about 2 ms to process a single character.
While 2 ms may not sound like much, consider that if your connected
device transmits 200 to 250 characters per second, your sketch is spending
40 to 50% of its time trying to keep up with the serial input. This leaves
very little time to actually process all that data. The lesson is that if you
have two serial devices, when possible connect the one with the higher
bandwidth consumption to the built-in (hardware) port. If you must connect
a high-bandwidth device to a software serial port, make sure the rest of your
sketch’s loop is very efficient.

Receiving data from multiple SoftwareSerial ports
With the SoftwareSerial library included with Arduino, it is possible to
create multiple “soft” serial ports in the same sketch. This is a useful way to
control, say, several XBee radios (see Recipe 14.2) or serial displays in the
same project. The caveat is that at any given time, only one of these ports
can actively receive data. Reliable communication on a software port
requires the processor’s undivided attention. That’s why SoftwareSerial can
only actively communicate with one port at a given time.

It is possible to receive on two different SoftwareSerial ports in the same
sketch. You just have to take some care that you aren’t trying to receive
from both simultaneously. There are many successful designs which, say,
monitor a serial GPS device for a while, then later accept input from an
XBee. The key is to alternate slowly between them, switching to a second
device only when a transmission from the first is complete.

For example, in the sketch that follows, an XBee module is connected to the
Arduino. The module is receiving commands from a remote device
connected to another XBee module. The sketch listens to the command

stream through the “xbee” port until it receives the signal to begin gathering
data from a GPS module attached to a second SoftwareSerial port. The
sketch then monitors the GPS for 10 seconds—hopefully long enough to
establish a “fix”—before returning to the XBee.

In a system with multiple “soft” ports, only one is actively receiving data.
By default, the “active” port is the one for which begin() has been called
most recently. However, you can change which port is active by calling its
listen() method. listen() instructs the SoftwareSerial system to stop
receiving data on one port and begin listening for data on another.

NOTE
Because the following example is only receiving data, you can choose any pins for txpin1 and
txpin2. If you need to use pins 9 and 11 for something else, you can change txpin1/2 to another
pin. We recommend against changing it to a nonexistent pin number, because that could lead to
some unusual behavior.

The following code fragment illustrates how you might design a sketch to
read first from one port and then another:

/*
 * MultiRX sketch
 * Receive data from two software serial ports
 */
#include <SoftwareSerial.h>
const int rxpin1 = 8;
const int txpin1 = 9;
const int rxpin2 = 10;
const int txpin2 = 11;

SoftwareSerial gps(rxpin1, txpin1); // gps TX pin connected to Arduino pin 9
SoftwareSerial xbee(rxpin2, txpin2); // xbee TX pin connected to Arduino pin
10

void setup()
{
 Serial.begin(9600);
 xbee.begin(9600);
 gps.begin(9600);

 xbee.listen(); // Set “xbee” to be the active device
}

void loop()
{
 if (xbee.available() > 0) // xbee is active. Any characters available?
 {
 if (xbee.read() == 'y') // if xbee received a 'y' character?
 {
 gps.listen(); // now start listening to the gps device

 unsigned long start = millis(); // begin listening to the GPS
 while (start + 100000 > millis()) // listen for 10 seconds
 {
 if (gps.available() > 0) // now gps device is active
 {
 char c = gps.read();
 Serial.write(c); // echo it to the serial console
 }
 }
 xbee.listen(); // After 10 seconds, go back to listening to the xbee
 }
 }
}

This sketch is designed to treat the XBee radio as the active port until it
receives a y character, at which point the GPS becomes the active listening
device. After processing GPS data for 10 seconds, the sketch resumes
listening on the XBee port. Data that arrives on an inactive port is simply
discarded.

Note that the “active port” restriction only applies to multiple soft ports. If
your design really must receive data from more than one serial device
simultaneously, consider using a board, such as the Teensy, that supports
several serial ports (the Teensy 4.0 supports seven in total). Table 4-1 shows
the pins used for serial ports on various Arduino and Arduino-compatible
boards.

See Also
If you would like to go further with a GPS and parse the messages that you
receive, see Recipe 6.14. For an alternative to SoftwareSerial that can

support multiple devices more robustly, see the AltSoftSerial library.

4.13 Using Arduino with the Raspberry Pi
Problem
You want to use Arduino capabilities together with the processing power of
a single-board Linux computer such as Raspberry Pi. For example, you
want to send commands to Arduino from a script running on the Pi.

Solution
Arduino can monitor and respond to serial commands from the Raspberry
Pi. The code here controls Arduino LEDs from Python scripts running on
Pi.

NOTE
It is also possible to connect Arduino to a Raspberry Pi using one of the Raspberry Pi’s USB
ports. In fact, you can even run the Arduino IDE on the Raspberry Pi. Download one of the ARM
versions. At the time of this writing, the Raspberry Pi operating system, Raspbian, operated in 32-
bit mode, so you’d choose the 32-bit version unless you’re running a 64-bit operating system.

Connect the Arduino serial receive pin (pin 0 marked RX on the board) to
pin 8 on the Pi’s header pins. Connect Arduino TX pin 1 to the Pi GPIO pin
10. The Arduino ground (GND) pin connects to any of the Pi ground pins
(pin 14 is used in Figure 4-9).

https://oreil.ly/-odVk
https://oreil.ly/K5JhS

Arduino board connected to Raspberry Pi

NOTE
The following is for the Arduino Uno and any Arduino compatible that has a single serial port
shared between the USB serial connection and the RX/TX pins. If you are using a board with an
additional hardware serial port, such as the Leonardo, WiFi Rev2, Nano Every, or any ARM-based
board, change #define mySerial Serial to #define mySerial Serial1, and if your board
doesn’t use pins 0 and 1 for RX and TX, use the appropriate pins for Serial1 (see Table 4-1).

Here is an Arduino sketch that monitors serial messages from the Pi.
Upload this to the Arduino board:

/*
 * ArduinoPi sketch
 * Pi control Arduino pins using serial messages
 * format is: Pn=state
 * where 'P' is header character, n is pin number, state is 0 or 1
 * example: P13=1 turns on pin 13
 */

// Replace Serial with Serial1 on boards with an additional serial port
#define mySerial Serial

void setup()
{
 mySerial.begin(9600); // Initialize serial port to send/receive at 9600 baud
}

void loop()
{
 if (mySerial.available()) // Check whether at least one character is
available
 {
 char ch = mySerial.read();
 int pin = -1;
 if(ch == 'P') // is this the beginning of a message to set a pin?
 {
 pin = mySerial.parseInt(); // get the pin number
 }
 else if (ch == 'B') // Message to set LED_BUILTIN
 {
 pin = LED_BUILTIN;
 }

 if(pin > 1) { // 0 and 1 are usually serial pins (leave them alone)

 int state = mySerial.parseInt(); // 0 is off, 1 is on
 pinMode(pin, OUTPUT);
 digitalWrite(pin, state);
 }

 }
}

Save the following Python script as blinkArduino.py on the Pi, and run it
with python blinkArduino.py. The script will blink the onboard LED on
the Arduino board. You must have the python-serial library installed before
you run it. You can install it on the Raspberry Pi with sudo apt-get
install python-serial:

#!/usr/bin/env python

import serial
from time import sleep

ser = serial.Serial('/dev/serial0', 9600)
ser.write('P13=1')
sleep(1)
ser.write('P13=0')

When the script is run, an LED on pin 13 should turn on for one second and
then go off.

Discussion
The Arduino sketch detects the start of a message when the character P is
received. The Arduino parseInt function is used to extract the desired pin
number and pin state. Sending P13=1 will turn on the LED on pin 13.
P13=0 will turn the LED off. More information on serial messages and
parseInt can be found in Chapter 4. Many Arduino and Arduino-
compatible boards use some pin other than 13, so to save you the trouble of
having to look that up, the Arduino sketch will use the LED_BUILTIN
constant as the pin number when you send it a message like B=1 (no pin
number required).

The Python script sends the appropriate messages to turn the LED on and
then off.

If your board’s built-in LED is not on pin 13, use this version, which uses
the B command to toggle whichever LED is assigned to LED_BUILTIN:

#!/usr/bin/env python

import serial
from time import sleep

ser = serial.Serial('/dev/serial0', 9600)
ser.write('B=1')
sleep(1)
ser.write('B=0')

Raspberry Pi pins are not 5-volt tolerant, so you must use the voltage
divider shown in the diagram if you are connecting a 5V Arduino-
compatible board to the Pi. If you are using a 3.3V Arduino, it’s generally
safe to omit the voltage divider, but the voltage divider won’t hurt it. See
Recipe 5.11 for more details on voltage dividers.

The messages sent in this recipe are very simple but can be expanded to
enable the Pi to control almost any Arduino function and for Arduino to
send information back to the Pi. See Recipe 4.0 for more on getting
Arduino working with a computer over the serial link.

Details on Python and the Pi can be found online and in books such as
Raspberry Pi Cookbook, Third Edition, by Simon Monk.

http://shop.oreilly.com/product/0636920196372.do

WHY ARDUINO CAN SEEM MUCH FASTER THAN A RASPBERRY PI
The Raspberry Pi is a remarkable piece of technology. It has the ability to run a complex
operating system such as Linux or Windows 10, and that is something that a standard Arduino
board cannot do. This capability can be essential if you want to use complex drivers such as
those for speech recognition, visual pattern matching, and countless other capabilities supported
on Linux and Windows. However, if your application requires precise high-speed software
control of input or output pins, then the Arduino can, in some situations, respond faster than the
Pi.

This is because the pin control on the Pi is handled through layers of software designed to
isolate the hardware from the operating system, and one of those layers is the programming
language you are using. This overhead slows down the rate at which pins can be controlled.
And because the operating system is constantly interrupting each task to support other tasks,
there can be a small but inconsistent delay in the intervals given to the task-controlling pins.

A basic Arduino Uno board can achieve a consistent rate of 8 MHz (see Recipe 18.11). Joonas
Pihlajamaa performed a set of benchmarks on Raspberry PI GPIO speed and reached only 70
KHz on the Raspberry Pi using Python and RPi.GPIO. However, using native libraries and the
C programming language, it’s possible to beat even the Uno. Pihlajamaa reached 22 MHz with
that approach.

More recent Arduino and Arduino-compatible hardware is even faster. For example, the Teensy
3 can achieve a toggle rate of 48 MHz.

https://oreil.ly/QghxL

Simple Digital and Analog Input

5.0 Introduction
The Arduino’s ability to sense digital and analog inputs allows it to respond
to you and to the world around you. This chapter introduces techniques you
can use to monitor and respond to these inputs: detect when a switch is
pressed, read input from a numeric keypad, and read a range of voltage
values.

This chapter covers the Arduino pins that can sense digital and analog
inputs. Digital input pins sense the presence and absence of voltage on a
pin. Analog input pins measure a range of voltages on a pin.

Figure 5-1 shows the arrangement of pins on the Arduino Uno. This pin
arrangement is used by many Arduino-compatible boards, including the
Adafruit Metro line and SparkFun. See this list of the official boards, which
links to connection information for each. If your board is not on that list,
check your board supplier’s website for connection information.

The Arduino function to detect digital input is digitalRead, and it tells
your sketch if a voltage on a pin is HIGH or LOW. HIGH is between 3 and 5
volts for boards such as the Uno (between 2 and 3.3 volts on ARM-based
boards and any other 3.3V boards), LOW is 0 volts. The Arduino function to
configure a pin for reading input is pinMode(pin, INPUT).

On a board with the Uno-style pin layout (including the Arduino Leonardo,
several of the Adafruit Metro boards, and SparkFun RedBoard), there are
14 digital pins (numbered 0 to 13) as shown at the top of Figure 5-1. On the
Uno and 100% compatible boards (typically boards based on the
ATmega328), pins 0 and 1 (marked RX and TX) are used for the USB serial
connection and should be avoided for other uses. See Chapter 4 for more
details on serial connections.

https://oreil.ly/aZPSA

Digital and analog pins on the Arduino Uno board

Arduino has logical names that can be used to reference many of the pins.
The constants in Table 5-1 can be used in all functions that expect a pin
number. It is very likely that you will encounter example code that uses the
actual pin numbers. But given the wide diversity of Arduino and Arduino-
compatible boards, you should avoid using the numeric pin number and use
these constants instead. For example, on the Arduino Uno, A0 is pin 14, but
it’s 15 on the MKR WiFi 1010, and 54 on the Arduino Mega.

Pin constants for Uno-style layout
Constant Pin Constant Pin

A0 Analog input 0 LED_BUILTIN Onboard LED

A1 Analog input 1 SDA I2C Data

A2 Analog input SCL I2C Clock

A3 Analog input SS SPI Select

A4 Analog input MOSI SPI Input

A5 Analog input MISO SPI Output

SCK SPI Clock

TIP
If you need more digital pins, you can use the analog pins as digital pins (when you do this, you
can refer to them through their symbolic names, for example with pinMode(A0, INPUT);).

Boards such as the Mega and Due have many more digital and analog pins.
Digital pins 0 through 13 and analog pins 0 through 5 are located in the
same place as on the standard board, so that hardware shields designed for
the standard board can fit. As with the standard board, you can use analog
pins as digital pins, but with the Mega, analog numbering goes from A0
through A15. Figure 5-2 shows the Mega pin layout.

Arduino Mega board

The Uno, Leonardo, and many other boards have an LED connected to pin
13, but the pin number will be different on other boards, so you should

always use the LED_BUILTIN constant to refer to the built-in LED. If your
board does not have a built-in LED, skip ahead to Recipe 7.1 if you need
help connecting an LED to a digital pin. You’ll also need to change the
output pin from LED_BUILTIN to the pin number you are using.

Recipes covering digital input sometimes use internal or external resistors
to force the input pin to stay in a known state when the input is not engaged.
Without such a resistor, the pin’s value would be in a state known as
floating, and digitalRead might return HIGH at first, but then would return
LOW milliseconds later, regardless of whether the input is engaged (such as
when a button is pressed). A pull-up resistor is so named because the
voltage is “pulled up” to the logic level (5V or 3.3V) of the board. When
you press the button in a pull-up configuration, digitalRead will return
LOW. At all other times, it returns HIGH because the pull-up resistor is
keeping it high. A pull-down resistor pulls the pin down to 0 volts. In this
configuration, digitalRead will return HIGH when the button is pressed.
Although 10K ohms is a commonly used value for a pull-up or pull-down
resistor, anything between 4.7K and 20K or more will work; see Appendix
A for more information about the components used in this chapter.

WORKING WITH ELECTRONIC COMPONENTS
This is the first of many chapters to come that cover electrical connections to Arduino. If you
don’t have an electronics background, you may want to look through Appendix A on electronic
components, Appendix B on schematic diagrams and datasheets, Appendix C on building and
connecting circuits, and Appendix E on hardware troubleshooting. In addition, many good
introductory tutorials are available. Two that are particularly relevant to Arduino are Getting
Started with Arduino by Massimo Banzi and Michael Shiloh (Make Community) and Making
Things Talk by Tom Igoe (Make Community). Other books offering a background on
electronics topics covered in this and the following chapters include Getting Started in
Electronics by Forrest M. Mims, III (Master Publishing), Make: Electronics by Charles Platt
(Make Community), and Physical Computing by Tom Igoe (Cengage).

If wiring components to your Arduino is new to you, be careful about how you connect and
power the things you attach. The Arduino Uno uses a robust controller chip that can take a fair
amount of abuse, but you can damage the chip if you connect the wrong voltages or short-
circuit an output pin. 32-bit Arduino and compatible boards are generally a bit more fragile.
Arduino controller chips on boards such as the Uno are powered by 5 volts, and you must not
connect external power to Arduino pins with a higher voltage than this. But most of the newer
Arduino boards and compatibles can tolerate a maximum of 3.3 volts. See the online
documentation for your board to find the maximum pin voltage.

Some Arduino boards have the main chip in a socket that can be removed and replaced, so you
don’t need to replace the whole board if you damage the chip. If you are new to electronics and
want to experiment, boards with replaceable microcontrollers such as the Uno are a good
choice. The Arduino Uno Rev3 SMD (Surface Mount Device) has a soldered-on
microcontroller that is not replaceable.

Arduino boards have internal pull-up resistors that you can activate when
you use the INPUT_PULLUP mode with pinMode, as shown in Recipe 5.2.
This eliminates the need for external pull-up resistors.

Unlike a digital value, which is only on or off, analog values are
continuously variable. The volume setting of a device is a good example; it
is not just on or off, but it can have a range of values in between. Many
sensors provide information by varying the voltage to correspond to the
sensor measurement. Arduino code uses a function called analogRead to
get a value proportional to the voltage it sees on one of its analog pins. The
value will be 0 if there are 0 volts on the pin and 1,023 for 5 volts (or 3.3
volts on a 3.3-volt board). The value in between will be proportional to the
voltage on the pin, so 2.5 volts (half of 5 volts) will result in a value of
roughly 511 (half of 1,023). You can see the six analog input pins (marked 0
to 5) at the bottom of Figure 5-1 (these pins can also be used as digital pins

http://shop.oreilly.com/product/0636920029267.do
http://oreilly.com/catalog/0636920010920/
http://shop.oreilly.com/product/0636920031826.do

if they are not needed for analog). Some of the analog recipes use a
potentiometer (pot for short, also called a variable resistor) to vary the
voltage on a pin. When choosing a potentiometer, a value of 10K is the best
option for connecting to analog pins.

Although most of the circuits in this chapter are relatively easy to connect,
you will want to consider getting a solderless breadboard to simplify your
wiring to external components. A full-length breadboard has 830 tie points
(the holes you insert the wire into) and two power bus rows per side. These
include: Jameco part number 20723, Adafruit Industries part number 239,
Digi-Key 438-1045-ND, and SparkFun PRT-12615. Half-length
breadboards with 400 tie points are popular in part because they are about
the same size as the Arduino Uno.

Another handy item is an inexpensive multimeter. Almost any will do, as
long as it can measure voltage and resistance. Continuity checking and
current measurement are nice additional features to have. (The Jameco
220759, Adafruit 2034, Digi-Key 1742-1135-ND, and SparkFun TOL-
12966 offer these features.)

5.1 Using a Switch
Problem
You want your sketch to respond to the closing of an electrical contact; for
example, a pushbutton or other switch or an external device that makes an
electrical connection.

Solution
Use digitalRead to determine the state of a switch connected to an
Arduino digital pin set as input. The following code lights an LED when a
switch is pressed (Figure 5-3 shows how it should be wired up):

/*

 Pushbutton sketch

 a switch connected to pin 2 lights the built-in LED

*/

const int inputPin = 2; // choose the input pin (for a pushbutton)

void setup() {

 pinMode(LED_BUILTIN, OUTPUT); // declare LED as output

 pinMode(inputPin, INPUT); // declare pushbutton as input

}

void loop(){

 int val = digitalRead(inputPin); // read input value

 if (val == HIGH) // check if the input is HIGH

 {

 digitalWrite(LED_BUILTIN, HIGH); // turn LED on if switch is pressed

 }

 else

 {

 digitalWrite(LED_BUILTIN, LOW); // turn LED off

 }

}

Switch connected using pull-down resistor

NOTE
Arduino boards generally have a built-in LED connected to an input pin, which is identified with
the constant LED_BUILTIN. It is not unusual to find code that refers to pin 13 as the built-in LED.
This is the correct pin number for the Uno and many other boards, but there are plenty of
exceptions, so you should use the constant. If your board does not have a built-in LED, see Recipe
7.1 for information on connecting an LED to an Arduino pin. You’ll also need to change the
output pin from LED_BUILTIN to the pin number you are using.

Discussion
The setup function configures the LED pin as OUTPUT and the switch pin as
INPUT.

NOTE
A pin must be set to OUTPUT mode for digitalWrite to control the pin’s output voltage. It must
be in INPUT mode to read the digital input.

The digitalRead function reads the voltage on the input pin (inputPin),
and it returns a value of HIGH if the voltage is high (5 volts on most 8-bit
boards, 3.3 volts on most 32-bit boards) and LOW if the voltage is low (0
volts). Any voltage between 3 and 5 volts (or between 2 and 3.3 volts on
3.3V boards) is considered HIGH, and less than this is treated as LOW. If the
pin is left unconnected (known as floating), the value returned from
digitalRead is indeterminate (it may be HIGH or LOW, and it cannot be
reliably used). The resistor shown in Figure 5-3 ensures that the voltage on
the pin will be low when the switch is not pressed, because the resistor
“pulls down” the voltage to ground (labeled GND on most boards), which is
0 volts. When the switch is pushed, a connection is made between the pin
and +5 volts, so the value on the pin returned by digitalRead changes
from LOW to HIGH.

WARNING
Do not connect a digital or analog pin to a voltage higher than 5 volts (or 3.3 volts on a 3.3V
board—see the manufacturer’s documentation or online catalog page for your board to check the
maximum voltage). Higher voltage can damage the pin and possibly destroy the entire chip. Also,
make sure you don’t wire the switch so that it shorts the 5 volts to ground (without a resistor).
Although this may not damage the Arduino chip, it is not good for the power supply.

In this example, the value from digitalRead is stored in the variable val.
This will be HIGH if the button is pressed, LOW otherwise.

NOTE
The switch used in this example (and almost everywhere else in this book) makes electrical
contact when pressed and breaks contact when not pressed. These switches are called Normally
Open (NO). The other kind of momentary switch is called Normally Closed (NC).

The output pin connected to the LED is turned on when you set val to
HIGH, illuminating the LED.

Although Arduino sets all digital pins as inputs by default, it is a good
practice to set this explicitly in your sketch to remind yourself about the
pins you are using.

You may see similar code that uses true instead of HIGH; these can be used
interchangeably (they are also sometimes represented as 1). Likewise,
false is the same as LOW and 0. Use the form that best expresses the
meaning of the logic in your application.

Almost any switch can be used, although the ones called momentary tactile
switches are popular because they are inexpensive and can plug directly into
a breadboard.

Here is another way to implement the logic in the preceding sketch:

void loop()

{

 // turn LED ON if input pin is HIGH, else turn OFF

 digitalWrite(LED_BUILTIN, digitalRead(inputPin));

}

This doesn’t store the button state into a variable. Instead, it sets the LED
on or off directly from the value obtained from digitalRead. It is a handy
shortcut, but if you find it overly terse, there is no practical difference in
performance, so pick whichever form you find easier to understand.

The pull-up code is similar to the pull-down version, but the logic is
reversed: the value on the pin goes LOW when the button is pressed (see
Figure 5-4 for a schematic diagram of this). It may help to think of this as
pressing the switch DOWN, causing the pin to go LOW:

void loop()

{

 int val = digitalRead(inputPin); // read input value

 if (val == HIGH) // check if the input is HIGH

 {

 digitalWrite(LED_BUILTIN, LOW); // turn LED OFF

 }

 else

 {

 digitalWrite(LED_BUILTIN, HIGH); // turn LED ON

 }

}

Switch connected using pull-up resistor

See Also
The Arduino references for:

digitalRead

digitalWrite

pinMode

constants (HIGH, LOW, etc.)
This Arduino tutorial on digital pins

5.2 Using a Switch Without External
Resistors
Problem

https://oreil.ly/Bk6HD
https://oreil.ly/kWoWV
https://oreil.ly/ffTZC
https://oreil.ly/QLS77
https://oreil.ly/XDBur

You want to simplify your wiring by eliminating external pull-up resistors
when connecting switches.

Solution
As explained in Recipe 5.1, digital inputs must have a resistor to hold the
pin to a known value when the switch is not pressed. Arduino has internal
pull-up resistors that can be enabled by using the INPUT_PULLUP mode with
pinMode.

For this example, the switch is wired as shown in Figure 5-5. This is almost
exactly the same as Figure 5-4, but without an external resistor.

Switch wired for use with internal pull-up resistor

The switch is only connected between pin 2 and ground (labeled GND on
most boards). Ground is at 0 volts by definition:

/*

 Input pullup sketch

 a switch connected to pin 2 lights the built-in LED

*/

const int inputPin = 2; // input pin for the switch

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(inputPin, INPUT_PULLUP); // use internal pull-up on inputPin

}

void loop(){

 int val = digitalRead(inputPin); // read input value

 if (val == HIGH) // check if the input is HIGH

 {

 digitalWrite(LED_BUILTIN, LOW); // turn LED off

 }

 else

 {

 digitalWrite(LED_BUILTIN, HIGH); // turn LED on

 }

}

TIP
There is more than one ground pin on an Arduino board; they are all connected together, so pick
whichever is convenient.

Discussion
When you use pull-up resistors, the logic is reversed: the value of
digitalRead will be LOW when the button is pushed, and HIGH when it is
not. The internal pull-up resistors are 20K ohms or more (between 20K and
50K). This is suitable for most applications, but some devices may require
lower-value resistors—see the datasheet for external devices you want to
connect to Arduino to see whether the internal pull-ups are suitable or not.

NOTE
If your application switches the pin mode back and forth between input and output, bear in mind
that the state of the pin will remain HIGH or LOW when you change modes on AVR boards such as
the Uno. In other words, if you have set an output pin HIGH and then change to input mode, the
pull-up will be on, and reading the pin will produce a HIGH. If you set the pin LOW in output mode
with digitalWrite(pin, LOW) and then change to input mode with pinMode(pin, INPUT), the
pull-up will be off. If you turn a pull-up on, changing to output mode will set the pin HIGH, which
could, for example, unintentionally light an LED connected to it.

5.3 Reliably Detect (Debounce) When a
Switch Is Pressed
Problem
You want to avoid false readings due to contact bounce (contact bounce
produces spurious signals at the moment the switch contacts close or open).
The process of eliminating spurious readings is called debouncing.

Solution
There are many ways to solve this problem; here is one using the wiring
shown in Figure 5-3 from Recipe 5.1:

/*

 * Debounce sketch

 * a switch connected to pin 2 lights the built-in LED

 * debounce logic prevents misreading of the switch state

 */

const int inputPin = 2; // the number of the input pin

const int debounceDelay = 10; // iterations to wait until pin is stable

bool last_button_state = LOW; // Last state of the button

int ledState = LOW; // On or off (HIGH or LOW)

// debounce returns the state when the switch is stable

bool debounce(int pin)

{

 bool state;

 bool previousState;

 previousState = digitalRead(pin); // store switch state

 for(int counter=0; counter < debounceDelay; counter++)

 {

 delay(1); // wait for 1 ms

 state = digitalRead(pin); // read the pin

 if(state != previousState)

 {

 counter = 0; // reset the counter if the state changes

 previousState = state; // and save the current state

 }

 }

 // here when the switch state has been stable longer than the debounce

period

 return state;

}

void setup()

{

 pinMode(inputPin, INPUT);

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 bool button_state = debounce(inputPin);

 // If the button state changed and the button was pressed

 if (last_button_state != button_state && button_state == HIGH) {

 // Toggle the LED

 ledState = !ledState;

 digitalWrite(LED_BUILTIN, ledState);

 }

 last_button_state = button_state;

}

When you want to reliably check for a button press, you should call the
debounce function with the pin number of the switch you want to
debounce; the function returns HIGH if the switch is pressed and stable. It
returns LOW if it is not pressed or not yet stable.

Discussion

The debounce method checks to see if it gets the same reading from the
switch after a delay that needs to be long enough for the switch contacts to
stop bouncing. You may require more iterations for “bouncier” switches
(some switches can require as much as 50 ms or more). The function works
by repeatedly checking the state of the switch as many times as defined in
the debounceDelay time. If the switch remains stable throughout that time
period, the state of the switch will be returned (HIGH if pressed and LOW if
not). In a boolean context such as an if statement, HIGH evaluates to true
and LOW to false. If the switch state changes within the debounce period, the
counter is reset so that the checks start over until the switch state does not
change within the debounce time.

NOTE
Although debounceDelay is defined as 10, and there is a delay of 1 ms per iteration, the actual
length of the delay may be higher than 10 ms for two reasons. First (depending on the speed of
your board), all the other operations in the loop take measurable time to complete, which adds to
the delay. Second, if the state of the switch changes within the loop, the counter is reset to 0.

In the loop function, this sketch repeatedly checks the state of the button. If
the button state changes (from HIGH to LOW or vice versa), and if the button
state is HIGH (pressed), the sketch toggles the state of the LED. So if you
press the button once, the LED is turned on. Press it a second time, and the
LED will turn off.

If your wiring uses pull-up resistors instead of pull-down resistors (see
Recipe 5.2) you need to invert the value returned from the debounce
function, because the state goes LOW when the switch is pressed using pull-
ups, but the function should return true (true is equivalent to HIGH) when
the switch is pressed. The debounce code using pull-ups is as follows; only
the last four lines (highlighted) are changed from the previous version:

bool debounce(int pin)

{

 bool state;

 bool previousState;

 previousState = digitalRead(pin); // store switch state

 for(int counter=0; counter < debounceDelay; counter++)

 {

 delay(1); // wait for 1 ms

 state = digitalRead(pin); // read the pin

 if(state != previousState)

 {

 counter = 0; // reset the counter if the state changes

 previousState = state; // and save the current state

 }

 }

 // here when the switch state has been stable longer than the debounce

period

 if(state == LOW) // LOW means pressed (because pull-ups are used)

 return true;

 else

 return false;

}

For testing, you can add a count variable to display the number of presses.
If you view this on the Serial Monitor (see Chapter 4), you can see whether
it increments once per press. Increase the value of debounceDelay until the
count keeps step with the presses. The following fragment prints the value
of count when used with the debounce function shown earlier:

int count; // add this variable to store the number of presses

void setup()

{

 pinMode(inPin, INPUT);

 pinMode(LED_BUILTIN, OUTPUT);

 Serial.begin(9600); // add this to the setup function

}

void loop()

{

 bool button_state = debounce(inputPin);

 if (button_state)

 {

 count++; // increment count

 Serial.println(count); // display the count on the Serial Monitor

 }

 // If the button state changed and the button was pressed

 if (last_button_state != button_state && button_state == HIGH) {

 // Toggle the LED

 ledState = !ledState;

 digitalWrite(LED_BUILTIN, ledState);

 }

 last_button_state = button_state;

}

This debounce() function will work for any number of switches, but you
must ensure that the pins used are in input mode.

A potential disadvantage of this method for some applications is that from
the time the debounce function is called, everything waits until the switch
is stable. In most cases this doesn’t matter, but your sketch may need to be
attending to other things while waiting for your switch to stabilize. You can
use the code shown in Recipe 5.4 to overcome this problem.

See Also
See the Debounce example sketch distributed with Arduino. From the File
menu, select Examples→Digital→Debounce.

5.4 Determining How Long a Switch Is
Pressed
Problem
Your application wants to detect the length of time a switch has been in its
current state. Or you want to increment a value while a switch is pushed and
you want the rate to increase the longer the switch is held (the way many
electronic clocks are set). Or you want to know if a switch has been pressed
long enough for the reading to be stable (see Recipe 5.3).

Solution

The following sketch demonstrates the setting of a countdown timer. The
wiring is the same as in Figure 5-5 from Recipe 5.2. Pressing a switch sets
the timer by incrementing the timer count; releasing the switch starts the
countdown. The code debounces the switch and accelerates the rate at
which the counter increases when the switch is held for longer periods. The
timer count is incremented by one when the switch is initially pressed (after
debouncing). Holding the switch for more than one second increases the
increment rate by four; holding the switch for four seconds increases the
rate by 10. Releasing the switch starts the countdown, and when the count
reaches zero, a pin is set HIGH (in this example, lighting an LED):

/*

 SwitchTime sketch

 Countdown timer that decrements every tenth of a second

 lights an LED when 0

 Pressing button increments count, holding button down increases

 rate of increment

 */

const int ledPin = LED_BUILTIN; // the number of the output pin

const int inPin = 2; // the number of the input pin

const int debounceTime = 20; // the time in milliseconds required

 // for the switch to be stable

const int fastIncrement = 1000; // increment faster after this many

 // milliseconds

const int veryFastIncrement = 4000; // and increment even faster after

 // this many milliseconds

int count = 0; // count decrements every tenth of a

 // second until reaches 0

void setup()

{

 pinMode(inPin, INPUT_PULLUP);

 pinMode(ledPin, OUTPUT);

 Serial.begin(9600);

}

void loop()

{

 int duration = switchTime();

 if(duration > veryFastIncrement)

 {

 count = count + 10;

 }

 else if (duration > fastIncrement)

 {

 count = count + 4;

 }

 else if (duration > debounceTime)

 {

 count = count + 1;

 }

 else

 {

 // switch not pressed so service the timer

 if(count == 0)

 {

 digitalWrite(ledPin, HIGH); // turn the LED on if the count is 0

 }

 else

 {

 digitalWrite(ledPin, LOW); // turn the LED off if the count is not 0

 count = count - 1; // and decrement the count

 }

 }

 Serial.println(count);

 delay(100);

}

// return the time in milliseconds that the switch has been pressed (LOW)

long switchTime()

{

 // these variables are static - see Discussion for an explanation

 static unsigned long startTime = 0; // when switch state change was detected

 static bool state; // the current state of the switch

 if(digitalRead(inPin) != state) // check to see if switch has changed state

 {

 state = ! state; // yes, invert the state

 startTime = millis(); // store the time

 }

 if(state == LOW)

 {

 return millis() - startTime; // switch pushed, return time in

milliseconds

 }

 else

 {

 return 0; // return 0 if the switch is not pushed (in the HIGH state);

 }

}

Discussion
The heart of this recipe is the switchTime function. This returns the
number of milliseconds that the switch has been pressed. Because this
recipe uses internal pull-up resistors (see Recipe 5.2), the digitalRead of
the switch pin will return LOW when the switch is pressed.

The loop checks the value returned from switchTime to see what should
happen. If the time the switch has been held down is long enough for the
fastest increment, the counter is incremented by that amount; if not, it
checks the fast value to see if that should be used; if not, it checks if the
switch has been held down long enough to stop bouncing and if so, it
increments a small amount. At most, one of those will happen. If none of
them are true, the switch is not being pressed, or it has not been pressed
long enough to have stopped bouncing. The counter value is checked and an
LED is turned on if it is zero; if it’s not zero, the counter is decremented and
the LED is turned off.

You can use the switchTime function just for debouncing a switch. The
following code handles debounce logic by calling the switchTime function:

// the time in milliseconds that the switch needs to be stable

const int debounceTime = 20;

if(switchTime() > debounceTime)

{

 Serial.print("switch is debounced");

}

This approach to debouncing can be handy if you have more than one
switch, because you can peek in and look at the amount of time a switch has
been pressed and process other tasks while waiting for a switch to become
stable. To implement this, you need to store the current state of the switch
(pressed or not) and the time the state last changed. There are many ways to
do this—in this example, you will use a separate function for each switch.
You could store the variables associated with all the switches at the top of
your sketch as global variables (called “global” because they are accessible

everywhere). But it is more convenient to have the variables for each switch
contained with the function.

To retain the values of variables defined in the function, this sketch uses
static variables. Static variables within a function provide permanent
storage for values that must be maintained between function calls. A value
assigned to a static variable is retained even after the function returns. The
last value set will be available the next time the function is called. In that
sense, static variables are similar to the global variables (variables declared
outside a function, usually at the beginning of a sketch) that you saw in the
other recipes. But unlike global variables, static variables declared in a
function are only accessible within that function. The benefit of static
variables is that they cannot be accidentally modified by some other
function.

This sketch shows an example of how you can add separate functions for
different switches. The wiring for this is similar to Recipe 5.2, with the
second switch wired similarly to the first (as shown in Figure 5-5) but
connected between pin 3 and GND:

/*

 SwitchTimeMultiple sketch

 Prints how long more than one switch has been pressed

 */

const int switchAPin = 2; // the pin for switch A

const int switchBPin = 3; // the pin for switch B

void setup()

{

 pinMode(switchAPin, INPUT_PULLUP);

 pinMode(switchBPin, INPUT_PULLUP);

 Serial.begin(9600);

}

void loop()

{

 unsigned long timeA;

 unsigned long timeB;

 timeA = switchATime();

 timeB = switchBTime();

 if (timeA > 0 || timeB > 0)

 {

 Serial.print("switch A time=");

 Serial.print(timeA);

 Serial.print(", switch B time=");

 Serial.println(timeB);

 }

}

unsigned long switchTime(int pin, bool &state, unsigned long &startTime)

{

 if(digitalRead(pin) != state) // check to see if the switch has changed

state

 {

 state = ! state; // yes, invert the state

 startTime = millis(); // store the time

 }

 if(state == LOW)

 {

 return millis() - startTime; // return the time in milliseconds

 }

 else

 {

 return 0; // return 0 if the switch is not pushed (in the HIGH state);

 }

}

long switchATime()

{

 // these variables are static - see text for an explanation

 // the time the switch state change was first detected

 static unsigned long startTime = 0;

 static bool state; // the current state of the switch

 return switchTime(switchAPin, state, startTime);

}

long switchBTime()

{

 // these variables are static - see text for an explanation

 // the time the switch state change was first detected

 static unsigned long startTime = 0;

 static bool state; // the current state of the switch

 return switchTime(switchBPin, state, startTime);

}

The sketch performs its time calculation in a function called switchTime().
This function examines and updates the switch state and duration. The
function uses references to handle the parameters—references were covered
in Recipe 2.11. A function for each switch (switchATime() and
switchBTime()) is used to retain the start time and state for each switch.
Because the variables holding the values are declared as static, the values
will be retained when the functions exit. Holding the variables within the
function ensures that the wrong variable will not be used. The pins used by
the switches are declared as global variables because the values are needed
by setup to configure the pins. But because these variables are declared
with the const keyword, the compiler will not allow the values to be
modified, so there is no chance that these will be accidentally changed by
the sketch code.

TIP
Limiting the exposure of a variable becomes more important as projects become more complex.
The Arduino environment provides a more elegant way to handle this; see Recipe 16.4 for a
discussion on how to implement this using classes.

Within loop, the sketch checks to see how long the button was held down.
If either button was held down for more than zero milliseconds, the sketch
prints the time that each switch was held. If you open the Serial Monitor
and hold down either or both buttons, you’ll see the time values increase
and scroll by. If you release both buttons, the switchTime function returns
zero, so the sketch stops printing output until you press one or both again.

5.5 Reading a Keypad
Problem
You have a matrix keypad and want to read the key presses in your sketch.
For example, you have a telephone-style keypad similar to the Adafruit 12-
button keypad (Adafruit ID: 419)

Solution
Wire the rows and columns from the keypad connector to the Arduino, as
shown in Figure 5-6.

Connecting the keyboard matrix

If you’ve wired your Arduino and keypad as shown in Figure 5-6, the
following sketch will print key presses to the Serial Monitor:

/*

 Keypad sketch

 prints the key pressed on a keypad to the serial port

*/

const int numRows = 4; // number of rows in the keypad

const int numCols = 3; // number of columns

const int debounceTime = 20; // number of milliseconds for switch to be stable

// keymap defines the character returned when the corresponding key is pressed

const char keymap[numRows][numCols] = {

 { '1', '2', '3' } ,

 { '4', '5', '6' } ,

 { '7', '8', '9' } ,

 { '*', '0', '#' }

};

// this array determines the pins used for rows and columns

const int rowPins[numRows] = {8, 7, 6, 5}; // Rows 0 through 3

const int colPins[numCols] = {4, 3, 2}; // Columns 0 through 2

void setup()

{

 Serial.begin(9600);

 for (int row = 0; row < numRows; row++)

 {

 pinMode(rowPins[row],INPUT_PULLUP); // Set row pins as input with pullups

 }

 for (int column = 0; column < numCols; column++)

 {

 pinMode(colPins[column],OUTPUT); // Set column pins as outputs

 digitalWrite(colPins[column],HIGH); // Make all columns inactive

 }

}

void loop()

{

 char key = getKey();

 if(key != 0) { // if the character is not 0 then it's a valid key press

 Serial.print("Got key ");

 Serial.println(key);

 }

}

// returns the key pressed, or zero if no key is pressed

char getKey()

{

 char key = 0; // 0 indicates no key pressed

 for(int column = 0; column < numCols; column++)

 {

 digitalWrite(colPins[column],LOW); // Activate the current column.

 for(int row = 0; row < numRows; row++) // Scan all rows for key press

 {

 if(digitalRead(rowPins[row]) == LOW) // Is a key pressed?

 {

 delay(debounceTime); // debounce

y(); //

 while(digitalRead(rowPins[row]) == LOW)

 ; // wait for key to be released

 key = keymap[row][column]; // Remember which key

 // was pressed.

 }

 }

 digitalWrite(colPins[column],HIGH); // De-activate the current column.

 }

 return key; // returns the key pressed or 0 if none

}

This sketch will only work correctly if the wiring agrees with the code.
Table 5-2 shows how the rows and columns should be connected to
Arduino pins. If you are using a different keypad, check your datasheet to
determine the row and column connections. Check carefully, as incorrect
wiring can short out the pins, and that could damage your controller chip.

Mapping of Arduino pins to keypad rows and
columns

Arduino pin Keypad connector Keypad row/column

2 7 Column 2

3 6 Column 1

4 5 Column 0

5 4 Row 3

6 3 Row 2

7 2 Row 1

8 1 Row 0

Discussion
Matrix keypads typically consist of Normally Open switches that connect a
row with a column when pressed. (A Normally Open switch only makes an
electrical connection when pushed.) Figure 5-6 shows how the internal
conductors connect the button rows and columns to the keyboard connector.

Each of the four rows is connected to an input pin and each column is
connected to an output pin. The setup function sets the pin modes to enable
pull-up resistors on the input pins (see the pull-up recipes in the beginning
of this chapter).

The getkey function sequentially sets the pin for each column LOW and then
checks to see if any of the row pins are LOW. Because pull-up resistors are
used, the rows will be HIGH (pulled up) unless a switch is closed (closing a
switch produces a LOW signal on the input pin). If they are LOW, this
indicates that the switch for that row and column is closed. A delay is used
to ensure that the switch is not bouncing (see Recipe 5.3); the code waits for
the switch to be released, and the character associated with the switch is
found in the keymap array and returned from the function. A 0 is returned if
no switch is pressed.

The Keypad library for Arduino makes it easier to handle a different
number of keys and can be made to work while sharing some of the pins
with an LCD character display. It is available in the Arduino Library
Manager (see Recipe 16.2 for instructions on installing libraries).

See Also
More information on the Adafruit 12-button keypad

5.6 Reading Analog Values
Problem
You want to read the voltage on an analog pin. Perhaps you want a reading
from a potentiometer (pot), a variable resistor, or a sensor that provides a
varying voltage.

Solution
This sketch reads the voltage on an analog pin (A0) and flashes an LED at a
proportional rate to the value returned from the analogRead function. The

https://oreil.ly/FVuL_
https://oreil.ly/yD8Lh

voltage is adjusted by a potentiometer connected as shown in Figure 5-7:

/*

 Pot sketch

 blink an LED at a rate set by the position of a potentiometer

*/

const int potPin = A0; // select the input pin for the potentiometer

const int ledPin = LED_BUILTIN; // select the pin for the LED

int val = 0; // variable to store the value coming from the sensor

void setup()

{

 pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT

}

void loop() {

 val = analogRead(potPin); // read the voltage on the pot

 digitalWrite(ledPin, HIGH); // turn the ledPin on

 delay(val); // blink rate set by pot value (in milliseconds)

 digitalWrite(ledPin, LOW); // turn the ledPin off

 delay(val); // turn led off for same period as it was turned

on

}

WARNING
If your board is not 5V tolerant, do not connect the potentiometer to 5V even if your board has a
5V power pin. Many boards that are not 5V tolerant have a 5V power pin that draws power
directly from the USB power. This pin can be used to power devices that require 5V to run, but
you must be careful to never connect a 5V output to a pin that can tolerate no more than 3.3V. You
should connect the potentiometer to the 3.3V pin on the board instead.

Connecting a potentiometer to Arduino

Discussion
This sketch uses the analogRead function to read the voltage on the
potentiometer’s wiper (the center pin). A pot has three pins; two are
connected to a resistive material and the third pin (usually in the middle) is
connected to a wiper that can be rotated to make contact anywhere on the
resistive material. As the potentiometer rotates, the resistance between the
wiper and one of the pins increases, while the other decreases. The
schematic diagram for this recipe (Figure 5-7) may help you visualize how
a potentiometer works; as the wiper moves toward the bottom end, the
wiper (the line with the arrow) will have lower resistance connecting to
GND and higher resistance connecting to 5 volts (or 3.3 volts, depending on
your board). As the wiper moves down, the voltage on the analog pin will
decrease (to a minimum of 0 volts). Moving the wiper upward will have the
opposite effect, and the voltage on the pin will increase (up to a maximum
of 5 or 3.3 volts).

TIP
If the voltage on the pin decreases, rather than increases, as you increase the rotation of the
potentiometer, you need to reverse the connections to the 5V and GND pins.

The voltage is measured using analogRead, which provides a value
proportional to the actual voltage on the analog pin. The value will be 0
when the voltage on the pin is 0 and 1,023 when the voltage is at 5V (or
3.3V for a 3.3V board such as most 32-bit boards). A value in between will
be proportional to the ratio of the voltage on the pin to 5 (or 3.3, depending
on your board) volts.

Potentiometers with a value of 10K ohms are the best choice for connecting
to analog pins.

NOTE
potPin does not need to be set as input. (This is done for you automatically each time you call
analogRead.)

See Also
Appendix B for tips on reading schematic diagrams

This Arduino reference for analogRead

Getting Started with Arduino by Massimo Banzi and Michael Shiloh (Make
Community)

5.7 Changing the Range of Values
Problem
You want to change the range of a value, such as the value from
analogRead obtained by connecting a potentiometer (pot) or other device

https://oreil.ly/TNayy
http://shop.oreilly.com/product/0636920029267.do

that provides a variable voltage. For example, suppose you want to display
the position of a potentiometer knob as a percentage from 0% to 100%.

Solution
Use the Arduino map function to scale values to the range you want. This
sketch reads the voltage on a pot into the variable val and scales this from 0
to 100 as the pot is rotated from one end to the other. It blinks an LED with
a rate proportional to the voltage on the pin and prints the scaled range to
the serial port (see Recipe 4.2 for instructions on monitoring the serial port).
Recipe 5.6 shows how the pot is connected (see Figure 5-7):

/*

 * Map sketch

 * map the range of analog values from a pot to scale from 0 to 100

 * resulting in an LED blink rate ranging from 0 to 100 ms.

 * and Pot rotation percent is written to the serial port

 */

const int potPin = A0; // select the input pin for the potentiometer

int ledPin = LED_BUILTIN; // select the pin for the LED

void setup()

{

 pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT

 Serial.begin(9600);

}

void loop() {

 int val; // The value coming from the sensor

 int percent; // The mapped value

 val = analogRead(potPin); // read the voltage on the pot (val ranges

 // from 0 to 1023)

 percent = map(val,0,1023,0,100); // percent will range from 0 to 100.

 digitalWrite(ledPin, HIGH); // turn the ledPin on

 delay(percent); // On time given by percent value

 digitalWrite(ledPin, LOW); // turn the ledPin off

 delay(100 - percent); // Off time is 100 minus On time

 Serial.println(percent); // show % of pot rotation on Serial Monitor

}

Discussion
Recipe 5.6 describes how the position of a pot is converted to a value. Here
you use this value with the map function to scale the value to your desired
range. In this example, the value provided by analogRead (0 to 1023) is
mapped to a percentage (0 to 100). This percentage is used to set the LED’s
duty cycle. Duty cycle is the percentage of time that the LED is active,
measured over a duration called the period, which is 100 ms. The time that
the LED is off is calculated by subtracting the duty cycle from 100. So, if
the analog reading is 620, it will be scaled to 60 by map. The LED will then
be turned on for 60 ms, and turned off for 40 ms (100–60).

The values from analogRead range from 0 to 1023 if the voltage ranges
from 0 to 5 volts (3.3 volts on 3.3-volt boards), but you can use any
appropriate values for the source and target ranges. For example, a typical
pot only rotates 270 degrees from end to end, and if you wanted to display
the angle of the knob on your pot, you could use this code:

int angle = map(val,0,1023,0,270); // angle of pot derived from analogRead val

Range values can also be negative. If you want to display 0 when the pot is
centered and negative values when the pot is rotated left and positive values
when it is rotated right, you can do this:

>

// show angle of 270 degree pot with center as 0

angle = map(val,0,1023,-135,135);

The map function can be handy where the input range you are concerned
with does not start at zero. For example, if you have a battery where the
available capacity is proportional to a voltage that ranges from 1.1 volts to
1.5 volts, you can do the following:

const int board_voltage = 5.0; // Set to 3.3 on boards that use 3.3 volt logic

const int empty = 1.1/(5.0/1023.0); // voltage is 1.1V (1100mv) when empty

const int full = 1.5/(5.0/1023.0); // voltage is 1.5V (1500mv) when full

int val = analogRead(potPin); // read the analog voltage

int percent = map(val, empty, full, 0,100); // map the voltage to a percent

Serial.println(percent);

If you are using sensor readings with map, you will need to determine the
minimum and maximum values from your sensor. You can monitor the
reading on the serial port to determine the lowest and highest values. Enter
these as the lower and upper bound into the map function.

If the range can’t be determined in advance, you can determine the values
by calibrating the sensor. Recipe 8.11 shows one technique for calibration;
another can be found in the Calibration examples sketch distributed with
Arduino (Examples→Analog→Calibration).

Bear in mind that if you feed values into map that are outside the upper and
lower limits, the output will also be outside the specified output range. You
can prevent this from happening by using the constrain function; see
Recipe 3.5.

NOTE
map uses integer math, so it will only return whole numbers in the range specified. Any fractional
element is truncated, not rounded.

(See Recipe 5.9 for more details on how analogRead values relate to actual
voltage.)

See Also
The Arduino reference for map

5.8 Reading More than Six Analog Inputs
Problem

https://oreil.ly/CE9TM

You have more analog inputs to monitor than you have available analog
pins. A standard Arduino board has six analog inputs (the Mega has 16) and
there may not be enough analog inputs available for your application.
Perhaps you want to adjust eight parameters in your application by turning
knobs on eight potentiometers.

Solution
Use a multiplexer chip to select and connect multiple voltage sources to one
analog input. By sequentially selecting from multiple sources, you can read
each source in turn. This recipe uses the popular 4051 chip connected to
Arduino as shown in Figure 5-8. Connect your analog inputs (such as a pot
or resistive sensor) to the 4051 pins marked Ch 0 to Ch 7. Make sure the
voltage on the channel input pins is never higher than 5 volts. If you are not
using an input pin, you must connect it to ground with a 10K resistor:

/*

 * multiplexer sketch

 * read 1 of 8 analog values into single analog input pin with 4051

multiplexer

 */

// array of pins used to select 1 of 8 inputs on multiplexer

const int select[] = {2,3,4}; // pins connected to the 4051 input select lines

const int analogPin = A0; // the analog pin connected to multiplexer

output

// this function returns the analog value for the given channel

int getValue(int channel)

{

 // set the selector pins HIGH and LOW to match the binary value of channel

 for(int bit = 0; bit < 3; bit++)

 {

 int pin = select[bit]; // the pin wired to the multiplexer select bit

 int isBitSet = bitRead(channel, bit); // true if given bit set in

channel

 digitalWrite(pin, isBitSet);

 }

 return analogRead(analogPin);

}

void setup()

{

 for(int bit = 0; bit < 3; bit++)

 {

 pinMode(select[bit], OUTPUT); // set the three select pins to output

 }

 Serial.begin(9600);

}

void loop () {

 // print the values for each channel once per second

 for(int channel = 0; channel < 8; channel++)

 {

 int value = getValue(channel);

 Serial.print("Channel ");

 Serial.print(channel);

 Serial.print(" = ");

 Serial.println(value);

 }

 delay (1000);

}

The 4051 multiplexer connected to Arduino

Discussion

Analog multiplexers are digitally controlled analog switches. The 4051
selects one of eight inputs through three selector pins (S0, S1, and S2).
There are eight different combinations of values for the three selector pins,
and the sketch sequentially selects each of the possible bit patterns; see
Table 5-3.

You must connect the ground from the devices you are measuring to the
ground on the 4051 and Arduino. In order to read values accurately, they
must have a common ground. If you are planning on powering all the
devices from a 5V or 3.3V pin on your board, be sure that your power draw
does not exceed either the maximum power from your power supply or the
maximum power that the pin is capable of delivering (whichever is lower).
For example, the Arduino Uno’s 5V pin can safely deliver 900 mA when it
is being powered by an external power supply (400 mA max on USB
power). But if you are using a 500 mA power supply, then the maximum
you can draw is less than 500 mA because the microcontroller, LEDs, and
other components draw power as well. This is a best-case maximum, so you
should stay below that. You may need to dig into the documentation for
your board, and possibly the datasheet for its microcontroller and voltage
regulator to confirm the limits. If you find that your total current draw is
taking you anywhere near the limit, use a separate power supply for the
devices you are connecting.

Truth table for 4051
multiplexer

Selector pins Input channel

S2 S1 S0

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

Selector pins Input channel

1 0 1 5

1 1 0 6

1 1 1 7

You may recognize the pattern in Table 5-3 as the binary representation of
the decimal values from 0 to 7.

In the Solution sketch, getValue() is the function that sets the correct
selector bits for the given channel using digitalWrite(pin, isBitSet)
and reads the analog value from the selected 4051 input with
analogRead(analogPin). The code to produce the bit patterns uses the
built-in bitRead function (see Recipe 3.12).

Bear in mind that this technique selects and monitors the eight inputs
sequentially, so it requires more time between the readings on a given input
compared to using analogRead directly. If you are reading eight inputs, it
will take eight times longer for each input to be read. This may make this
method unsuitable for inputs that change value quickly.

See Also
The Arduino Playground tutorial for the 4051

The 74HC4051 datasheet

5.9 Measuring Voltages Up to 5V
Problem
You want to monitor and display the value of a voltage between 0 and 5
volts. For example, suppose you want to display the voltage of a single
1.5V cell on the Serial Monitor.

Solution

https://oreil.ly/2wM2x
https://oreil.ly/ikGzY

Use AnalogRead to measure the voltage on an analog pin. Convert the
reading to a voltage by using the ratio of the reading to the reference
voltage (5 volts), as shown in Figure 5-9.

Measuring voltages up to 5 volts using 5V board

Measuring Analog Voltages on ESP8266 Boards
If you are using an ESP8266-based board, you may be limited to voltages in the range of 0 to 1
volt. Some ESP8266-based boards have built-in voltage dividers that allow you to read up to 3.3V
(the ESP8266 itself runs at 3.3 volts), so be sure to check the documentation for your board.
Without a voltage divider, the ESP8266 analog input pins max out at 1V. (See Recipe 5.11.)

The simplest solution uses a floating-point calculation to print the voltage;
this example sketch calculates and prints the ratio as a voltage:

/*

 * Display5vOrless sketch

 * prints the voltage on analog pin to the serial port

 * Warning - do not connect more than 5 volts directly to an Arduino pin.

 */

const float referenceVolts = 5.0; // the default reference on a 5-volt board

const int batteryPin = A0; // battery is connected to analog pin 0

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 int val = analogRead(batteryPin); // read the value from the sensor

 float volts = (val / 1023.0) * referenceVolts; // calculate the ratio

 Serial.println(volts); // print the value in volts

}

The formula is:

volts = (analog reading / analog steps) × reference voltage

Printing a floating-point value to the serial port with println will format
the value to two decimal places.

NOTE
Make the following change if you are using a board that uses 3.3V logic:

const float referenceVolts = 3.3;

Floating-point numbers consume lots of memory, so unless you are already
using floating point elsewhere in your sketch, it is more efficient to use
integer values. The following code looks a little strange at first, but because
analogRead returns a value of 1023 for 5 volts, each step in value will be 5
divided by 1,023. In units of millivolts, this is 5,000 divided by 1,023.

This code prints the value in millivolts:

const int batteryPin = A0;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 long val = analogRead(batteryPin); // read the value from the sensor -

 // note val is a long int

 Serial.println((val * (500000/1023L)) / 100); // the value in millivolts

}

TIP
If you are using a 3.3V board, change (500000/1023L) to (330000/1023L).

The following code prints the value using decimal points. It prints 1.5 if the
voltage is 1.5 volts:

const int batteryPin = A0;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 int val = analogRead(batteryPin); // read the value from the sensor

 long mv = (val * (500000/1023L)) / 100; // calculate the value in

millivolts

 Serial.print(mv/1000); // print the integer portion of the voltage

 Serial.print('.');

 int fraction = (mv % 1000); // calculate the fraction

 if (fraction == 0)

 {

 Serial.print("000"); // add three zeros

 }

 else if (fraction < 10) // if fractional < 10 the 0 is ignored giving a

wrong

 // time, so add the zeros

 {

 Serial.print("00"); // add two zeros

 }

 else if (fraction < 100)

 {

 Serial.print("0");

 }

 Serial.println(fraction); // print the fraction

}

Discussion
The analogRead() function returns a value that is proportional to the ratio
of the measured voltage to the reference voltage (5 volts on an Uno). To
avoid the use of floating point yet maintain precision, the code operates on
values as millivolts instead of volts (there are 1,000 millivolts in 1 volt).
Because a value of 1023 indicates 5,000 millivolts, each unit represents
5,000 divided by 1,023 millivolts (that is, 4.89 millivolts).

NOTE
You will see both 1,023 and 1,024 used for converting analogRead values to millivolts. 1,024 is
commonly used by engineers because there are 1,024 possible values between 0 and 1,023.
However, 1,023 is more intuitive for some because the highest possible value is 1,023. In practice,
the hardware inaccuracy is greater than the difference between the calculations, so choose
whichever value you feel more comfortable with.

To eliminate the decimal point, the values are multiplied by 100. In other
words, 5,000 millivolts times 100 divided by 1,023 gives the number of
millivolts times 100. Dividing this by 100 yields the value in millivolts. If
multiplying fractional numbers by 100 to enable the compiler to perform
the calculation using fixed-point arithmetic seems convoluted, you can stick
to the slower and more memory-hungry floating-point method.

This solution assumes you are using an Arduino Uno or similar 8-bit board
that uses 5-volt logic. If you are using a 3.3V board, the maximum voltage
you can measure is 3.3 volts without using a voltage divider—see Recipe
5.11.

5.10 Responding to Changes in Voltage
Problem
You want to monitor one or more voltages and take some action when the
voltage rises or falls below a threshold. For example, you want to flash an
LED to indicate a low battery level—perhaps to start flashing when the
voltage drops below a warning threshold and increasing in urgency as the
voltage drops further.

Solution
You can use the connections shown in Figure 5-7 in Recipe 5.9, but here
we’ll compare the value from analogRead to see if it drops below a
threshold. This example starts flashing an LED at 1.2 volts and increases
the on-to-off time as the voltage decreases below the threshold. If the
voltage drops below a second threshold, the LED stays lit:

/*

 * RespondingToChanges sketch

 * flash an LED to indicate low voltage levels

 */

long batteryFull = 1500; // millivolts for a full battery

long warningThreshold = 1200; // Warning level in millivolts - LED flashes

long criticalThreshold = 1000; // Critical voltage level - LED stays on

const int batteryPin = A0;

const int ledPin = LED_BUILTIN;

void setup()

{

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 int val = analogRead(batteryPin); // read the value from the sensor

 int mv = map(val, 0, 1023, 0, 5000);

 if(mv < criticalThreshold) {

 digitalWrite(ledPin, HIGH);

 }

 else if (mv < warningThreshold) {

(g) {

 int blinkDelay = map(mv, criticalThreshold, batteryFull, 0, 250);

 flash(blinkDelay);

 }

 else

 {

 digitalWrite(ledPin, LOW);

 }

 delay(1);

}

// function to flash an led with specified on/off time

void flash(int blinkDelay)

{

 digitalWrite(ledPin, HIGH);

 delay(blinkDelay);

 digitalWrite(ledPin, LOW);

 delay(blinkDelay);

}

Discussion
This sketch maps the value read from the analog port to the range of the
threshold voltage (0 to 5,000 millivolts). For example, with a warning
threshold of 1 volt and a reference voltage of 5 volts, you want to know
when the analog reading is one-fifth of the reference voltage. When the
value from analogRead returns 205, the map function will return 1,000
(1,000 millivolts = 1 volt).

When the voltage (mv) is below criticalThreshold, the LED stays on. If
it’s not, the sketch checks to see if the voltage is below warningThreshold.
If it is, the sketch then calculates the blink delay by mapping the voltage
(mv) to a value between 0 and 250. The closer the value is to
criticalThreshold, the lower the blink delay, so the LED blinks faster as
it approaches that threshold. If the voltage is above the warningThreshold,
the LED stays off.

5.11 Measuring Voltages More than 5V
(Voltage Dividers)

Problem
You want to measure voltages greater than 5 volts. For example, you want
to display the voltage of a 9V battery and trigger an alarm LED when the
voltage falls below a certain level.

Solution
Use a solution similar to Recipe 5.9, but connect the voltage through a
voltage divider (see Figure 5-10). For voltages up to 10 volts, you can use
two 4.7K ohm resistors. For higher voltages, you can determine the
required resistors using Table 5-4.

Resistor values

Max voltage R1 R2 Calculation R2/(R1 + R2) Value of resistorFactor

5 Shorta Noneb None 1023

10 1K 1K 1(1 + 1) 511

15 2K 1K 1(2 + 1) 341

20 3K 1K 1(3 + 1) 255

30 5K (5.1K) 1K 1(5 + 1) 170

+V connected to analog pin
No connection

a

b

Voltage divider for measuring voltages greater than 5 volts

Select the row with the highest voltage you need to measure to find the
values for the two resistors:

/*

 DisplayMoreThan5V sketch

 prints the voltage on analog pin to the serial port

 Do not connect more than 5 volts directly to an Arduino pin.

*/

const float referenceVolts = 5; // the default reference on a 5-volt

board

//const float referenceVolts = 3.3; // use this for a 3.3-volt board

const float R1 = 1000; // value for a maximum voltage of 10 volts

const float R2 = 1000;

// determine by voltage divider resistors, see text

const float resistorFactor = 1023.0 * (R2/(R1 + R2));

const int batteryPin = 0; // +V from battery is connected to analog pin 0

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 int val = analogRead(batteryPin); // read the value from the sensor

 float volts = (val / resistorFactor) * referenceVolts; // calculate the

ratio

 Serial.println(volts); // print the value in volts

}

Discussion
Like the previous analog recipes, this recipe relies on the fact that the
analogRead value is a ratio of the measured voltage to the reference. But
because the measured voltage is divided by the two dropping resistors, the
analogRead value needs to be multiplied to get the actual voltage. This
code is similar to that in Recipe 5.7, but the value read from the analog pin
is divided not by 1,023, but by the resistorFactor:

float volts = (val / resistorFactor) * referenceVolts ; // calculate the

ratio

The calculation used to produce the table is based on the following formula:
the output voltage is equal to the input voltage times R2 divided by the sum
of R1 and R2. In the example where two equal-value resistors are used to
drop the voltage from a 9V battery by half, resistorFactor is 511 (half of
1,023), so the value of the volts variable will be twice the voltage that
appears on the input pin. With resistors selected for 10 volts, the analog
reading from a 9V battery will be approximately 920.

WARNING
More than 5 volts on the pin (3.3V on 3.3V boards) can damage the pin and possibly destroy the
chip; double-check that you have chosen the right value resistors and wired them correctly before
connecting them to an Arduino input pin. If you have a multimeter, measure the voltage before
connecting anything that could possibly carry voltages higher than 5 volts.

Getting Input from Sensors

6.0 Introduction
Getting and using input from sensors enables Arduino to respond to or
report on the world around it. This is one of the most common tasks you
will encounter. This chapter provides simple and practical recipes for how
to use the most popular input devices and sensors. Wiring diagrams show
how to connect and power the devices, and code examples demonstrate how
to use data derived from the sensors.

Sensors respond to input from the physical world and convert this into an
electrical signal that Arduino can read on an input pin. The nature of the
electrical signal provided by a sensor depends on the kind of sensor and
how much information it needs to transmit. Some sensors (such as
photoresistors and Piezo knock sensors) are constructed from a substance
that alters its electrical properties in response to physical change. Others are
sophisticated electronic modules that use their own microcontroller to
process information before passing a signal on for the Arduino.

Sensors use the following methods to provide information:

Digital on/off
Some devices, such as the tilt sensor in Recipe 6.2 and the motion
sensor in Recipe 6.4, simply switch a voltage on and off. These can be
treated like the switch recipes shown in Chapter 5.

Analog
Other sensors provide an analog signal (a voltage that is proportional to
what is being sensed, such as temperature or light level). The recipes for
detecting light (Recipe 6.3), temperature (Recipe 6.9), and sound
(Recipe 6.8) demonstrate how analog sensors can be used. All of them
use the analogRead command that is discussed in Chapter 5.

Pulse width

Distance sensors, such as the PING))) in Recipe 6.5, provide data using
pulse duration proportional to the distance value. Applications using
these sensors measure the duration of a pulse using the pulseIn
command.

Serial
Some sensors provide values using a serial protocol. For example, the
GPS in Recipe 6.14 communicates through the Arduino serial port (see
Chapter 4 for more on serial). Most Arduino boards only have one
hardware serial port, so read Recipe 6.14 for an example of how you
can add additional software serial ports if you have multiple serial
sensors or the hardware serial port is occupied for some other task.

Synchronous protocols: I2C and SPI
The I2C and SPI digital serial communications interfaces were created
for processors and microcontrollers like Arduino to talk to external
sensors and modules. For example, Recipe 6.15 shows how a gyroscope
module is connected using I2C. These protocols are used extensively for
sensors, actuators, and peripherals, and they are covered in detail in
Chapter 13.

There is another generic class of sensing devices that you may make use of.
These are consumer devices that contain sensors but are sold as devices in
their own right, rather than as sensors. An example of this in this chapter is
a PS/2 mouse. These devices can be very useful; they provide sensors
already incorporated into robust and ergonomic devices. They are also
inexpensive (often less expensive than buying the raw sensors that they
contain), as they are mass-produced. You may have some of these lying
around.

If you are using a device that is not specifically covered in a recipe, check
the Arduino Library Manager to see if there is a library available for it (see
Recipe 16.2). If not, you may be able to adapt a recipe for a device that
produces a similar type of output. Information about a sensor’s output
signal is usually available from the company from which you bought the

device or from a datasheet for your device (which you can find through a
Google search of the device part number or description).

Datasheets are aimed at engineers designing products to be manufactured,
and they usually provide more detail than you need to just get the product
up and running. If you can’t find a datasheet at the component vendor’s
website, you can usually find it with a search engine by specifying the name
of the component and the word “datasheet.” The information on output
signal will usually be in a section referring to data format, interface, output
signal, or something similar. Don’t forget to check the maximum voltage
(usually in a section labeled Absolute Maximum Ratings) to ensure that you
don’t damage the component.

WARNING
Sensors designed for a maximum of 3.3 volts can be destroyed by connecting them to a voltage
above that, such as an output pin on an Arduino board that operates at a 5-volt logic level. Check
the absolute maximum rating for your device before connecting. If you need to connect a 5V
output to a 3.3V-tolerant input, you can use a voltage divider in most cases. See Recipe 5.11 for
more details on working with a voltage divider.

Reading sensors from the messy analog world is a mixture of science, art,
and perseverance. You may need to use ingenuity and trial and error to get a
successful result. A common problem is that the sensor just tells you a
physical condition has occurred, not what caused it. Putting the sensor in
the right context (location, range, orientation) and limiting its exposure to
things that you don’t want to activate it are skills you will acquire with
experience.

Another issue concerns separating the desired signal from background
noise; Recipe 6.7 shows how you can use a threshold to detect when a
signal is above a certain level, and Recipe 6.8 shows how you can take the
average of a number of readings to smooth out noise spikes.

See Also

For information on working with and connecting electronic components,
see Make: Electronics by Charles Platt (Make Community).

Making Things Talk by Tom Igoe (Make Community) addresses the
intersection of science, art, and perseverance in designing and
implementing sensor-based systems with Arduino.

See the introduction to Chapter 5 and Recipe 5.6 for more on reading
analog values from sensors.

6.1 You Want an Arduino with Many Built-in
Sensors
Problem
You want to use an Arduino with multiple sensors built in.

Solution
The Arduino Nano 33 BLE Sense is designed exactly for this type of
situation. It is very small, inexpensive, fast, and includes eight sensor
capabilities that are provided by a group of components built right into the
board. Table 6-1 lists the components, their capabilities, and the name of the
supporting library. Before you can use the Nano 33 BLE Sense, first open
the Arduino Boards Manager and install the Arduino nRF528x Boards
(Mbed OS) package (see Recipe 1.7). Next, install each of the libraries
listed in the Library name column using the Library Manager (see Recipe
16.2).

Nano 33 BLE Sense built-in sensors

Component Features Library name

Broadcom
APDS-9960

Gesture, Proximity, RGB Color Arduino_APDS9960

ST HTS221 Temperature, Relative Humidity Arduino_HTS221

ST LPS22HB Barometric Pressure Arduino_LPS22HB

http://shop.oreilly.com/product/9780596153755.do
http://shop.oreilly.com/product/0636920031369.do

Component Features Library name

ST
LSM9DS1

9DOF Inertial Measurement Unit (IMU):
accelerometer, gyroscope, magnetometer

Arduino_LSM9DS1

ST
MP34DT05

Digital microphone (Installed by default with Nano
33 BLE board package)

After you’ve installed support for the Nano 33 BLE Sense board and the
supporting libraries, use the Tools menu to configure the Arduino IDE to
use the Nano 33 BLE board and set the correct port. As of this writing, both
the Nano 33 BLE and Nano 33 BLE Sense use the same board setting in the
IDE (the Nano 33 BLE is the same as the Nano 33 BLE Sense, just without
all the cool sensors). Next, load the following sketch onto the board and
open the Serial Monitor:

/*

 * Arduino Nano BLE Sense sensor demo

 */

#include <Arduino_APDS9960.h>

#include <Arduino_HTS221.h>

#include <Arduino_LPS22HB.h>

#include <Arduino_LSM9DS1.h>

void setup() {

 Serial.begin(9600);

 while (!Serial);

 if (!APDS.begin()) { // Initialize gesture/color/proximity sensor

 Serial.println("Could not initialize APDS9960.");

 while (1);

 }

 if (!HTS.begin()) { // Initialize temperature/humidity sensor

 Serial.println("Could not initialize HTS221.");

 while (1);

 }

 if (!BARO.begin()) { // Initialize barometer

 Serial.println("Could not initialize LPS22HB.");

 while (1);

 }

 if (!IMU.begin()) { // Initialize inertial measurement unit

 Serial.println("Could not initialize LSM9DS1.");

 while (1);

 }

 prompt(); // Tell users what they can do.

}

void loop() {

 // If there's a gesture, run the appropriate function.

 if (APDS.gestureAvailable()) {

 int gesture = APDS.readGesture();

 switch (gesture) {

 case GESTURE_UP:

 readTemperature();

 break;

 case GESTURE_DOWN:

 readHumidity();

 break;

 case GESTURE_LEFT:

 readPressure();

 break;

 case GESTURE_RIGHT:

 Serial.println("Spin the gyro!\nx, y, z");

 for (int i = 0; i < 10; i++)

 {

 readGyro();

 delay(250);

 }

 break;

 default:

 break;

 }

 prompt(); // Show the prompt again

 }

}

void prompt() {

 Serial.println("\nSwipe!");

 Serial.println("Up for temperature, down for humidity");

 Serial.println("Left for pressure, right for gyro fun.\n");

}

void readTemperature()

{

{

 float temperature = HTS.readTemperature(FAHRENHEIT);

 Serial.print("Temperature: "); Serial.print(temperature);

 Serial.println(" °F");

}

void readHumidity()

{

 float humidity = HTS.readHumidity();

 Serial.print("Humidity: "); Serial.print(humidity);

 Serial.println(" %");

}

void readPressure()

{

 float pressure = BARO.readPressure(PSI);

 Serial.print("Pressure: "); Serial.print(pressure);

 Serial.println(" psi");

}

void readGyro()

{

 float x, y, z;

 if (IMU.gyroscopeAvailable()) {

 IMU.readGyroscope(x, y, z);

 Serial.print(x); Serial.print(", ");

 Serial.print(y); Serial.print(", ");

 Serial.println(z);

 }

}

The Serial Monitor will display a prompt that tells you how you can interact
with the Arduino Nano 33 BLE Sense. To swipe in a given direction, hold
your hand over the top of the board and make a wiping motion. To swipe
up, wave your hand in a motion that moves from the board’s USB port up to
the u-blox module on the opposite end.

Discussion
The code in this recipe uses several of the sensors built into the Nano 33
BLE Sense: the gesture sensor (APDS-9960), the temperature/humidity
sensor (HTS221), the barometer (LPS22HB), and the gyroscope
(LSM9DS1). The setup function waits until the serial port is open, then it
initializes each of these devices, and if it encounters an error, it will display

an error message and hang by entering an endless loop with while(1);. At
the end of setup, the sketch calls the prompt routine, which displays
instructions on the Serial Monitor.

Within the loop, the sketch checks to see if the APDS-9960 has detected a
gesture. If so, it dispatches execution to a function that corresponds to the
desired sensor. Each of these functions reads the state of the sensor and
displays it on the Serial Monitor. For the gyroscope, the sketch prompts you
to spin the board around, and then enters a loop where it reads the gyro 10
times with a slight delay so you can see how the values change with your
motion.

See Also
Arduino has a forum dedicated to the Nano 33 BLE Sense. You may also
want to visit the forum for the Nano 33 BLE, which is a variant of the board
without all the built-in sensors.

Recipe 6.15 has more on using a gyroscope with Arduino.

Recipe 6.17 has more on accelerometers.

6.2 Detecting Movement
Problem
You want to detect when something is moved, tilted, or shaken.

Solution
This sketch uses a switch that closes a circuit when tilted, called a tilt
sensor. The switch recipes in Chapter 5 (Recipes 5.1 and 5.2) will work
with a tilt sensor substituted for the switch.

The following sketch (circuit shown in Figure 6-1) will switch on the LED
attached to pin 11 when the tilt sensor is tilted one way, and the LED
connected to pin 12 when it is tilted the other way:

https://oreil.ly/K7GoZ
https://oreil.ly/BGb2v

/*

 * tilt sketch

 *

 * a tilt sensor attached to pin 2 lights one of

 * the LEDs connected to pins 11 and 12 depending

 * on which way the sensor is tilted

 */

const int tiltSensorPin = 2; // pin the tilt sensor is connected to

const int firstLEDPin = 11; // pin for one LED

const int secondLEDPin = 12; // pin for the other

void setup()

{

 pinMode (tiltSensorPin, INPUT_PULLUP); // Tilt sensor connected to this pin

 pinMode (firstLEDPin, OUTPUT); // first output LED

 pinMode (secondLEDPin, OUTPUT); // and the second

}

void loop()

{

 if (digitalRead(tiltSensorPin) == LOW){ // The switch is on (upright)

 digitalWrite(firstLEDPin, HIGH); // Turn on the first LED

 digitalWrite(secondLEDPin, LOW); // and turn off the second.

 }

 else{ // The switch is off (tilted)

 digitalWrite(firstLEDPin, LOW); // Turn the first LED off

 digitalWrite(secondLEDPin, HIGH); // and turn on the second.

 }

}

Tilt sensor and LEDs

Discussion
The most common tilt sensor is a ball bearing in a tube with contacts at one
end. When the tube is tilted the ball rolls away from the contacts and the
connection is broken. When the tube is tilted to roll the other way, the ball
touches the contacts and completes a circuit. Markings, or pin
configurations, may show which way the sensor should be oriented. Tilt
sensors are sensitive to small movements of around 5 to 10 degrees when
oriented with the ball just touching the contacts. If you position the sensor
so that the ball bearing is directly above the contacts, the LED state will
only change if it is just turned over. This can be used to tell if something is
upright or upside down.

To determine if something is being shaken, you need to check how long it’s
been since the state of the tilt sensor changed (this recipe’s Solution just
checks if the switch was open or closed). If it hasn’t changed for a time you
consider significant, the object is not shaking. Changing the orientation of
the tilt sensor will change how vigorous the shaking needs to be to trigger
it. The following code lights the built-in LED when the sensor is shaken:

/*

 * shaken sketch

 * tilt sensor connected to pin 2

 * using the built-in LED

 */

const int tiltSensorPin = 2;

const int ledPin = LED_BUILTIN;

int tiltSensorPreviousValue = 0;

int tiltSensorCurrentValue = 0;

long lastTimeMoved = 0;

int shakeTime = 50;

void setup()

{

 pinMode (tiltSensorPin, INPUT_PULLUP);

 pinMode (ledPin, OUTPUT);

}

void loop()

{

 tiltSensorCurrentValue = digitalRead(tiltSensorPin);

 if (tiltSensorPreviousValue != tiltSensorCurrentValue)

 {

 lastTimeMoved = millis();

 tiltSensorPreviousValue = tiltSensorCurrentValue;

 }

 if (millis() - lastTimeMoved < shakeTime){

 digitalWrite(ledPin, HIGH);

 }

 else {

 digitalWrite(ledPin, LOW);

 }

}

Many mechanical switch sensors can be used in similar ways. A float
switch can turn on when the water level in a container rises to a certain
level (similar to the way a float valve works in a toilet cistern). A pressure
pad such as the one used in shop entrances can be used to detect when
someone stands on it. If your sensor turns a digital signal on and off,
something similar to this recipe’s sketch will be suitable.

See Also

Chapter 5 contains background information on using switches with
Arduino.

Recipe 12.1 has more on using the millis function to determine delay.

6.3 Detecting Light
Problem
You want to detect changes in light levels. You may want to detect a change
when something passes in front of a light detector or to measure the light
level—for example, detecting when a room is getting too dark.

Solution
The easiest way to detect light levels is to use a photoresistor, also known
as a light-dependent resistor (LDR). This changes resistance with changing
light levels, and when connected in the circuit shown in Figure 6-2 it
produces a change in voltage that the Arduino analog input pins can sense.

The sketch for this recipe is simple:

/*

 * Light sensor sketch

 *

 * Varies the blink rate based on the measured brightness

 */

const int ledPin = LED_BUILTIN; // Built-in LED

const int sensorPin = A0; // connect sensor to analog input 0

void setup()

{

 pinMode(ledPin, OUTPUT); // enable output on the led pin

}

void loop()

{

 int rate = analogRead(sensorPin); // read the analog input

 digitalWrite(ledPin, HIGH); // set the LED on

 delay(rate); // wait duration dependent on light level

 digitalWrite(ledPin, LOW); // set the LED off

 delay(rate);

}

NOTE
Photoresistors contain a compound (cadmium sulfide) that is a hazardous substance. A
phototransistor is a perfectly good alternative to a photoresistor. A phototransistor has a long lead
and a short lead, like an LED. You can wire it as shown in Figure 6-2, but you must connect the
long lead to 5V and the short lead to the resistor and pin 0. Be sure to buy a phototransistor, such
as Adafruit part number 2831, that can sense visible light so you can test it with a common light
source.

Connecting a light-dependent resistor

Discussion
The circuit for this recipe is the standard way to use any sensor that changes
its resistance based on some physical phenomenon (see Chapter 5 for
background information on responding to analog signals). With the circuit
in Figure 6-2, the voltage on analog pin 0 changes as the resistance of the
photoresistor (or phototransistor) changes with varying light levels.

https://oreil.ly/tUa__

A circuit such as this will not give the full range of possible values from the
analog input—0 to 1,023—as the voltage will not be swinging from 0 volts
to 5 volts. This is because there will always be a voltage drop across each
resistance, so the voltage where they meet will never reach the limits of the
power supply. When using sensors such as these, it is important to check the
actual values the device returns in the situation in which you will be using
it. Then you have to determine how to convert them to the values you need
to control whatever you are going to control. See Recipe 5.7 for more
details on changing the range of values.

The photoresistor is a simple kind of sensor called a resistive sensor. A
range of resistive sensors respond to changes in different physical
characteristics.

Arduino cannot measure resistance directly, so the Solution uses a fixed-
value resistor in combination with a resistive sensor to form a voltage
divider like you saw back in Recipe 5.11. The analog pins read voltage, not
resistance, so the only way for Arduino to measure resistance is if that
resistance is somehow changing a voltage. A voltage divider uses a pair of
resistors to produce an output voltage that is dependent on the relationship
between the input voltage and two resistors. So, you can combine a fixed-
value resistor with a component of variable resistance, such as a
photoresistor, and Arduino’s analog pin will see a voltage that changes
based on what the photoresistor is sensing.

Similar circuits will work for other kinds of simple resistive sensors,
although you may need to adjust the resistor to suit the sensor. Choosing the
best resistor value depends on the photoresistor you are using and the range
of light levels you want to monitor. Engineers would use a light meter and
consult the datasheet for the photoresistor, but if you have a multimeter, you
can measure the resistance of the photoresistor at a light level that is
approximately midway in the range of illumination you want to monitor.
Note the reading and choose the nearest convenient resistor to this value.
You can also read the values from Arduino, print it to the serial port, and
use the Serial Plotter to show the highs and lows (see Recipe 4.1).

Be aware of any artificial light sources in your environment that flicker on
and off at an unusual rate, such as neon or some LED lights. Even though
they turn off and on too quickly for a human to discern, these may register
as low-light conditions to an Arduino. You can adjust for this by taking a
moving average of the readings (you can see an example of this calculation
in Recipe 6.8).

See Also
This sketch was introduced in Recipe 1.6; see that recipe for more on this
and variations on this sketch.

6.4 Detecting Motion of Living Things
Problem
You want to detect when people or animals are moving near a sensor.

Solution
Use a motion sensor such as a Passive Infrared (PIR) sensor to change
values on a digital pin when a living creature (or an object that radiates
warmth) moves nearby.

Sensors such as the Adafruit PIR (motion) Sensor (part number 189) and
the Parallax PIR Sensor (555-28027) can be easily connected to Arduino
pins, as shown in Figure 6-3. Some PIR sensors, such as the SparkFun PIR
Motion Sensor (SEN-13285) require a pull-up resistor on the sensor’s
output. If you use the pull-up resistor, you will need to use the
INPUT_PULLUP mode and invert the logic in the sketch as described in the
Discussion.

Connecting a PIR motion sensor

Check the datasheet for your sensor to identify the correct pins. For
example, the Adafruit sensor has pins marked “OUT,” “-,” and “+” (for
Output, GND, and +5V) and the Parallax sensor is labeled GND, VCC, and
OUT.

The following sketch will light your board’s built-in LED when the sensor
detects motion:

/*

 PIR sketch

 a Passive Infrared motion sensor connected to pin 2

 lights the LED on the built-in LED

*/

const int ledPin = LED_BUILTIN; // choose the pin for the LED

const int inputPin = 2; // choose the input pin (for the PIR sensor)

void setup() {

 pinMode(ledPin, OUTPUT); // declare LED as output

 pinMode(inputPin, INPUT); // declare pin as input

}

void loop(){

 int val = digitalRead(inputPin); // read input value

 if (val == HIGH) // check if the input is HIGH

 {

 digitalWrite(ledPin, HIGH); // turn LED on if motion detected

 delay(500);

 digitalWrite(ledPin, LOW); // turn LED off

 }

}

Discussion
This code is similar to the pushbutton examples shown in Chapter 5. That’s
because the sensor acts like a switch when motion is detected. Different
kinds of PIR sensors are available, and you should check the information
for the one you have connected.

Some sensors, such as the Parallax and Adafruit PIR sensors, have a jumper
that determines how the output behaves when motion is detected. In one
mode, the output remains HIGH while motion is detected, or it can be set so
that the output goes HIGH briefly and then LOW when triggered. The example
sketch in this recipe’s Solution will work in either mode.

Other sensors may go LOW on detecting motion. If your sensor’s output pin
goes LOW when motion is detected, change the line that checks the input
value so that the LED is turned on when LOW:

if (val == LOW) // motion detected when the input is LOW

If your sensor’s documentation indicates that it needs a pull-up resistor, you
should change the code in setup that initializes inputPin:

pinMode(inputPin, INPUT_PULLUP); // declare pin as input with pull-up resistor

PIR sensors come in a variety of styles and are sensitive over different
distances and angles. Careful choice and positioning can make them
respond to movement in part of a room, rather than all of it. Some PIR
sensors have a potentiometer that you can adjust with a screwdriver to
change the PIR’s sensitivity.

6.5 Measuring Distance
Problem
You want to measure the distance to something, such as a wall or someone
walking toward the Arduino.

Solution
This recipe uses the Parallax PING))) ultrasonic distance sensor to measure
the distance of an object ranging from 2 centimeters to around 3 meters. It
displays the distance on the Serial Monitor and flashes an LED faster as
objects get closer (Figure 6-4 shows the connections):

/* Ping))) Sensor

 * prints distance and changes LED flash rate

 * depending on distance from the Ping))) sensor

 */

const int pingPin = 5;

const int ledPin = LED_BUILTIN; // LED pin

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 int cm = ping(pingPin);

 Serial.println(cm);

 digitalWrite(ledPin, HIGH);

 delay(cm * 10); // each centimeter adds 10 ms delay

 digitalWrite(ledPin, LOW);

 delay(cm * 10);

}

// Measure distance and return the result in centimeters

int ping(int pingPin)

{

 long duration; // This will store the measured duration of the pulse

 // Set the pingPin to output.

 pinMode(pingPin, OUTPUT);

 digitalWrite(pingPin, LOW); // Stay low for 2μs to ensure a clean pulse

 delayMicroseconds(2);

 // Send a pulse of 5μs

 digitalWrite(pingPin, HIGH);

 delayMicroseconds(5);

 digitalWrite(pingPin, LOW);

 // Set the pingPin to input and read the duration of the pulse.

 pinMode(pingPin, INPUT);

 duration = pulseIn(pingPin, HIGH);

 // convert the time into a distance

 return duration / 29 / 2;

}

Ping))) sensor connections

Discussion
Ultrasonic sensors provide a measurement of the time it takes for sound to
bounce off an object and return to the sensor.

The “ping” sound pulse is generated when the pingPin level goes HIGH for
two microseconds. The sensor will then generate a pulse that terminates
when the sound returns. The width of the pulse is proportional to the
distance the sound traveled, and the sketch then uses the pulseIn function
to measure that duration. The speed of sound is about 340 meters per
second, which is 29 microseconds per centimeter. The formula for the
distance of the round trip is: duration in microseconds / 29.

So, the formula for the one-way distance in centimeters is: duration in
microseconds / 29 / 2. The 340 meters per second figure is the
approximate speed of sound at 20°C/68°F. If your ambient temperature is
significantly different, you can use a speed of sound calculator such as that
hosted by the United States National Weather Service.

A lower-cost alternative to the Parallax PING))) sensor is the HC-SR04,
which is available from many suppliers and also on eBay. Although this has
less accuracy and range, it can be suitable where the price is more important
than performance. The HC-SR04 has separate pins to trigger the sound
pulse and detect the echo. This variation on the previous sketch shows its
use:

/* HC-SR04 Sensor

 * prints distance and changes LED flash rate

 * depending on distance from the HC-SR04 sensor

 */

const int trigPin = 5; // Pin to send the ping from

const int echoPin = 6; // Pin to read the response from

const int ledPin = LED_BUILTIN; // LED pin

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

}

void loop()

{

 int cm = calculateDistance(trigPin);

https://oreil.ly/a9KXK

 Serial.println(cm);

 digitalWrite(ledPin, HIGH);

 delay(cm * 10); // each centimeter adds 10 ms delay

 digitalWrite(ledPin, LOW);

 delay(cm * 10);

 delay(60); // datasheet recommends waiting at least 60ms between

measurements

}

int calculateDistance(int trigPin)

{

 long duration; // This will store the measured duration of the pulse

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2); // Stay low for 2μs to ensure a clean pulse

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10); // Send a pulse of 10μs to ensure a clean pulse

 digitalWrite(trigPin, LOW);

 // Read the duration of the response pulse

 duration = pulseIn(echoPin, HIGH);

 // convert time into distance

 return duration / 29 / 2;

}

The HC-SR04 datasheet recommends at least 60 ms between
measurements, but blinking the LED takes up some time, so the
delay(60); adds more of a delay than is needed. But if you are writing
code that does not add its own delay, you’ll want to keep that 60 ms delay
in there.

The HC-SR04 works best with 5 volts but can be used with 3.3V boards
that are 5-volt tolerant, such as the Teensy 3. Figure 6-5 shows the wiring
for a 5V board.

HC-SR04 connections

The MaxBotix EZ1 is another ultrasonic sensor that can be used to measure
distance. It is easier to integrate than the Ping))) or the HC-SR04 because it
does not need to be “pinged” and it can operate on 3.3 or 5 volts. It provides
continuous distance information, either as an analog voltage or proportional
to pulse width. Figure 6-6 shows the connections.

Connecting EZ1 PW output to a digital input pin

The sketch that follows uses the EZ1 pulse width (PW) output to produce
output similar to that of the previous sketch:

/*

 * EZ1Rangefinder Distance Sensor

 * prints distance and changes LED flash rate

 * depending on distance from the sensor

 */

const int sensorPin = 5;

const int ledPin = LED_BUILTIN;

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 long value = pulseIn(sensorPin, HIGH) ;

 int cm = value / 58; // pulse width is 58 microseconds per cm

 Serial.println(cm);

 digitalWrite(ledPin, HIGH);

 delay(cm * 10); // each centimeter adds 10 ms delay

 digitalWrite(ledPin, LOW);

 delay(cm * 10);

 delay(20);

}

The EZ1 is powered through +5V and ground pins and these are connected
to the respective Arduino pins. Connect the EZ1 PW pin to Arduino digital
pin 5. The sketch measures the width of the pulse with the pulseIn
command. The width of the pulse is 58 microseconds per centimeter, or 147
microseconds per inch.

NOTE
You may need to add a capacitor across the +5V and GND lines to stabilize the power supply to
the sensor if you are using long connecting leads. If you get erratic readings, connect a 10 uF
capacitor at the sensor (see Appendix C for more on using decoupling capacitors).

You can also obtain a distance reading from the EZ1 through its analog
output—connect the AN pin to an analog input and read the value with
analogRead. The following code prints the analog input converted to cm:

int value = analogRead(A0);

float mv = (value / 1024.0) * 5000 ;

float inches = mv / 9.8; // 9.8mv per inch per datasheet

float cm = inches * 2.54;

Serial.print("in: "); Serial.println(inches);

Serial.print("cm: "); Serial.println(cm);

The value from analogRead is around 4.8mV per unit (see Recipe 5.6 for
more on analogRead), and according to the datasheet, the EZ1 output is
9.8mV/inch when powered at 5V, and 6.4mV/inch at 3.3V. Multiply the
result in inches by 2.54 to get the distance in centimeters.

See Also
Recipe 5.6 explains how to convert readings from analogInput into
voltage values.

The Arduino reference for pulseIn

6.6 Measuring Distance Precisely
Problem
You want to measure how far objects are from the Arduino with more
precision than in Recipe 6.5.

Solution
Time of flight distance sensors use a tiny laser and sensor to measure how
long it takes for a laser light signal to return to it. While they have a much
more narrow field of view than the ultrasonic sensors you saw in Recipe
6.5, laser-based time of flight sensors can be more precise. However, time
of flight sensors typically have a smaller range. For example, while the HC-
SR04 has a range of 2 cm to 4 meters, the VL6180X time of flight sensor
can measure 5 cm to 10 cm. This sketch provides similar functionality to
Recipe 6.5, but it uses the VL6180X Time of Flight Distance Ranging
Sensor from Adafruit (product ID 3316). Figure 6-7 shows the connections.
To use this sketch, you’ll need to install the Adafruit_VL6180X library (see
Recipe 16.2):

/* tof-distance sketch

 * prints distance and changes LED flash rate based on distance from sensor

 */

#include <Wire.h>

#include "Adafruit_VL6180X.h"

Adafruit_VL6180X sensor = Adafruit_VL6180X();

const int ledPin = LED_BUILTIN; // LED pin

void setup() {

 Serial.begin(9600);

 while (!Serial);

 if (! sensor.begin()) {

 Serial.println("Could not initialize VL6180X");

https://oreil.ly/F6fdU

 while (1);

 }

}

void loop() {

 // Read the range and check the status for any errors

 byte cm = sensor.readRange();

 byte status = sensor.readRangeStatus();

 if (status == VL6180X_ERROR_NONE)

 {

 Serial.println(cm);

 digitalWrite(ledPin, HIGH);

 delay(cm * 10); // each centimeter adds 10 ms delay

 digitalWrite(ledPin, LOW);

 delay(cm * 10);

 }

 else

 {

 // Major errors are worth mentioning

 if ((status >= VL6180X_ERROR_SYSERR_1) &&

 (status <= VL6180X_ERROR_SYSERR_5))

 {

 Serial.println("System error");

 }

 }

 delay(50);

}

Connecting the VL6180X time of flight distance sensor

Discussion
The VL6180X sensor uses the I2C protocol (see Chapter 13) to
communicate, which requires a connection between the Arduino and the
sensor’s SCL and SDA pins. The sketch includes the Wire library, which
provides support for I2C, and also includes the Adafruit_VL6180X library
to provide functions for working with the sensor. Before the setup
function, the sketch defines an object (sensor) to represent the sensor, and
later initializes it in setup.

The setup function initializes the serial port and attempts to initialize the
sensor. If that fails, it prints an error message to the serial port, and stops
running the sketch by entering an infinite while loop.

On each run through the loop, the sketch reads the range and also checks
the sensor status to make sure it’s not in an error state. If it gets a good
reading, it displays the distance to the serial port and blinks the LED at a
rate determined by the distance it measured. The example included with the
Adafruit_VL6180X library has a more exhaustive check of all the possible

error states. With the exception of the system errors that this sketch checks
for, most errors are transient and will be corrected on a subsequent reading.

See Also
Detailed comparisons of ultrasonic, LED, and laser-based distance sensors
are available from DIY Projects and SparkFun.

6.7 Detecting Vibration
Problem
You want to respond to vibration; for example, when a door is knocked on.

Solution
A Piezo sensor responds to vibration. It works best when connected to a
larger surface that vibrates. Figure 6-8 shows the connections:

/* piezo sketch

 * lights an LED when the Piezo is tapped

 */

const int sensorPin = 0; // the analog pin connected to the sensor

const int ledPin = LED_BUILTIN; // pin connected to LED

const int THRESHOLD = 100;

void setup()

{

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 int val = analogRead(sensorPin);

 if (val >= THRESHOLD)

 {

 digitalWrite(ledPin, HIGH);

 delay(100); // to make the LED visible

 }

 else

https://oreil.ly/HmeJs
https://oreil.ly/b0Jc4

 digitalWrite(ledPin, LOW);

}

Discussion
A Piezo sensor, also known as a knock sensor, produces a voltage in
response to physical stress. The more it is stressed, the higher the voltage.
The Piezo is polarized and the positive side (usually a red wire or a wire
marked with a “+”) is connected to the analog input; the negative wire
(usually black or marked with a “–”) is connected to ground. A high-value
resistor (1 megohm) is connected across the sensor. The resistor is included
to protect the Arduino pins against excessive current or voltage.

Knock sensor connections

The voltage is detected by Arduino analogRead to turn on an LED (see
Chapter 5 for more about the analogRead function). The THRESHOLD value
determines the level from the sensor that will turn on the LED, and you can
decrease or increase this value to make the sketch more or less sensitive.

Piezo sensors can be bought in plastic cases or as bare metal disks with two
wires attached. The components are the same; use whichever fits your
project best.

Some sensors, such as the Piezo, can be driven by the Arduino to produce
the thing that they can sense. Chapter 9 has more about using a Piezo to
generate sound.

6.8 Detecting Sound
Problem
You want to detect sounds such as clapping, talking, or shouting.

Solution
This recipe uses the BOB-12758 breakout board for the Electret
Microphone (SparkFun). Connect the board as shown in Figure 6-9 and
load the code to the board. If you are using a 3.3V board, you should
connect the microphone’s VCC pin to 3.3V instead of 5V.

Microphone board connections

The built-in LED will turn on when you clap, shout, or play loud music
near the microphone. You may need to adjust the threshold—use the Serial
Monitor to view the high and low values, and change the threshold value so
that it is between the high values you get when noise is present and the low
values when there is little or no noise. Upload the changed code to the
board and try again:

/* microphone sketch

 * SparkFun breakout board for Electret Microphone is connected to analog pin

0

 */

const int micPin = A0; // Microphone connected to analog 0

const int ledPin = LED_BUILTIN; // the code will flash the built-in LED

const int middleValue = 512; // the middle of the range of analog values

const int numberOfSamples = 128; // how many readings will be taken each time

int sample; // the value read from microphone each time

long signal; // the reading once you have removed DC

offset

long newReading; // the average of that loop of readings

long runningAverage = 0; // the running average of calculated values

const int averagedOver = 16; // how quickly new values affect running avg

 // bigger numbers mean slower

const int threshold = 400; // at what level the light turns on

void setup()

{

 pinMode(ledPin, OUTPUT);

 Serial.begin(9600);

}

void loop()

{

 long sumOfSquares = 0;

 for (int i=0; i<numberOfSamples; i++) { // take many readings and average

them

 sample = analogRead(micPin); // take a reading

 signal = (sample - middleValue); // work out its offset from the

center

 signal *= signal; // square it

 sumOfSquares += signal; // add to the total

 }

 newReading = sumOfSquares/numberOfSamples;

 // calculate running average

 runningAverage=(((averagedOver-1)*runningAverage)+newReading)/averagedOver;

 Serial.print("new:"); Serial.print(newReading);

 Serial.print(",");

 Serial.print("running:"); Serial.println(runningAverage);

 if (runningAverage > threshold){ // is average more than the

threshold?

 digitalWrite(ledPin, HIGH); // if it is turn on the LED

 } else {

 digitalWrite(ledPin, LOW); // if it isn't turn the LED off

 }

}

Discussion
A microphone produces very small electrical signals. If you connected it
straight to the pin of an Arduino, you would not get any detectable change.
The signal needs to be amplified first to make it usable by Arduino. The
SparkFun board has the microphone with an amplifier circuit built in to
amplify the signal to a level readable by Arduino.

Because you are reading an audio signal in this recipe, you will need to do
some additional calculations to get useful information. An audio signal
changes fairly quickly, and the value returned by analogRead will depend
on what point in the undulating signal you take a reading. If you are
unfamiliar with using analogRead, see Chapter 5 and Recipe 6.3. An
example waveform for an audio tone is shown in Figure 6-10. As time
changes from left to right, the voltage goes up and down in a regular
pattern. If you take readings at the three different times marked on it, you
will get three different values. If you used this to make decisions, you might
incorrectly conclude that the signal got louder in the middle.

An accurate measurement requires multiple readings taken close together.
The peaks and troughs increase as the signal gets bigger. The difference

between the bottom of a trough and the top of a peak is called the amplitude
of the signal, and this increases as the signal gets louder.

Audio signal measured in three places

To measure the size of the peaks and troughs, you measure the difference
between the midpoint voltage and the levels of the peaks and troughs. You
can visualize this midpoint value as a line running midway between the
highest peak and the lowest trough, as shown in Figure 6-11. The line
represents the DC offset of the signal (it’s the DC value when there are no
peaks or troughs). If you subtract the DC offset value from your
analogRead values, you get the correct reading for the signal amplitude.

Audio signal showing DC offset (signal midpoint)

As the signal gets louder, the average size of these values will increase, but
as some of them are negative (where the signal has dropped below the DC
offset), they will cancel each other out, and the average will tend to be zero.
To fix that, we square each value (multiply it by itself). This will make all
the values positive, and it will increase the difference between small
changes, which helps you evaluate changes as well. The average value will
now go up and down as the signal amplitude does.

To do the calculation, we need to know what value to use for the DC offset.
To get a clean signal, the amplifier circuit for the microphone will have
been designed to have a DC offset as close as possible to the middle of the
possible range of voltage so that the signal can get as big as possible
without distorting. The code assumes this and uses the value 512 (right in
the middle of the analog input range of 0 to 1,023). Each time the sketch
takes the average of the squared values to calculate a new reading, the
sketch updates the running average. The running average is calculated by
multiplying the current running average by averagedOver - 1. With
averagedOver set to 16, this weights the current running average by 15.
Next, the sketch adds the new reading in (a weighting of 1), and divides by
averagedOver to get the weighted average, which yields the new running
average: (currentAverage * 15 + newReading)/16.

The sketch prints the values of the new reading and the running average in
such a way that you can view them with the Serial Plotter (Tools→Serial
Plotter). You can see the relationship between the new reading and the
running average in Figure 6-12. The running average is less spiky which
means the LED will stay on long enough for someone to notice it, rather
than just flickering briefly during a spike.

Readings and moving average displayed in the Serial Plotter

The values of variables at the top of the sketch can be varied if the sketch
does not trigger well for the level of sound you want.

The numberOfSamples is set at 128—if it is set too small, the average may
not adequately cover complete cycles of the waveform and you will get
erratic readings. If the value is set too high, you will be averaging over too
long a time, and a very short sound might be missed as it does not produce
enough change once a large number of readings are averaged. It could also
start to introduce a noticeable delay between a sound and the light going on.

Constants used in calculations, such as numberOfSamples and
averagedOver, are set to powers of 2 (128 and 16, respectively). Try to use
values evenly divisible by two for these to give you the fastest performance
(see Chapter 3 for more on math functions).

While the values as calculated work well for detecting sound levels, you
can change the sketch so it lines up with standard methods for measuring
sound levels (decibels). First, you’ll need to change the way newReading is
calculated to take the square root of the average (this is called a Root Mean
Square, or RMS). Next, you’ll want to take the common logarithm of both
values and multiply it by 20 to get decibels. This is unlikely to yield an
accurate measurement without calibration, but it is a starting point:

 newReading = sqrt(sumOfSquares/numberOfSamples);

 // calculate running average

 runningAverage=(((averagedOver-1)*runningAverage)+newReading)/averagedOver;

 Serial.print("new:"); Serial.print(20*log10(newReading));

 Serial.print(",");

 Serial.print("running:"); Serial.println(20*log10(runningAverage));

You will also need to modify the threshold to something much lower:

const int threshold = 30; // at what level the light turns on

6.9 Measuring Temperature
Problem
You want to display the temperature or use the value to control a device; for
example, to switch something on when the temperature reaches a threshold.

Solution
This recipe displays the temperature in Fahrenheit and Celsius (Centigrade)
using the popular TMP36 heat detection sensor. The sensor looks similar to
a transistor and is connected as shown in Figure 6-13.

TIP
If you are using a 3.3V board, you must connect the TMP36 power pin to 3.3V instead of 5V, and
change float millivolts = (value / 1024.0) * 5000; to float millivolts = (value /
1024.0) * 3300; in the sketch.

Connecting the TMP36 temperature sensor

/*

 * tmp36 sketch

 * prints the temperature to the Serial Monitor

 * and turns on the LED when a threshold is reached

 */

const int inPin = A0; // analog pin

const int ledPin = LED_BUILTIN;

const int threshold = 80; // Turn on the LED over 80F

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 int value = analogRead(inPin);

 // Use 3300 instead of 5000 for 3.3V boards

 float millivolts = (value / 1024.0) * 5000;

 // 10mV per degree Celsius with a 500mv offset

 float celsius = (millivolts - 500) / 10;

 float fahrenheit = (celsius * 9)/ 5 + 32;

 Serial.print("C:");

 Serial.print(celsius);

 Serial.print(",");

 Serial.print("F:");

 Serial.println(fahrenheit); // converts to fahrenheit

 if (fahrenheit > threshold){ // is the temperature over the threshold?

 digitalWrite(ledPin, HIGH); // if it is turn on the LED

 } else {

 digitalWrite(ledPin, LOW); // if it isn't turn the LED off

 }

 delay(1000); // wait for one second

}

Discussion
The TMP36 temperature sensor produces an analog voltage directly
proportional to temperature with an output of 1 millivolt (mV) per 0.1°C
(10mV per degree), but with a 500mV offset.

The sketch converts the analogRead values into millivolts (see Chapter 5).
It then subtracts 0.5V (500mV), the offset voltage specified in the TMP36
datasheet, and then divides the result by 10 to get degrees C. If the
temperature exceeds the threshold value, the sketch lights the onboard LED.
You can easily get the sensor to go over F80 by holding the sensor between
two fingers, but avoid touching your fingers to the sensor’s leads so as to
not interfere with the electrical signaling.

There are many temperature sensors available, but an interesting alternative
is the waterproof DS18B20 digital temperature sensor (Adafruit part 381,
SparkFun part SEN-11050, available from other suppliers as well). It is
wired and used differently than the TMP36.

The DS18B20 is based on the 1-Wire protocol pioneered by Dallas
Semiconductor (now Maxim), and requires two libraries. The first is the
OneWire library. There are several libraries available with OneWire in their

name, so be sure to choose the OneWire library by Jim Studt, Tom Pollard,
et al. You will also need the DallasTemperature library. You can install both
using the Library Manager (see Recipe 16.2). To wire the DS18B20,
connect the red wire to 5V (or 3.3V if on a 3.3V board), black to ground,
and the signal wire (yellow, white, or some other color) to digital pin 2 with
a 4.7K resistor between the signal and power (5V or 3.3V) pin, as shown in
Figure 6-14.

Connecting the DS18B20 temperature sensor

Here’s the sketch for reading the temperature:

/* DS18B20 temperature

 * Reads temperature from waterproof sensor probe

 */

#include <OneWire.h>

#include <DallasTemperature.h>

#define ONE_WIRE_BUS 2 // The pin that the sensor wire is connected to

const int ledPin = LED_BUILTIN;

const int threshold = 80; // Turn on the LED over 80F

OneWire oneWire(ONE_WIRE_BUS); // Prepare the OneWire connection

DallasTemperature sensors(&oneWire); // Declare the temp sensor object

void setup(void)

{

 Serial.begin(9600);

 // Initialize the sensor

 sensors.begin();

}

void loop(void)

{

 sensors.requestTemperatures(); // Request a temperature reading

 // Retrieve the temperature reading in F and C

 float fahrenheit = sensors.getTempFByIndex(0);

 float celsius = sensors.getTempCByIndex(0);

 // Display the temperature readings in a Serial Plotter-friendly format

 Serial.print("C:"); Serial.print(celsius);

 Serial.print(",");

 Serial.print("F:"); Serial.println(fahrenheit);

 if (fahrenheit > threshold){ // is the temperature over the threshold?

 digitalWrite(ledPin, HIGH); // if it is turn on the LED

 } else {

 digitalWrite(ledPin, LOW); // if it isn't turn the LED off

 }

 delay(1000);

}

The sketch pulls in the header files for each library, and initializes the data
structures needed to work with the 1-Wire protocol and with the sensor.
Inside the loop, the sketch requests a temperature reading, and then reads
the temperature in Celsius, then Fahrenheit. Note that you do not need to
perform any arithmetic conversion on the results you get from the sensor.
Everything is handled by the library. Note also that you do not need to make
any code changes (but make sure you wire the sensor’s power to 3.3V, not
5V) when you use a 3.3V board.

See Also

The TMP36 datasheet

The DS18B20 datasheet

6.10 Reading RFID (NFC) Tags
Problem
You want to read an RFID/NFC tag and respond to specific IDs.

Solution
Figure 6-15 shows a PN532 NFC reader connected to Arduino over serial
pins (TX and RX). PN532 NFC readers are available from a number of
suppliers. The Seeed Studio Grove NFC reader (part 113020006) is
connected as shown in the diagram. You can also find a PN532 reader in a
shield form factor (SeeedStudio part 113030001, Adafruit part 789). You
will need to install the SeeedStudio Seeed_Arduino_NFC library (see
Recipe 16.2). The Seeed library includes a from modified version of the
NDEF library so you do not need to install that library.

NOTE
PN532 readers work with 13.56 MHz MIFARE Classic and MIFARE Ultralight tags. If you are
using a different reader, check the documentation for information on wiring the reader to Arduino
and for example code.

https://oreil.ly/gebtM
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://oreil.ly/JwEpb
https://oreil.ly/Aepnl

NFC reader connected to Arduino

The sketch reads an NFC tag and displays its unique ID:

/* NFC Tag Scanner - Serial

 * Look for an NFC tag and display its unique identifier.

 */

#include <NfcAdapter.h>

#include <PN532/PN532/PN532.h>

#include <PN532/PN532_HSU/PN532_HSU.h>

PN532_HSU pn532hsu(Serial1);

NfcAdapter nfc(pn532hsu);

void setup()

{

 Serial.begin(9600);

 nfc.begin(); // Initialize the NFC reader

}

void loop()

{

 Serial.println("Waiting for a tag");

 if (nfc.tagPresent()) // If the reader sees an NFC tag

 {

 NfcTag tag = nfc.read(); // read the NFC tag

 Serial.println(tag.getUidString()); // Display its id

 }

 delay(500);

}

Discussion
NFC (Near-Field Communication) is a specialized variant of RFID (Radio
Frequency Identification) technology that operates at a frequency of 13.56
MHz and supports a data format called NDEF (NFC Data Exchange
Format). NDEF provides a variety of structured messages you can store on
a tag, a small electronic device that can be embedded in cards, stickers,
keychain fobs, and other objects. The tag consists of a relatively large
antenna that receives signals from an RFID/NFC reader. The reader can be
embedded in a computer or a mobile phone, or can be a module that you
connect to your Arduino (as with the PN532 module). When the tag
receives the signal, it harvests enough energy from it to energize the
circuitry on the tag, which responds to the signal by transmitting the
information contained in its memory. There are also tags that have their
own power, such as a motor vehicle transponder used in automated toll
payment systems. Such tags are known as active tags, while the energy-
harvesting type is called a passive tag.

An NDEF tag transmits a collection of data when it is activated by a reader.
This data includes information that identifies the tag, along with any
information stored on the tag. The Solution uses Don Coleman’s NDEF
library to simplify reading the tag data.

The code shown in the Solution will work with the Seeed Studio Grove
NFC module connected over Serial1. It uses the USB serial connection to
send information that you can view in the Serial Monitor. Serial1 is not
present on the Arduino Uno (see “Serial Hardware”), which means you
would need to use SoftwareSerial with this module because on the Uno
(and compatible boards based on the ATmega328), USB Serial and the
TX/RX pins are shared, so these boards cannot talk to a serial device and
over the USB Serial connection at the same time. See Recipe 4.11 for
information on SoftwareSerial. You can also reconfigure the Grove NFC
module to use I2C.

The Seeed Studio NFC shield communicates over SPI. If you want to use it
with the Seeed Studio NFC shield, change the lines at the top of the sketch
to:

https://oreil.ly/76Noz

#include <SPI.h>

#include <NfcAdapter.h>

#include <PN532/PN532/PN532.h>

#include <PN532/PN532_SPI/PN532_SPI.h>

PN532_SPI pn532spi(SPI, 10);

NfcAdapter nfc = NfcAdapter(pn532spi);

If you want to use it with the Adafruit shield or the Grove NFC module in
I2C mode, change the lines at the top of the sketch to:

#include <Wire.h>

#include <NfcAdapter.h>

#include <PN532/PN532/PN532.h>

#include <PN532/PN532_I2C/PN532_I2C.h>

PN532_I2C pn532i2c(Wire);

NfcAdapter nfc = NfcAdapter(pn532i2c);

You can also read any message on that tag and write your own message
(assuming the tag has not been locked) using the NDEF library. If you
replace the loop function with the following, the sketch will read the tag,
and then use the NfcTag object’s print function to display the tag ID and
any message on it. It will then display a countdown. If you leave the tag in
place, it will write a URL to the tag. If you have an NFC-enabled mobile
phone, you can hold the tag up to the phone and it should open the URL in
a web browser:

void loop()

{

 Serial.println("Waiting for a tag");

 if (nfc.tagPresent()) // If the reader sees an NFC tag

 {

 NfcTag tag = nfc.read(); // read the NFC tag

 tag.print(); // print whatever is currently on it

 // Give the user time to avoid writing to the tag

 Serial.print("Countdown to writing the tag: 3");

 for (int i = 2; i >= 0; i--) {

 delay(1000);

 Serial.print("..."); Serial.print(i);

 }

 Serial.println();

 // Write a message to the tag

 NdefMessage message = NdefMessage();

 message.addUriRecord("http://oreilly.com");

 bool success = nfc.write(message);

 if (!success)

 Serial.println("Write failed.");

 else

 Serial.println("Success.");

 }

 delay(500);

}

6.11 Tracking Rotary Movement
Problem
You want to measure and display the rotation of something to track its
speed and/or direction.

Solution
To sense rotary motion you can use a rotary encoder that is attached to the
object you want to track. Connect the encoder as shown in Figure 6-16:

/*

 * Read a rotary encoder

 * This simple version polls the encoder pins

 * The position is displayed on the Serial Monitor

 */

const int encoderPinA = 3;

const int encoderPinB = 2;

const int encoderStepsPerRevolution=16;

int angle = 0;

int encoderPos = 0;

bool encoderALast = LOW; // remembers the previous pin state

void setup()

{

 Serial.begin (9600);

 pinMode(encoderPinA, INPUT_PULLUP);

 pinMode(encoderPinB, INPUT_PULLUP);

}

void loop()

{

 bool encoderA = digitalRead(encoderPinA);

 if ((encoderALast == HIGH) && (encoderA == LOW))

 {

 if (digitalRead(encoderPinB) == LOW)

 {

 encoderPos--;

 }

 else

 {

 encoderPos++;

 }

 angle=(encoderPos %

encoderStepsPerRevolution)*360/encoderStepsPerRevolution;

 Serial.print (encoderPos);

 Serial.print (" ");

 Serial.println (angle);

 }

 encoderALast = encoderA;

}

Rotary encoder

Discussion
A rotary encoder produces two signals as it is turned. Both signals alternate
between HIGH and LOW as the shaft is turned, but the signals are slightly out
of phase with each other. If you detect the point where one of the signals
changes from HIGH to LOW, the state of the other pin (whether it is HIGH or
LOW) will tell you which way the shaft is rotating.

So, the first line of code in the loop function reads one of the encoder pins:

int encoderA = digitalRead(encoderPinA);

Then it checks this value and the previous one to see if the value has just
changed to LOW:

if ((encoderALast == HIGH) && (encoderA == LOW))

If it has not, the code doesn’t execute the following block; it goes to the
bottom of loop, saves the value it has just read in encoderALast, and goes
back around to take a fresh reading.

When the following expression is true:

if ((encoderALast == HIGH) && (encoderA == LOW))

the code reads the other encoder pin and increments or decrements
encoderPos depending on the value returned. It calculates the angle of the
shaft (taking 0 to be the point the shaft was at when the code started
running). It then sends the values down the serial port so that you can see it
in the Serial Monitor.

Encoders come in different resolutions, quoted as steps per revolution. This
indicates how many times the signals alternate between HIGH and LOW for
one revolution of the shaft. Values can vary from 16 to 1,000. The higher
values can detect smaller movements, and these encoders cost much more
money. The value for the encoder is hardcoded in the code in the following
line:

const int encoderStepsPerRevolution=16;

If your encoder is different, you need to change that to get the correct angle
values.

If you get values out that don’t go up and down, but increase regardless of
the direction you turn the encoder, try changing the test to look for a rising
edge rather than a falling one. Swap the LOW and HIGH values in the line that
checks the values so that it looks like this:

if ((encoderALast == LOW) && (encoderA == HIGH))

Rotary encoders just produce an increment/decrement signal; they cannot
directly tell you the shaft angle. The code calculates this, but it will be

relative to the start position each time the code runs. The code monitors the
pins by polling (continuously checking the value of) them. There is no
guarantee that the pins have not changed a few times since the last time the
code looked, so if the code does lots of other things as well, and the encoder
is turned very quickly, it is possible that some of the steps will be missed.
For high-resolution encoders this is more likely, as they will send signals
much more often as they are turned.

To work out the speed, you need to count how many steps are registered in
one direction in a set time.

6.12 Tracking Rotary Movement in a Busy
Sketch with Interrupts
Problem
As you extend your code and it is doing other things in addition to reading
the encoder, or if you want to read more than one encoder, you will find that
your readings from the encoder start to get unreliable. This problem is
particularly bad if the shaft rotates quickly.

Solution
The circuit is the same as the one for Recipe 6.11. We will use a library that
is optimized for reading rotary encoders. It uses Arduino’s interrupt
capabilities (Recipe 18.2) to respond quickly to changes in the pin states.
Use the Library Manager to install the Encoder library by Paul Stoffregen
(see Recipe 16.2), and run the following sketch:

/* Rotary Encoder library sketch

 * Read the rotary encoder with a library that uses interrupts

 * to process the encoder's activity

 */

#include <Encoder.h>

Encoder myEnc(2, 3); // On MKR boards, use pins 6, 7

void setup()

{

 Serial.begin(9600);

}

long lastPosition = -999;

void loop()

{

 long currentPosition = myEnc.read();

 if (currentPosition != lastPosition) { // If the position changed

 lastPosition = currentPosition; // Save the last position

 Serial.println(currentPosition); // print it to the Serial monitor

 }

}

Discussion
With the Solution from Recipe 6.11, as your code has more things to do, the
encoder pins will be checked less often. If the pins go through a whole step
change before getting read, the Arduino will simply not detect that step.
Moving the shaft quickly will cause more errors, as the steps will be
happening more quickly.

To make sure the code responds every time a step happens, you need to use
interrupts. When the interrupt condition happens (such as a pin changing
state), the code jumps from wherever it is, handles the interrupt, and then
returns to where it was and carries on. The Encoder library will perform
best with pins that support hardware interrupts, but it will do its best with
pins that do not.

On the Arduino Uno and for other boards based on the ATmega328, only
two pins can be used as interrupts: pins 2 and 3. See this list of which pins
are supported on specific boards. You declare and initialize a rotary encoder
with the following line of code:

Encoder myEnc(2, 3);

The parameters to the Encoder initialization are the two pins the encoder is
attached to. If you find that the encoder value is decreasing when you

https://oreil.ly/jUYkM

expect it to increase, you can swap the arguments or swap your wiring.
Once you’ve initialized an encoder, whenever you spin the encoder it will
interrupt the sketch briefly to keep track of the movement. You can read the
value at any time with myEnc.read().

You can create as many encoders as you have pins, but whenever possible,
use pins that support interrupts. The following sketch will handle two
encoders, and will work optimally on a board that can handle interrupts on
the selected pins such as the SAMD21-based M0 boards (Adafruit Metro
M0, SparkFun RedBoard Turbo, and Arduino Zero). If you are using a
different board, you may need to use different pins. The Uno and other
ATmega328-based boards only support interrupts on pins 2 and 3, so the
quality of readings will be diminished on the second encoder no matter
which pins you choose with one of those boards:

#include <Encoder.h>

Encoder myEncA(2, 3); // MKR boards use pins 4, 5

Encoder myEncB(6, 7); // Mega boards use pins 18, 19

void setup()

{

 Serial.begin(9600);

 while(!Serial);

}

long lastA = -999;

long lastB = -999;

void loop()

{

 long currentA = myEncA.read();

 long currentB = myEncB.read();

 if (currentA != lastA || currentB != lastB) { // If either position changed

 lastA = currentA; // Save both positions

 lastB = currentB;

 // Print the positions to the Serial Monitor (or Serial Plotter)

 Serial.print("A:"); Serial.print(currentA);

 Serial.print(" ");

 Serial.print("B:"); Serial.println(currentB);

 }

}

See Also
The Arduino MKR Vidor 4000 includes an FPGA that is capable of reading
a rotary encoder with much more accuracy than with an Arduino alone.

6.13 Using a Mouse
Problem
You want to detect movements of a PS/2-compatible mouse and respond to
changes in the x and y coordinates.

Solution
This solution uses LEDs to indicate mouse movement. The brightness of
the LEDs changes in response to mouse movement in the x (left and right)
and y (nearer and farther) directions. Clicking the mouse buttons sets the
current position as the reference point (Figure 6-17 shows the connections).

To use this sketch, you will need to install the PS/2 library. As of this
writing, you will need to use a text editor to open the ps2.h file in the ps2
directory and change #include "WProgram.h" to #include
"Arduino.h":

/*

 Mouse

 an arduino sketch using ps2 mouse library

 from http://www.arduino.cc/playground/ComponentLib/Ps2mouse

 */

#include <ps2.h>

const int dataPin = 5;

const int clockPin = 6;

const int xLedPin = 9; // Use pin 8 on the MKR boards

const int yLedPin = 10;

const int mouseRange = 255; // the maximum range of x/y values

char x; // values read from the mouse

https://oreil.ly/KqIIr
https://oreil.ly/NSl9T

char y;

byte status;

int xPosition = 0; // values incremented and decremented when mouse moves

int yPosition = 0;

int xBrightness = 128; // values increased and decreased based on mouse

position

int yBrightness = 128;

const byte REQUEST_DATA = 0xeb; // command to get data from the mouse

PS2 mouse(clockPin, dataPin); // Declare the mouse object

void setup()

{

 mouseBegin(); // Initialize the mouse

}

void loop()

{

 // get a reading from the mouse

 mouse.write(REQUEST_DATA); // ask the mouse for data

 mouse.read(); // ignore ack

 status = mouse.read(); // read the mouse buttons

 if(status & 1) // this bit is set if the left mouse btn pressed

 xPosition = 0; // center the mouse x position

 if(status & 2) // this bit is set if the right mouse btn pressed

 yPosition = 0; // center the mouse y position

 x = mouse.read();

 y = mouse.read();

 if(x != 0 || y != 0)

 {

 // here if there is mouse movement

 xPosition = xPosition + x; // accumulate the position

 xPosition = constrain(xPosition,-mouseRange,mouseRange);

 xBrightness = map(xPosition, -mouseRange, mouseRange, 0,255);

 analogWrite(xLedPin, xBrightness);

 yPosition = constrain(yPosition + y, -mouseRange,mouseRange);

 yBrightness = map(yPosition, -mouseRange, mouseRange, 0,255);

 analogWrite(yLedPin, yBrightness);

 }

}

void mouseBegin()

{

 // reset and initialize the mouse

 mouse.write(0xff); // reset

 delayMicroseconds(100);

 mouse.read(); // ack byte

 mouse.read(); // blank

 mouse.read(); // blank

 mouse.write(0xf0); // remote mode

 mouse.read(); // ack

 delayMicroseconds(100);

}

Connecting a mouse to indicate position and light LEDs

WARNING
If you are using a 3.3V board, you will either need to add a voltage divider to both the clock and
data pins, or you may try powering the mouse from 3.3V instead of 5V (which may or may not
work, depending on your mouse). See Recipe 5.11 for a discussion of voltage dividers.

Figure 6-17 shows a female PS/2 connector (the socket you plug the mouse
into) from the front. If you don’t have a female connector and don’t mind
chopping the end off your mouse, you can note which wires connect to each
of these pins and solder to pin headers that plug directly into the correct
Arduino pins. A continuity test from a pin to a wire will let you quickly
determine which wires go to which pins, but if you are testing the pins from
the male plug end that you cut off of your mouse, you need to reverse the
diagram left to right.

Discussion
Connect the mouse signal (clock and data) and power leads to Arduino, as
shown in Figure 6-17. This solution only works with PS/2-compatible
devices, so you will need to find an older mouse—most mice with the
round PS/2 connector should work.

The mouseBegin function initializes the mouse to respond to requests for
movement and button status. The PS/2 library handles the low-level
communication. The mouse.write command is used to instruct the mouse
that data will be requested. The first call to mouse.read gets an
acknowledgment (which is ignored in this example). The next call to
mouse.read gets the button status, and the last two mouse.read calls get
the x and y movement that has taken place since the previous request.

The sketch tests to see which bits are HIGH in the status value to determine
if the left or right mouse button was pressed. The two rightmost bits will be
HIGH when the left and right buttons are pressed, and these are checked in
the following lines:

status = mouse.read(); // read the mouse buttons

 if(status & 1) // rightmost bit is set if the left mouse btn pressed

 xPosition = 0; // center the mouse x position

 if(status & 2) // this bit is set if the right mouse btn pressed

 yPosition = 0; // center the mouse y position

The x and y values read from the mouse represent the movement since the
previous request, and these values are accumulated in the variables
xPosition and yPosition.

The values of x and y will be positive if the mouse moves right or away
from you, and negative if it moves left or toward you.

The sketch ensures that the accumulated value does not exceed the defined
range (mouseRange) using the constrain function:

xPosition = xPosition + x; // accumulate the position

 xPosition = constrain(xPosition,-mouseRange,mouseRange);

The yPosition calculation shows a shorthand way to do the same thing;
here the calculation for the y value is done within the call to constrain:

yPosition = constrain(yPosition + y,-mouseRange,mouseRange);

The xPosition and yPosition variables are reset to zero if the left and
right mouse buttons are pressed.

LEDs are illuminated to correspond to position using analogWrite—half
brightness in the center, and increasing and decreasing in brightness as the
mouse position increases and decreases. You must use a PWM-capable pin
in order for this to work correctly. If your board does not support PWM on
pins 9 and 10 (most do), you will see the lights turn on and off instead of
dimming. On the MKR family of boards, pin 9 does not support PWM so
you need to change the wiring and the code to use a pin that does.

The position can be graphed on the Serial Plotter by adding the following
line just after the second call to analogWrite():

printValues(); // show button and x and y values on Serial Monitor/Plotter

You’ll also need to add this line to setup():

Serial.begin(9600);

Add the following function to the end of the sketch to print or plot the
current position of the mouse:

void printValues()

{

 Serial.print("X:");

 Serial.print(xPosition);

 Serial.print(",Y:");

 Serial.print(yPosition);

 Serial.println();

}

See Also
The Adafruit site has a suitable PS/2 connector with built-in wires.

6.14 Getting Location from a GPS
Problem
You want to determine location using a GPS module.

Solution
A number of Arduino-compatible GPS units are available today. Most use a
familiar serial interface to communicate with their host microcontroller
using a protocol known as NMEA 0183. This industry standard provides for
GPS data to be delivered to listener devices such as Arduino as human-
readable ASCII sentences. For example, the following NMEA sentence:

$GPGLL,4916.45,N,12311.12,W,225444,A,*1D

describes, among other things, a location on the globe at 49° 16.45’ north
latitude by 123° 11.12’ west longitude.

https://oreil.ly/eAiKx

To establish location, your Arduino sketch must parse these strings and
convert the relevant text to numeric form. Writing code to manually extract
data from NMEA sentences can be tricky and cumbersome in the Arduino’s
limited address space, but fortunately there is a useful library that does this
work for you: Mikal Hart’s TinyGPS++. Download it from Mikal’s GitHub
site and install it. (For instructions on installing third-party libraries, see
Recipe 16.2.)

The general strategy for using a GPS is as follows:

1. Physically connect the GPS device to the Arduino.

2. Read serial NMEA data from the GPS device.

3. Process the data to determine location.

Using TinyGPSPlus, you do the following:

1. Physically connect the GPS device to the Arduino.

2. Create a TinyGPSPlus object.

3. Read serial NMEA data from the GPS device.

4. Process each byte with TinyGPSPlus’s encode() method.

5. Periodically query TinyGPSPlus’s get_position() method to
determine location.

The following sketch illustrates how you can acquire data from a GPS
attached to Arduino’s serial port. Every five seconds, it blinks the built-in
LED once if the device is in the southern hemisphere and twice if it is in the
northern hemisphere. If your Arduino’s TX and RX pins are associated with
another serial device such as Serial1, change the definition of GPS_SERIAL
(see Table 4-1):

/* GPS sketch

 * Indicate which hemisphere your GPS is in with the built-in LED.

 */

#include "TinyGPS++.h"

// Change this to the serial port your GPS uses (Serial, Serial1, etc.)

#define GPS_SERIAL Serial

https://oreil.ly/jjnmf

TinyGPSPlus gps; // create a TinyGPS++ object

#define HEMISPHERE_PIN LED_BUILTIN

void setup()

{

 GPS_SERIAL.begin(9600); // GPS devices frequently operate at 9600 baud

 pinMode(HEMISPHERE_PIN, OUTPUT);

 digitalWrite(HEMISPHERE_PIN, LOW); // turn off LED to start

}

void loop()

{

 while (GPS_SERIAL.available())

 {

 // encode() each byte; if encode() returns "true",

 // check for new position.

 if (gps.encode(GPS_SERIAL.read()))

 {

 if (gps.location.isValid())

 {

 if (gps.location.lat() < 0) // Southern Hemisphere?

 blink(HEMISPHERE_PIN, 1);

 else

 blink(HEMISPHERE_PIN, 2);

 } else // panic

 blink(HEMISPHERE_PIN, 5);

 delay(5000); // Wait 5 seconds

 }

 }

}

void blink(int pin, int count)

{

 for (int i = 0; i < count; i++)

 {

 digitalWrite(pin, HIGH);

 delay(250);

 digitalWrite(pin, LOW);

 delay(250);

 }

}

Start serial communications using the rate required by your GPS. See
Chapter 4 if you need more information on using Arduino serial

communications.

A 9,600-baud connection is established with the GPS. Once bytes begin
flowing, they are processed by encode(), which parses the NMEA data. A
true return from encode() indicates that TinyGPSPlus has successfully
parsed a complete sentence and that fresh position data may be available.
This is a good time to check whether the position is valid with a call to
gps.location.isValid().

TinyGPSPlus’s gps.location.lat() returns the most recently observed
latitude, which this sketch examines; if it is less than zero (that is, south of
the equator), the LED blinks once. If it is greater than zero (at or north of
the equator), it blinks twice. If the GPS is unable to get a valid fix, it blinks
five times.

Discussion
Attaching a GPS unit to an Arduino is usually as simple as connecting two
or three data lines from the GPS to input pins on the Arduino as shown in
Table 6-2. If you are using a 5V board such as the Uno, you can use either a
3.3V or 5V GPS module. If you are using a board that is not 5V tolerant,
such as a SAMD-based board like the Arduino Zero, Adafruit Metro
M0/M4, or SparkFun Redboard Turbo, you must use a 3.3V GPS module.

GPS pin connections

GPS line Arduino pin

GND GND

5V or 3.3V 5V or 3.3V

RX TX (pin 1)

TX RX (pin 0)

WARNING
Some GPS modules use RS-232 voltage levels, which are incompatible with Arduino’s TTL logic
and will permanently damage the board. If your GPS uses RS-232 levels, then you need some
kind of intermediate logic conversion device like the MAX232 integrated circuit.

The code in the Solution assumes that the GPS is connected directly to
Arduino’s built-in serial pins. On an ATmega328-based board like the
Arduino Uno, this is not usually the most convenient design because RX
and TX (pins 0 and 1) are shared with the USB serial connection. In many
projects, you’ll use the hardware serial port to communicate with a host PC
or other peripheral, which means that port cannot be used by the GPS. In
cases like this, select another pair of digital pins and use a serial port
emulation (“soft serial”) library to talk to the GPS instead.

With the Arduino and GPS powered down, move the GPS’s TX line to
Arduino pin 2 and RX line to pin 3 to free up the hardware serial port for
debugging (see Figure 4-8). With the USB cable connected to the host PC,
try the following sketch to get a detailed glimpse of TinyGPS in action
through the Arduino’s Serial Monitor:

/* GPS sketch with logging

 */

#include "TinyGPS++.h"

// Delete the next four lines if your board has a separate hardware serial

port

#include "SoftwareSerial.h"

#define GPS_RX_PIN 2

#define GPS_TX_PIN 3

SoftwareSerial softserial(GPS_RX_PIN, GPS_TX_PIN); // create soft serial

object

// If your board has a separate hardware serial port,

// change "softserial" to that port

#define GPS_SERIAL softserial

TinyGPSPlus gps; // create a TinyGPSPlus object

void setup()

{

 Serial.begin(9600); // for debugging

 GPS_SERIAL.begin(9600); // Use Soft Serial object to talk to GPS

}

void loop()

{

 while (GPS_SERIAL.available())

 {

 int c = GPS_SERIAL.read();

 Serial.write(c); // display NMEA data for debug

 // Send each byte to encode()

 // Check for new position if encode() returns "True"

 if (gps.encode(c))

 {

 Serial.println();

 float lat = gps.location.lat();

 float lng = gps.location.lng();

 unsigned long fix_age = gps.date.age();

 if (!gps.location.isValid())

 Serial.println("Invalid fix");

 else if (fix_age > 2000)

 Serial.println("Stale fix");

 else

 Serial.println("Valid fix");

 Serial.print("Lat: ");

 Serial.print(lat);

 Serial.print(" Lon: ");

 Serial.println(lng);

 }

 }

}

For a more detailed discussion on software serial, see Recipes 4.11 and
4.12.

Note that you can use a different baud rate for connection to the Serial
Monitor and the GPS.

This new sketch behaves the same as the earlier example (but for brevity,
omits the LED blinking code) but is much easier to debug. At any time, you
can connect a serial LCD (see Recipe 4.11) to the built-in serial port to

watch the NMEA sentences and TinyGPSPlus data scrolling by. You could
also connect to the serial port using Arduino’s Serial Monitor.

When power is turned on, a GPS unit begins transmitting NMEA sentences.
However, the sentences containing valid location data are only transmitted
after the GPS establishes a fix, which requires the GPS antenna to have
visibility of the sky and can take up to two minutes or more. Stormy
weather or the presence of buildings or other obstacles may also interfere
with the GPS’s ability to pinpoint location. So, how does the sketch know
whether TinyGPSPlus is delivering valid position data? The answer lies in
the return value from the gps.location.isValid() function. A false
value means TinyGPS has not yet parsed any valid sentences containing
position data. In this case, you’ll know that the returned latitude and
longitude are invalid as well.

You can also check how old the fix is. The gps.date.age() function
returns the number of milliseconds since the last fix. The sketch stores its
value in fix_age. Under normal operation, you can expect to see quite low
values for fix_age. Modern GPS devices are capable of reporting position
data as frequently as one to five times per second or more, so a fix_age in
excess of 2,000 ms or so suggests that there may be a problem. Perhaps the
GPS is traveling through a tunnel or a wiring flaw is corrupting the NMEA
data stream, invalidating the checksum (a calculation to check that the data
is not corrupted). In any case, a large fix_age indicates that the coordinates
returned by get_position() are stale.

See Also
For a deeper understanding of the NMEA protocol, read the Wikipedia
articles.

Several shops sell GPS modules that interface well with TinyGPS and
Arduino. These differ mostly in power consumption, voltage, accuracy,
physical interface, and whether they support serial NMEA. Adafruit sells a
variety of modules as does SparkFun.

https://oreil.ly/APOzP
https://oreil.ly/9rN5V
https://oreil.ly/w0asL

GPS technology has inspired lots of creative Arduino projects. A very
popular example is the GPS data logger, in which a moving device records
location data at regular intervals to the Arduino EEPROM or other onboard
storage. See the https://oreil.ly/w0asL for an example. Adafruit makes a
popular GPS data logging shield.

Other interesting GPS projects include hobby airplanes and helicopters that
maneuver themselves to preprogrammed destinations under Arduino
software control. Mikal Hart has built a GPS-enabled “treasure chest” with
an internal latch that cannot be opened until the box is physically moved to
a certain location. See his post about this project.

6.15 Detecting Rotation Using a Gyroscope
Problem
You want to respond to the rate of rotation. This can be used to keep a
vehicle or robot moving in a straight line or turning at a desired rate.

Solution
Gyroscopes provide an output related to rotation rate (as opposed to an
accelerometer, which indicates rate of change of velocity). In the early days
of Arduino, most low-cost gyroscopes used an analog voltage proportional
to rotation rate. Now, with the ubiquitous use of gyroscopes and
accelerometers in smartphones, it is cheaper and easier to find gyroscopes
and accelerometers combined using the I2C protocol. See Chapter 13 for
more on using I2C.

NOTE
The Arduino Nano 33 BLE Sense board has a gyroscope and accelerometer built onto the board.
See Recipe 6.1 for more information.

https://oreil.ly/YBhAI
https://oreil.ly/8eOqy
https://oreil.ly/FAvDD

The MPU-9250 inertial measurement unit is a relatively inexpensive nine
degrees of freedom (9DOF) sensor that works well with Arduino. It is
available on a breakout board from many suppliers, including SparkFun
(part number SEN-13762). There are several libraries available that support
the MPU-9250. The following sketch uses the Bolder Flight Systems
MPU9250 library that you can install using the Arduino Library Manager.
(For instructions on installing third-party libraries, see Recipe 16.2.)
Connect the sensor as shown in Figure 6-18:

/* Gyro sketch

 * Read a gyro and display rotation in degrees/sec

 */

#include "MPU9250.h"

// I2C address of IMU. If this doesn't work, try 0x69.

#define IMU_ADDRESS 0x68

MPU9250 IMU(Wire, IMU_ADDRESS); // Declare the IMU object

void setup() {

 Serial.begin(9600);

 while(!Serial);

 // Initialize the IMU

 int status = IMU.begin();

 if (status < 0) {

 Serial.println("Could not initialize the IMU.");

 Serial.print("Error value: "); Serial.println(status);

 while(1); // halt the sketch

 }

 // Set the full range of the gyro to +/- 500 degrees/sec

 status = IMU.setGyroRange(MPU9250::GYRO_RANGE_500DPS);

 if (status < 0) {

 Serial.println("Could not change gyro range.");

 Serial.print("Error value: "); Serial.println(status);

 }

}

void loop() {

 IMU.readSensor();

 // Obtain the rotational velocity in rads/second

 float gx = IMU.getGyroX_rads();

 float gy = IMU.getGyroY_rads();

 float gz = IMU.getGyroZ_rads();

 // Display velocity in degrees/sec

 Serial.print("gx:");

 Serial.print(gx * RAD_TO_DEG, 4);

 Serial.print(",gy:");

 Serial.print(gy * RAD_TO_DEG, 4);

 Serial.print(",gz:");

 Serial.print(gz * RAD_TO_DEG, 4);

 Serial.println();

 delay(100);

}

WARNING
The MPU-9250 is a 3.3V I2C device, so if you are not using a 3.3V Arduino board you will need
a logic-level converter to protect the gyro’s SCL and SDA pins. See the introduction to Chapter 13
for more on I2C and using 3.3V devices.

MPU-9250 IMU connected using I2C

Discussion
The sketch starts out by including the MPU9250 library and declaring an
object to represent the IMU. Within setup(), it attempts to initialize the
IMU. If this fails, you may need to change the IMU_ADDRESS definition to
0x69 or check your wiring. After the IMU is initialized, the sketch changes
the gyro’s full range to +/– 500 degrees per second.

Within loop, the sketch reads the sensor and obtains the rotational velocity
in radians per second. It then uses the RAD_TO_DEG Arduino constant to
convert this to degrees per second. The output of the sketch is readable in
either the Serial Monitor or Serial Plotter.

See Also
See Chapter 13 for more about I2C.

See “Using 3.3-Volt Devices with 5-Volt Boards” for more about
connecting 3.3V devices to 5V boards.

Try the SparkFun tutorial for the MPU-9250. This tutorial uses a different
library, but the concepts are the same.

6.16 Detecting Direction
Problem
You want your sketch to determine direction from an electronic compass.

Solution
This recipe uses the magnetometer in the MPU-9250 nine degrees of
freedom (9DOF) inertial measurement unit (IMU) from Recipe 6.15.
Connect the sensor as shown in Figure 6-18. Each of the MPU-9250’s three
primary sensors (gyro, magnetometer, and accelerometer) read values in
three dimensions (x, y, z), which is where the nine degrees of freedom come
from:

https://oreil.ly/JSXJb

NOTE
Before you use the magnetometer, you must calibrate it. You can find a calibration sketch in this
GitHub issue. That sketch will store the calibration values in your microcontroller board’s
nonvolatile EEPROM memory. You will need to load the calibration values any time you want to
work with the magnetometer, as shown in the next sketch. If you use the sensor with a different
microcontroller board, you’ll need to run the calibration sketch again. Also, if you store anything
else in the EEPROM, you’ll need to make sure you don’t store it in the same location as the
calibration values.

/* Magnetometer sketch

 Read a magnetometer and display magnetic field strengths

*/

#include "MPU9250.h"

#include <math.h>

#include "EEPROM.h"

// I2C address of IMU. If this doesn't work, try 0x69.

#define IMU_ADDRESS 0x68

// Change this to the declination for your location.

// See https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml

#define DECLINATION (-14)

MPU9250 IMU(Wire, IMU_ADDRESS); // Declare the IMU object

void setup() {

 int status;

 Serial.begin(9600);

 while (!Serial);

 // Initialize the IMU

 status = IMU.begin();

 if (status < 0)

 {

 Serial.println("Could not initialize the IMU.");

 Serial.print("Error value: "); Serial.println(status);

 while (1); // halt the sketch

 }

 load_calibration();

}

https://oreil.ly/I58IP

void loop() {

 IMU.readSensor();

 // Obtain the magnetometer values across each axis in units of microTesla

 float mx = IMU.getMagX_uT();

 float my = IMU.getMagY_uT();

 float mz = IMU.getMagZ_uT();

 // From https://github.com/bolderflight/MPU9250/issues/33

 // Normalize the magnetometer data.

 float m = sqrtf(mx * mx + my * my + mz * mz);

 mx /= m;

 my /= m;

 mz /= m;

 // Display the magnetometer values

 Serial.print("mx:");

 Serial.print(mx, 4);

 Serial.print(",my:");

 Serial.print(my, 4);

 Serial.print(",mz:");

 Serial.print(mz, 4);

 Serial.println();

 float constrained =

 constrainAngle360(atan2f(-my, mx) + (DECLINATION * DEG_TO_RAD));

 float calcAngle = constrained * RAD_TO_DEG;

 Serial.print(calcAngle);

 Serial.println(" degrees");

 delay(100);

}

// From https://github.com/bolderflight/MPU9250/issues/33

float constrainAngle360(float dta) {

 dta = fmod(dta, 2.0 * PI);

 if (dta < 0.0)

 dta += 2.0 * PI;

 return dta;

}

// Load the calibration from the eeprom

// From https://github.com/bolderflight/MPU9250/issues/33

void load_calibration() {

 float hxb, hxs, hyb, hys, hzb, hzs;

 uint8_t eeprom_buffer[24];

_ p _ [];

 for (unsigned int i = 0; i < sizeof(eeprom_buffer); i++) {

 eeprom_buffer[i] = EEPROM.read(i);

 }

 memcpy(&hxb, eeprom_buffer, sizeof(hxb));

 memcpy(&hyb, eeprom_buffer + 4, sizeof(hyb));

 memcpy(&hzb, eeprom_buffer + 8, sizeof(hzb));

 memcpy(&hxs, eeprom_buffer + 12, sizeof(hxs));

 memcpy(&hys, eeprom_buffer + 16, sizeof(hys));

 memcpy(&hzs, eeprom_buffer + 20, sizeof(hzs));

 IMU.setMagCalX(hxb, hxs);

 IMU.setMagCalY(hyb, hys);

 IMU.setMagCalZ(hzb, hzs);

}

WARNING
If you want to use the IMU with a 5-volt Arduino board, see “Using 3.3-Volt Devices with 5-Volt
Boards” for details on how to use a logic-level converter.

Discussion
The compass module provides magnetic field intensities on three axes (x, y,
and z). These values vary as the compass orientation is changed with
respect to the Earth’s magnetic field (magnetic north).

As with the sketch shown in Recipe 6.15, this sketch configures and
initializes the IMU, but instead of showing gyro data, it reads magnetometer
readings in units of microTesla and converts them to a compass bearing.
(Another big difference is that it loads the calibration data from the
EEPROM.) For this sketch to work properly, the IMU must be on a level
surface. You must also set the declination for your geographic location by
changing the value of DECLINATION at the top of the sketch (use a negative
number for a west declination, positive for east). For more, refer to the
NGDC declination lookup tool.

The magnetometer readings are normalized by then dividing each reading
by the square root of the sum of the squares (RSS) of all of the readings.
The angle to magnetic north is calculated by adding the declination (in
radians) to the following formula: radians = arctan2(–my, mx),

https://oreil.ly/5oDok

constrained to 360 degrees (2 * pi radians) by the constrainAngle360
function. That result is converted to degrees by multiplying it by the
RAD_TO_DEG constant. Zero degrees indicates magnetic north.

To make a servo follow the compass direction over the first 180 degrees,
use the techniques shown in “Servos”, but use calcAngle to move the
servo as shown:

angle = constrain(calcAngle, 0, 180);

myservo.write(calcAngle);

6.17 Reading Acceleration
Problem
You want to respond to acceleration; for example, to detect when something
starts or stops moving. Or you want to detect how something is oriented
with respect to the Earth’s surface (measure acceleration due to gravity).

Solution
This recipe uses the accelerometer in the MPU-9250 nine degrees of
freedom (9DOF) inertial measurement unit (IMU) from Recipe 6.15.
Connect the sensor as shown in Figure 6-18.

WARNING
If you want to use the IMU with a 5-volt Arduino board, see “Using 3.3-Volt Devices with 5-Volt
Boards” for details on how to use a logic-level converter.

The simple sketch here uses the MPU-9250 to display the acceleration in
the x-, y-, and z-axes:

/* Accelerometer sketch

 * Read an accelerometer and display acceleration in m/s/s

 */

#include "MPU9250.h"

// I2C address of IMU. If this doesn't work, try 0x69.

#define IMU_ADDRESS 0x68

MPU9250 IMU(Wire, IMU_ADDRESS); // Declare the IMU object

void setup() {

 Serial.begin(9600);

 while(!Serial);

 // Initialize the IMU

 int status = IMU.begin();

 if (status < 0) {

 Serial.println("Could not initialize the IMU.");

 Serial.print("Error value: "); Serial.println(status);

 while(1); // halt the sketch

 }

}

void loop() {

 IMU.readSensor();

 // Obtain the rotational velocity in rads/second

 float ax = IMU.getAccelX_mss();

 float ay = IMU.getAccelY_mss();

 float az = IMU.getAccelZ_mss();

 // Display velocity in degrees/sec

 Serial.print("ax:"); Serial.print(ax, 4);

 Serial.print(",ay:"); Serial.print(ay, 4);

 Serial.print(",az:"); Serial.print(az, 4);

 Serial.println();

 delay(100);

}

Discussion
This sketch is similar to the gyro sketch from Recipe 6.15, except that it
displays acceleration along each axis in meters per second squared (m/s/s).
Even when stationary, you’ll notice that the z acceleration hovers around –
9.8 m/s/s. At least that’s what you’ll see if you’re running this sketch on

Earth, where gravity is roughly 9.8 m/s/s. If you see a value of 0 along the
z-axis, then the sensor is in free fall. The force that causes the 9.8 m/s/s
acceleration is the mechanical force of whatever is keeping the sensor from
falling (your hand, a table, the floor). Although the object appears to have
no acceleration from your viewpoint, it is accelerating relative to free fall,
which is the condition that would apply if there was nothing (no floor, no
table, no hand) between your sensor and the center of the Earth. If there was
nothing between your sensor and the center of the Earth, that would be a
somewhat unusual and certainly undesirable configuration of Earth’s mass,
at least from the viewpoint of Earth’s life forms.

You can use techniques from the previous recipes to extract information
from the accelerometer readings. You might need to check for a threshold to
work out movement (see Recipe 6.7 for an example of threshold detection).
You may find it useful to apply a moving average formula to the incoming
data.

If the accelerometer is reading horizontally, you can use the values directly
to work out movement. If it is reading vertically, you will need to take into
account the effects of gravity on the values. This is similar to the DC offset
in Recipe 6.8, but it can be complicated, as the accelerometer may be
changing orientation so that the effect of gravity is not a constant value for
each reading.

The data produced by accelerometers can be difficult to work with,
particularly trying to make decisions about movement over time—detecting
gestures, not just positions. Machine learning techniques are starting to be
used to process live sensor data and recognize how they relate to example
sets of data produced before. These approaches currently need to run on a
computer, and are still quite fiddly to set up, but can produce very useful
results.

See Also
An excellent example that is integrated with Arduino boards is the
Example-based Sensor Prediction system by David Mellis, built on top of
the Gesture Recognition Toolkit.

https://oreil.ly/67i7U

Also worth looking at is Wekinator.

SparkFun’s advanced library for the MPU-9250 includes pedometer, tap,
and orientation direction. It requires a SAMD-based Arduino or Arduino
compatible.

https://oreil.ly/qAxef
https://oreil.ly/pJyOI

Visual Output

7.0 Introduction
Visual output lets the Arduino convey information to users, and toward that
end, the Arduino supports a broad range of LED devices. (Arduino can also
display information with graphical display panels, which is covered in
Chapter 11.) Before delving into the recipes in this chapter, we’ll discuss
Arduino digital and analog output and explain how Arduino works with
light-emitting diodes (LEDs). This introduction will be a good starting point
if you are not yet familiar with using digital and analog outputs
(digitalWrite and analogWrite) or with using LEDs in a circuit. The
recipes in this chapter cover everything from simple single-LED displays to
creating the illusion of motion (Recipe 7.7) and showing shapes (Recipe
7.9).

Digital Output
All the pins that can be used for digital input can also be used for digital
output. Chapter 5 provided an overview of the Arduino pin layout; you may
want to look through the introduction section in that chapter if you are
unfamiliar with connecting things to Arduino pins.

Digital output causes the voltage on a pin to be either high (5 or 3.3 volts
depending on board) or low (0 volts). Use the digitalWrite(outputPin,
value) function to turn something on or off. The function has two
parameters: outputPin is the pin to control, and value is either HIGH (5 or
3.3 volts) or LOW (0 volts).

For the pin voltage to respond to this command, the pin must have been set
in output mode using the pinMode(outputPin, OUTPUT) command. The
sketch in Recipe 7.1 provides an example of how to use digital output.

Analog Output
Analog refers to levels that can be gradually varied up to their maximum
level (think of light dimmers and volume controls). Arduino has an
analogWrite function that can be used to control such things as the
intensity of an LED connected to the Arduino.

The analogWrite function is not truly analog, although it can behave like
analog, as you will see. analogWrite uses a technique called Pulse Width
Modulation (PWM) that emulates an analog signal using digital pulses.

PWM works by varying the proportion of the pulses’ on time to off time, as
shown in Figure 7-1. Low-level output is emulated by producing pulses that
are on for only a short period of time. Higher-level output is emulated with
pulses that are on more than they are off. When the pulses are repeated
quickly enough (almost five hundred times per second or faster on Arduino
boards), the pulsing cannot be detected by human senses, and the output
from things such as LEDs looks like it is being smoothly varied as the pulse
rate is changed.

PWM output for various analogWrite values

Arduino has a limited number of pins that can be used for PWM output. On
the Arduino Uno and compatible boards based on the ATmega328, you can
use pins 3, 5, 6, 9, 10, and 11. On the Arduino Mega board, you can use
pins 2 through 13 and 44 through 46 for PWM output. The Nano board has
only five PWM outputs, while the Zero, SparkFun RedBoard Turbo, and
Adafruit Metro Express M0 support PWM on every digital pin except 2 and
7. Many of the recipes that follow use pins that can be used for both digital
and PWM to minimize rewiring if you want to try out different recipes. If
you want to select different pins for PWM output, remember to choose one
of the supported analogWrite pins (other pins will not give any output).
The Zero, RedBoard Turbo, and Metro Express M0 boards all have a DAC
pin (A0) that produces a true analog signal. This is not intended for

controlling things like the brightness or motor speeds (PWM works better),
but is really useful for producing audio signals, as shown in Recipe 1.8.

Controlling Light
Controlling light using digital or analog output is a versatile, effective, and
widely used method for providing user interaction. Single LEDs, arrays,
and numeric displays are covered extensively in the recipes in this chapter.
LCD text and graphical displays require different techniques and are
covered in Chapter 11.

LED specifications
An LED is a semiconductor device (diode) with two leads, an anode and a
cathode. When the voltage on the anode is more positive than that on the
cathode (by an amount called the forward voltage), the device emits light
(photons). The anode is usually the longer lead, and there is often a flat spot
on the housing to indicate the cathode (see Figure 7-2). The LED color and
the exact value of the forward voltage depend on the construction of the
diode.

A typical red LED has a forward voltage of around 1.8 volts. If the voltage
on the anode is not 1.8 volts more positive than the cathode, no current will
flow through the LED and no light will be produced. When the voltage on
the anode becomes 1.8 volts more positive than that on the cathode, the
LED “turns on” (conducts) and effectively becomes a short circuit. You
must limit the current with a resistor, or the LED will (sooner or later) burn
out. Recipe 7.1 shows you how to calculate values for current-limiting
resistors.

You may need to consult an LED datasheet to select the correct LED for
your application, particularly to determine values for forward voltage and
maximum current. Tables 7-1 and 7-2 show the most important fields you
should look for on an LED datasheet.

Key datasheet specifications: absolute maximum ratings

Parameter Symbol Rating Units CommentParameter Symbol Rating Units Comment

Forward current IF 25 mA The maximum continuous current for
this LED

Peak forward current
(1/10 duty @ 1 kHz)

IFP 160 mA The maximum pulsed current (given
here for a pulse that is 1/10 on and 9/10
off)

Key datasheet specifications: electro-optical characteristics

Parameter Symbol Rating Units Comment

Luminous intensity IV 2 mcd If = 2 mA – brightness with 2 mA current

IV 40 mcd If = 20 mA – brightness with 20 mA current

Viewing angle 120 degrees The beam angle

Wavelength 620 nm The dominant or peak wavelength (color)

Forward voltage VF 1.8 volts The voltage across the LED when on

Arduino pins on Uno, Leonardo, and Mega boards can supply up to 40 mA
of current. This is plenty for a typical medium-intensity LED, but not
enough to drive the higher-brightness LEDs or multiple LEDs connected to
a single pin. Recipe 7.3 shows how to use a transistor to increase the current
through the LED.

The 3.3-volt boards have a lower current capacity; check the datasheet for
your board to ensure that you do not exceed the maximum ratings.

Multicolor LEDs consist of two or more LEDs in one physical package.
These may have more than two leads to enable separate control of the
different colors. There are many package variants, so you should check the
datasheet for your LED to determine how to connect the leads.

Multiplexing
Applications that need to control many LEDs can use a technique called
multiplexing. Multiplexing works by switching groups of LEDs (usually

arranged in rows or columns) in sequence. Recipe 7.12 shows how 32
individual LEDs (eight LEDs per digit, including decimal point) with four
digits can be driven with just 12 pins. Eight pins drive a digit segment for
all the digits and four pins select which digit is active. Scanning through the
digits quickly enough (at least 25 times per second) creates the impression
that the lights remain on rather than pulsing, through the phenomenon of
persistence of vision.

Charlieplexing uses multiplexing along with the fact that LEDs have
polarity (they only illuminate when the anode is more positive than the
cathode) to switch between two LEDs by reversing the polarity.

Maximum pin current
LEDs can draw more power than the Arduino chip is designed to handle.
The datasheet gives the absolute maximum ratings for the Arduino Uno
chip (ATmega328P) as 40 mA per pin. The chip is capable of sourcing and
sinking 200 mA overall, so you must also ensure that the total current is less
than this; for example, five pins providing a HIGH output (sourcing) and five
LOW (sinking) with each pin at 40 mA. It is good practice to design your
applications to operate well within the absolute maximum ratings for best
reliability, so best to keep current at or below 30 mA to provide a large
comfort margin. For hobby use where more pin current is wanted and
reduced reliability is acceptable, you can drive a pin with up to 40 mA as
long as the 200 mA source and 200 mA sink limits per chip are not
exceeded.

See the Discussion section of Recipe 7.3 for a tip on how to get increased
current without using external transistors.

NOTE
The datasheet refers to 40 mA as the absolute maximum rating, and some engineers may be
hesitant to operate anywhere near this value. However, the 40 mA figure is already derated by
Atmel, which says the pins can safely handle this current. Recipes that follow refer to the 40 mA
maximum rating; however, if you are building anything where reliability is important, derating
this to 30 mA to provide an added comfort margin is prudent. But bear in mind that 3.3-volt
boards and even some 5-volt boards have a lower rating: the Uno WiFi Rev 2 board is rated at 20
mA, the Zero at 7 mA. If you use a different board, check the datasheet.

7.1 Connecting and Using LEDs
Problem
You want to control one or more LEDs and select the correct current-
limiting resistor so that you do not damage the LEDs.

Solution
Turning an LED on and off is easy to do with Arduino, and some of the
recipes in previous chapters have included this capability (see Recipe 5.1
for an example that controls the built-in LED on pin 13). The recipe here
provides guidance on choosing and using external LEDs. Figure 7-2 shows
the wiring for three LEDs, but you can run this sketch with just one or two.

Connecting external LEDs

TIP
The schematic symbol for the cathode (the negative pin) is k, not c. The schematic symbol c is
used for a capacitor.

The following sketch lights up three LEDs connected to pins 3, 5, and 6 in
sequence for one second:

/*

 * LEDs sketch

 * Blink three LEDs each connected to a different digital pin

 */

const int firstLedPin = 3; // choose the pin for each of the LEDs

const int secondLedPin = 5;

const int thirdLedPin = 6;

void setup()

{

 pinMode(firstLedPin, OUTPUT); // declare LED pins as output

 pinMode(secondLedPin, OUTPUT); // declare LED pins as output

 pinMode(thirdLedPin, OUTPUT); // declare LED pins as output

}

void loop()

{

 // flash each of the LEDs for 1000 ms (1 second)

 blinkLED(firstLedPin, 1000);

 blinkLED(secondLedPin, 1000);

 blinkLED(thirdLedPin, 1000);

}

// blink the LED on the given pin for the duration in milliseconds

void blinkLED(int pin, int duration)

{

 digitalWrite(pin, HIGH); // turn LED on

 delay(duration);

 digitalWrite(pin, LOW); // turn LED off

 delay(duration);

}

The sketch sets the pins connected to LEDs as output in the setup function.
The loop function calls blinkLED to flash the LED for each of the three
pins. blinkLED sets the indicated pin HIGH for one second (1,000 ms).

Discussion
Because the anodes are connected to Arduino pins and the cathodes are
connected to ground, the LEDs will light when the pin goes HIGH and will
be off when the pin is LOW. You can illuminate the LED when the pin is LOW
by connecting the cathodes to the pins and the anodes to ground (the
resistors can be used on either side of the LED).

When LEDs are connected with the anode connected to +5V, as shown in
Figure 7-3, the LEDs light when the pin goes LOW (the visual effect would
reverse—one of the LEDs would turn off for a second while the other two
would be lit).

Connecting external LEDs with the cathode connected to pins

NOTE
LEDs require a series resistor to control the current or they can quickly burn out. External LEDs
need to be connected through a series resistor on either the anode or the cathode.

A resistor in series with the LED is used to control the amount of current
that will flow when the LED conducts. To calculate the resistor value, you
need to know the input power supply voltage (VS, usually 5 volts), the LED
forward voltage (VF), and the amount of current (I) that you want to flow
through the LED.

The formula for the resistance in ohms (known as Ohm’s law) is:
R = (VS – VF) / I

For example, driving an LED with a forward voltage of 1.8 volts with 15
mA of current using an input supply voltage of 5 volts would use the
following values:

Vs = 5 (for a 5V Arduino board)
VF = 1.8 (the forward voltage of the LED)

I = 0.015 (1 milliamp [mA] is one one-thousandth of an amp, so 15 mA
is 0.015 amps)

The voltage across the LED when it is on (Vs – VF) is 5 – 1.8, which is 3.2
volts.

Therefore, the calculation for the series resistor is 3.2 / 0.015, which is 213
ohms.

The value of 213 ohms is not a standard resistor value, so you can round
this up to 220 ohms.

The resistor is shown in Figure 7-2 connected between the cathode and
ground, but it can be connected to the other side of the LED instead
(between the voltage supply and the anode).

WARNING
Arduino Uno and Mega pins have a specified maximum current of 40 mA. If your LED needs
more current than your board can supply, see Recipe 7.3.

See Also
Recipe 7.3

7.2 Adjusting the Brightness of an LED
Problem
You want to control the intensity of one or more LEDs from your sketch.

Solution
Connect each LED to an analog (PWM) output. Use the wiring shown in
Figure 7-2. The sketch will fade the LED(s) from off to maximum intensity
and back to off, with each cycle taking around five seconds:

/*

 * LedBrightness sketch

 * controls the brightness of LEDs on analog output ports

 */

const int firstLed = 3; // specify the pin for each of the LEDs

const int secondLed = 5;

const int thirdLed = 6;

int brightness = 0;

int increment = 1;

void setup()

{

 // pins driven by analogWrite do not need to be declared as outputs

}

void loop()

{

 if(brightness > 255)

 {

 increment = -1; // count down after reaching 255

 }

 else if(brightness < 1)

 {

 increment = 1; // count up after dropping back down to 0

 }

 brightness = brightness + increment; // increment (or decrement sign is

minus)

 // write the brightness value to the LEDs

 analogWrite(firstLed, brightness);

 analogWrite(secondLed, brightness);

 analogWrite(thirdLed, brightness);

 delay(10); // 10 ms for each step change means 2.55 secs to fade up or down

}

Discussion
This uses the same wiring as the previous sketch, but here the pins are
controlled using analogWrite instead of digitalWrite. analogWrite
uses PWM to control the power to the LED; see this chapter’s introduction
for more on analog output.

The sketch fades the light level up and down by increasing (on fade up) or
decreasing (on fade down) the value of the brightness variable in each
pass through the loop. This value is given to the analogWrite function for
the three connected LEDs. The minimum value for analogWrite is 0—this
keeps the voltage on the pin at 0. The maximum value is 255 (5V on a 5V
board, 3.3V on a 3.3V board).

TIP
It is good practice to restrict the range of values to the range of 0–255; values outside that range
can give unexpected results. See Recipe 3.5.

When the brightness variable reaches the maximum value, it will start to
decrease, because the sign of the increment is changed from +1 to –1
(adding –1 to a value is the same as subtracting 1 from that value).

See Also
This chapter’s Recipe 7.0 describes how Arduino analog output works.

Boards such as the Due, Zero, and MKR1000 can have the PWM range to a
maximum of 4,095, although they all default to the standard 255. If you
need to use this higher resolution you can set this using the
analogWriteResolution function.

7.3 Driving High-Power LEDs
Problem
You need to switch or control the intensity of LEDs that need more power
than the Arduino pins can provide. Arduino Uno and Mega chips can only
handle current up to 40 mA per pin.

Solution

https://oreil.ly/7_kOi

Use a transistor to switch on and off the current flowing through the LEDs.
Connect the LED as shown in Figure 7-4. You can use the same code as
shown in Recipes 7.1 and 7.2 (just make sure the pins connected to the
transistor base match the pin number used in your sketch).

Using transistors to drive high-current LEDs

Discussion
Figure 7-4 has an arrow indicating a +V power source. This can be the
Arduino +5V power pin, which can supply up to 400 mA or so if powered
from USB. The available current when powered through the external power
socket is dependent on the current rating and voltage of your DC power
supply (the regulator dissipates excess voltage as heat—check that the
onboard regulator, a 3-pin chip usually near the DC input socket, is not too
hot to the touch). If more current is required than the Arduino +5V can
provide, you need a power source separate from the Arduino to drive the
LEDs. See Appendix C for information on using an external power supply.

TIP
If you’re using an external power supply, remember to connect the ground of the external supply
to the Arduino ground.

Current is allowed to flow from the collector to the emitter when the
transistor is switched on. No significant current flows when the transistor is
off. The Arduino can turn a transistor on by making the voltage on a pin
HIGH with digitalWrite. A resistor is necessary between the pin and the
transistor base to prevent too much current from flowing—1K ohms is a
typical value (this provides 5 mA of current to the base of the transistor).
See Appendix B for advice on how to read a datasheet and pick and use a
transistor. You can also use specialized integrated circuits such as the
ULN2003A for driving multiple outputs. These contain seven high-current
(0.5 amp) output drivers.

The resistor used to limit the current flow through the LED is calculated
using the technique given in Recipe 7.1, but you may need to take into
account that the source voltage will be reduced slightly because of the small
voltage drop through the transistor. This will usually be less than three-
fourths of a volt (the actual value can be found by looking at collector-
emitter saturation voltage; see Appendix B). High-current LEDs (1 watt or
more) are best driven using a constant current source (a circuit that actively
controls the current) to manage the current through the LED.

How to exceed 40 mA on an ATmega chip
If your board uses an ATmega chip you can also connect multiple pins in
parallel to increase current beyond the 40 mA per pin rating (see
“Maximum pin current”).

Figure 7-5 shows how to connect an LED that can be driven with 60 mA
through two pins. This shows the LED connecting the resistors to ground
through pins 2 and 7—both pins need to be LOW for the full 60 mA to flow
through the LED. The separate resistors are needed; don’t try to use a single
resistor to connect the two pins.

How to exceed 40 mA

This technique can also be used to source current. For example, flip the
LED around—connect the lead that was going to the resistors (cathode) to
GND and the other end (anode) to the resistors—and you illuminate the
LED by setting both pins to HIGH.

It is best if you use pins that are not adjacent to minimize stress on the chip.
This technique works for any pin using digitalWrite; it does not work
with analogWrite—if you need more current for analog outputs (PWM),
you will need to use transistors as explained previously.

This technique is not recommended for use on 32-bit boards.

See Also
The Web reference for constant current drivers

https://oreil.ly/XeC63

7.4 Adjusting the Color of an LED
Problem
You want to control the color of an RGB LED under program control.

Solution
RGB LEDs have red, green, and blue elements in a single package, with
either the anodes connected together (known as common anode) or the
cathodes connected together (known as common cathode). Use the wiring in
Figure 7-6 for common anode (the anodes are connected to +5 volts and the
cathodes are connected to pins). Use Figure 7-2 if your RGB LEDs are
common cathode.

RGB connections (common anode)

This sketch continuously fades through the color spectrum by varying the
intensity of the red, green, and blue elements:

/*

 * RGB_LEDs sketch

 * RGB LEDs driven from PWM output ports

*/

const int redPin = 3; // choose the pin for each of the LEDs

const int greenPin = 5;

const int bluePin = 6;

const bool invert = true; // set true if common anode, false if common cathode

int color = 0; // a value from 0 to 255 representing the hue

int R, G, B; // the Red Green and Blue color components

void setup()

{

 // pins driven by analogWrite do not need to be declared as outputs

}

void loop()

{

 int brightness = 255; // 255 is maximum brightness

 hueToRGB(color, brightness); // call function to convert hue to RGB

 // write the RGB values to the pins

 analogWrite(redPin, R);

 analogWrite(greenPin, G);

 analogWrite(bluePin, B);

 color++; // increment the color

 if (color > 255)

 color = 0;

 delay(10);

}

// function to convert a color to its Red, Green, and Blue components.

//

void hueToRGB(int hue, int brightness)

{

 unsigned int scaledHue = (hue * 6);

 // segment 0 to 5 around the color wheel

 unsigned int segment = scaledHue / 256;

 // position within the segment

 unsigned int segmentOffset = scaledHue - (segment * 256);

 unsigned int complement = 0;

 unsigned int prev = (brightness * (255 - segmentOffset)) / 256;

 unsigned int next = (brightness * segmentOffset) / 256;

 if (invert)

()

 {

 brightness = 255 - brightness;

 complement = 255;

 prev = 255 - prev;

 next = 255 - next;

 }

 switch (segment) {

 case 0: // red

 R = brightness;

 G = next;

 B = complement;

 break;

 case 1: // yellow

 R = prev;

 G = brightness;

 B = complement;

 break;

 case 2: // green

 R = complement;

 G = brightness;

 B = next;

 break;

 case 3: // cyan

 R = complement;

 G = prev;

 B = brightness;

 break;

 case 4: // blue

 R = next;

 G = complement;

 B = brightness;

 break;

 case 5: // magenta

 default:

 R = brightness;

 G = complement;

 B = prev;

 break;

 }

}

Discussion
The color of an RGB LED is determined by the relative intensity of its red,
green, and blue elements. The core function in the sketch (hueToRGB)

handles the conversion of a hue value ranging from 0 to 255 into a
corresponding color ranging from red to blue. The spectrum of visible
colors is often represented using a color wheel consisting of the primary
and secondary colors with their intermediate gradients. The spokes of the
color wheel representing the six primary and secondary colors are handled
by six case statements. The code in a case statement is executed if the
segment variable matches the case number, and if so, the RGB values are
set as appropriate for each. Segment 0 is red, segment 1 is yellow, segment
2 is green, and so on.

If you also want to adjust the brightness, you can reduce the value of the
brightness variable. The following shows how to adjust the brightness
with a variable resistor or sensor connected as shown in Figures 7-14 and 7-
18:

int brightness = map(analogRead(A0),0,1023,0,255);

The brightness variable will range in value from 0 to 255 as the analog
input ranges from 0 to 1,023, causing the LED to increase brightness as the
value increases.

See Also
Recipe 2.16

7.5 Controlling Lots of Color LEDs
Problem
You want to control the color of many LEDs using a single pin.

Solution
This recipe shows how to use smart RGB LEDs with a tiny controller built
into each LED that enables many LEDs to be controlled from a single
digital pin. This sketch uses the Adafruit Neopixels library (installed using

the Arduino Library Manager) to change LED colors based on readings
from an analog pin. Figure 7-7 shows the connection for a NeoPixel ring
and a potentiometer to control the color:

/*

 * SimplePixel sketch

 * LED color changes with sensor value

 */

#include <Adafruit_NeoPixel.h>

const int sensorPin = A0; // analog pin for sensor

const int ledPin = 6; // the pin the LED strip is connected to

const int count = 8; // how many LEDs in the strip

// declare LED strip

Adafruit_NeoPixel leds = Adafruit_NeoPixel(count, ledPin, NEO_GRB +

NEO_KHZ800);

void setup()

{

 leds.begin(); // initialize LED strip

 for (int i = 0; i < count; i++) {

 leds.setPixelColor(i, leds.Color(0,0,0)); // turn each LED off

 }

 leds.show(); // refresh the strip with the new pixel values (all off)

}

void loop()

{

 static unsigned int last_reading = -1;

 int reading = analogRead(sensorPin);

 if (reading != last_reading) { // If the value has changed

 // Map the analog reading to the color range of the NeoPixel

 unsigned int mappedSensorReading = map(reading, 0, 1023, 0, 65535);

 // Update the pixels with a slight delay to create a sweeping effect

 for (int i = 0; i < count; i++) {

 leds.setPixelColor(i, leds.gamma32(

 leds.ColorHSV(mappedSensorReading, 255, 128)));

 leds.show();

 delay(25);

 }

 last_reading = reading;

 }

}

Connecting a NeoPixel ring

WARNING
If you are using a 3.3V board, you will need to connect both the potentiometer and NeoPixel’s
positive lead to 3.3V instead of 5V.

Discussion
This sketch drives a stick, a strand, or a group of chained Adafruit
NeoPixels that have eight RGB LEDs. You can change the variable
numOfLeds if you connect a different number of LEDs, but bear in mind
that each LED could consume up to 60 mA (if you set to white at full
brightness). A USB port can power up to eight, but above that you will need
to attach the strip’s power connectors to a higher-current 5V power supply,

but you must connect the power supply’s ground to Arduino ground. If you
are using a 3.3V board, you should not power the NeoPixels with more than
3.7V (such as from a lithium ion polymer battery), because NeoPixels
require a data signal that’s close to their supply voltage. When using an
external power supply, you should also connect a 1,000 uf capacitor
between the positive and negative supply pins to protect the pixels (check
the polarity on the capacitor and make sure you are connecting it correctly).

The leds variable is declared with this line of code:

Adafruit_NeoPixel leds = Adafruit_NeoPixel(count, ledPin, NEO_GRB +

NEO_KHZ800);

This creates the memory structure to store the color of each LED and
communicate with the strip. You specify the number of LEDs in the strip
(count), the Arduino pin the data line is connected to (ledPin), and the
type of LED strip you are using (in this case: NEO_GRB+NEO_KHZ800). You
will need to check the documentation for the library and your strip to see if
you need a different setting, but you won’t do any harm to try all the
options listed with the library to find one that works.

To set the color of an individual LED you use the led.setPixelColor
method. You need to specify the number of the LED (starting at 0 for the
first one) and the desired color. To transfer data to the LEDs you need to
call led.show. You can alter multiple LEDs’ values before calling
led.show to make them change together. Values not altered will remain at
their previous settings. When you create the Adafruit_NeoPixel object, all
the values are initialized to 0.

The NeoPixel library includes its own function for converting a hue to an
RGB value: ColorHSV. The first argument is the hue, the second is the color
saturation, and the third is brightness. The gamma32 function performs a
conversion on the output of ColorHSV to compensate between the way that
computers represent colors and the way that humans perceive them.

Each LED “pixel” has connections for data input and output, power, and
ground. Arduino drives the data input of the first pixel, the data output of

which is connected to the data input of the next in the chain. You can buy
individual pixels or strips that come pre-connected.

If Your Strip Is Not Supported by the Adafruit Library
Early LED strips used the WS2811 chip. There have been various other versions since: WS2812,
WS2812B, and APA102, for example. If your LEDs are not supported by the Adafruit library,
then try the Fast LED library.

The Arduino-compatible Teensy 3.x and higher can control eight strips on
different pins and uses a combination of high-speed hardware and software
to enable very high-quality animation.

The LEDs are available individually, but also on flexible strips in rolls, at
different spacings (specified in LEDs/meter or foot). Adafruit produces a
wide range of PCB form factors including circles of LEDs, short strips, and
panels under the brand name NeoPixel.

See Also
The Adafruit NeoPixel Uber Guide

Teensy library, which also has some good pictures of wiring for power
supplies with large numbers of LEDs, and a processing program that
extracts the data from video for you to add to code to display the video on
the strands.

7.6 Sequencing Multiple LEDs: Creating a
Bar Graph
Problem
You want an LED bar graph that lights LEDs in proportion to a value in
your sketch or a value read from a sensor.

http://fastled.io/
https://www.pjrc.com/teensy
https://oreil.ly/zgAVa
https://oreil.ly/yxGBM

Solution
You can connect the LEDs as shown in Figure 7-2 (using additional pins if
you want more LEDs). Figure 7-8 shows six LEDs connected on
consecutive pins.

Six LEDs with cathodes connected to Arduino pins

The following sketch turns on a series of LEDs, with the number being
proportional to the value of a sensor connected to an analog input port (see
Figure 7-14 or Figure 7-18 to see how a sensor is connected):

/*

 * Bargraph sketch

 *

 * Turns on a series of LEDs proportional to a value of an analog sensor.

 * Six LEDs are controlled but you can change the number of LEDs by changing

 * the value of NbrLEDs and adding the pins to the ledPins array

 */

const int NbrLEDs = 6;

const int ledPins[] = { 2, 3, 4, 5, 6, 7 };

[] { , , , , , };

const int analogInPin = A0; // Analog input pin connected to variable resistor

// Swap values of the following two #defines if cathodes are connected to Gnd

#define LED_ON LOW

#define LED_OFF HIGH

int sensorValue = 0; // value read from the sensor

int ledLevel = 0; // sensor value converted into LED 'bars'

void setup()

{

 for (int led = 0; led < NbrLEDs; led++)

 {

 pinMode(ledPins[led], OUTPUT); // make all the LED pins outputs

 }

}

void loop()

{

 sensorValue = analogRead(analogInPin); // read the analog in

value

 ledLevel = map(sensorValue, 10, 1023, 0, NbrLEDs); // map to the number of

LEDs

 for (int led = 0; led < NbrLEDs; led++)

 {

 if (led < ledLevel) {

 digitalWrite(ledPins[led], LED_ON); // turn on pins below the level

 }

 else {

 digitalWrite(ledPins[led], LED_OFF); // turn off pins higher than the

level

 }

 }

}

Discussion
The pins connected to LEDs are held in the array ledPins. To change the
number of LEDs, you can add (or remove) elements from this array, but
make sure the variable NbrLEDs is the same as the number of elements
(which should be the same as the number of pins). You can have the
compiler calculate the value of NbrLEDs for you by replacing this line:

const int NbrLEDs = 6;

with this line:

const int NbrLEDs = sizeof(ledPins) / sizeof(ledPins[0]);

The sizeof function returns the size (number of bytes) of a variable—in
this case, the number of bytes in the ledPins array. Because it is an array of
integers (with two bytes per element), the total number of bytes in the array
is divided by the size of one element (sizeof(ledPins[0])) and this gives
the number of elements.

The Arduino map function is used to calculate the number of LEDs that
should be lit as a proportion of the sensor value. The code loops through
each LED, turning it on if the proportional value of the sensor is greater
than the LED number. For example, if the sensor value is below 10, no pins
are lit; if the sensor is at half value, half are lit. In an ideal world, a
potentiometer at its lowest setting will return zero, but it’s likely to drift in
the real world. When the sensor is at maximum value, all the LEDs are lit.
If you find that the last LED flickers when the potentiometer is at its
maximum value, try lowering the second argument to map from 1023 to
1000 or so.

Figure 7-8 shows all the anodes connected together (known as common
anode) and the cathodes connected to the pins; the pins need to be LOW for
the LED to light. If the LEDs have the anodes connected to pins (as shown
in Figure 7-2) and the cathodes are connected together (known as common
cathode), the LED is lit when the pin goes HIGH. The sketch in this recipe
uses the constant names LED_ON and LED_OFF to make it easy to select
common anode or common cathode connections. To change the sketch for
common cathode connection, swap the values of these constants as follows:

const bool LED_ON = HIGH; // HIGH is on when using common cathode connection

const bool LED_OFF = LOW;

You may want to slow down the decay (rate of change) in the lights; for
example, to emulate the movement of the indicator of a sound volume

meter. Here is a variation on the sketch that slowly decays the LED bars
when the level drops:

/*

 * LED bar graph - decay version

 */

const int ledPins[] = {2, 3, 4, 5, 6, 7};

const int NbrLEDs = sizeof(ledPins) / sizeof(ledPins[0]);

const int analogInPin = A0; // Analog input pin connected to variable resistor

const int decay = 10; // increasing this reduces decay rate of

storedValue

// Swap values of the following two #defines if cathodes are connected to Gnd

#define LED_ON LOW

#define LED_OFF HIGH

// the stored (decaying) sensor value

int storedValue = 0;

void setup()

{

 for (int led = 0; led < NbrLEDs; led++)

 {

 pinMode(ledPins[led], OUTPUT); // make all the LED pins outputs

 }

}

void loop()

{

 int sensorValue = analogRead(analogInPin); // read the analog in value

 storedValue = max(sensorValue, storedValue); // use sensor value if

higher

 int ledLevel = map(storedValue, 10, 1023, 0, NbrLEDs);// map to number of

LEDs

 for (int led = 0; led < NbrLEDs; led++)

 {

 if (led < ledLevel) {

 digitalWrite(ledPins[led], LED_ON); // turn on pins less than the level

 }

 else {

 digitalWrite(ledPins[led], LED_OFF); // turn off pins higher

 // than the level

 }

 }

 storedValue = storedValue - decay; // decay the value

 delay(10); // wait 10 ms before next loop

}

The decay is handled by the line that uses the max function. This returns
either the sensor value or the stored decayed value, whichever is higher. If
the sensor is higher than the decayed value, this is saved in storedValue.
Otherwise, the level of storedValue is reduced by the constant decay each
time through the loop (set to 10 ms by the delay function). Increasing the
value of the decay constant will reduce the time for the LEDs to fade to all
off.

You could implement this bar graph using NeoPixels, as mentioned in the
previous recipe. The code for this would be:

/*

 * PixelBarGraph.ino

 * Sensor value determines how many LEDs to light

 */

#include <Adafruit_NeoPixel.h>

const int sensorPin = A0; // analog pin for sensor

const int ledsPin = 2; // the pin the LED strip is connected to

const int numOfLeds = 16; // how many LEDs in the strip

//used to automatically map sensor values

const int minReading = 0;

const int maxReading = 1023;

//declare LED strip

Adafruit_NeoPixel leds =

 Adafruit_NeoPixel(numOfLeds, ledsPin, NEO_GRB + NEO_KHZ800);

void setup()

{

 leds.begin(); //initialize led strip

 leds.setBrightness(25);

}

void loop()

{

 int sensorReading = analogRead(A0);

 int nbrLedsToLight = map(sensorReading, minReading, maxReading, 0,

numOfLeds);

 for (int i = 0; i < numOfLeds; i++)

 {

 if (i < nbrLedsToLight)

 leds.setPixelColor(i, leds.Color(0, 0, 255)); // blue

 else

 leds.setPixelColor(i, leds.Color(0, 255, 0)); // green

 }

 leds.show();

}

See Also
Recipe 3.6 explains the max function.

Recipe 5.6 has more on reading a sensor with the analogRead function.

Recipe 5.7 describes the map function.

See Recipes 12.2 and 12.1 if you need greater precision in your decay
times. The total time through the loop is actually greater than 10 ms
because it takes an additional millisecond or so to execute the rest of the
loop code.

7.7 Sequencing Multiple LEDs: Making a
Chase Sequence
Problem
You want to light LEDs in a “chasing lights” sequence. This sequence was
used in special effects on the TV shows Knight Rider and Battlestar
Galactica, both created by Glen A. Larson, so this effect is also called a
“Larson Scanner.”

Solution
You can use the same connection as shown in Figure 7-8:

/* Chaser

 */

const int NbrLEDs = 6;

const int ledPins[] = {2, 3, 4, 5, 6, 7};

const int wait_time = 30;

// Swap values of the following two #defines if cathodes are connected to Gnd

#define LED_ON LOW

#define LED_OFF HIGH

void setup()

{

 for (int led = 0; led < NbrLEDs; led++)

 {

 pinMode(ledPins[led], OUTPUT);

 }

}

void loop()

{

 for (int led = 0; led < NbrLEDs - 1; led++)

 {

 digitalWrite(ledPins[led], LED_ON);

 delay(wait_time);

 digitalWrite(ledPins[led + 1], LED_ON);

 delay(wait_time);

 digitalWrite(ledPins[led], LED_OFF);

 delay(wait_time * 2);

 }

 for (int led = NbrLEDs - 1; led > 0; led--) {

 digitalWrite(ledPins[led], LED_ON);

 delay(wait_time);

 digitalWrite(ledPins[led - 1], LED_ON);

 delay(wait_time);

 digitalWrite(ledPins[led], LED_OFF);

 delay(wait_time * 2);

 }

}

Discussion
This code is similar to the code in Recipe 7.6, except the pins are turned on
and off in a fixed sequence rather than depending on a sensor level. There
are two for loops; the first produces the left-to-right pattern by lighting up

LEDs from left to right. This loop starts with the first (leftmost) LED and
steps through adjacent LEDs until it reaches and illuminates the rightmost
LED. The second for loop lights the LEDs from right to left by starting at
the rightmost LED and decrementing (decreasing by one) the LED that is lit
until it gets to the first (rightmost) LED. The delay period is set by the wait
variable and can be chosen to provide the most pleasing appearance.

7.8 Controlling an LED Matrix Using
Multiplexing
Problem
You have a matrix of LEDs and want to minimize the number of Arduino
pins needed to turn LEDs on and off.

Solution
This sketch uses an LED matrix of 64 LEDs, with anodes connected in
rows and cathodes in columns (as in the Jameco 2132349). Figure 7-9
shows the connections. (Dual-color LED displays may be easier to obtain,
and you can drive just one of the colors if that is all you need.)

WARNING
This is a relatively power-hungry solution, and is only suitable for the Arduino Uno and other
boards based on the ATmega328. The Uno WiFi Rev2 and Nano Every, as well as most (if not all)
32-bit boards, cannot safely deliver enough current to drive all these LEDs. See Recipes 7.10 or
7.14 for a suitable Solution.

/*

 * matrixMpx sketch

 *

 * Sequence LEDs starting from first column and row until all LEDs are lit

 * Multiplexing is used to control 64 LEDs with 16 pins

 */

const int columnPins[] = {2, 3, 4, 5, 6, 7, 8, 9};

const int rowPins[] = {10,11,12,A1,A2,A3,A4,A5};

int pixel = 0; // 0 to 63 LEDs in the matrix

int columnLevel = 0; // pixel value converted into LED column

int rowLevel = 0; // pixel value converted into LED row

void setup()

{

 for (int i = 0; i < 8; i++)

 {

 pinMode(columnPins[i], OUTPUT); // make all the LED pins outputs

 pinMode(rowPins[i], OUTPUT);

 }

}

void loop()

{

 pixel = pixel + 1;

 if(pixel > 63)

 pixel = 0;

 columnLevel = pixel / 8; // map to the number of columns

 rowLevel = pixel % 8; // get the fractional value

 for (int column = 0; column < 8; column++)

 {

 digitalWrite(columnPins[column], LOW); // connect this column to GND

 for(int row = 0; row < 8; row++)

 {

 if (columnLevel > column)

 {

 digitalWrite(rowPins[row], HIGH); // connect all LEDs in row to +V

 }

 else if (columnLevel == column && rowLevel >= row)

 {

 digitalWrite(rowPins[row], HIGH);

 }

 else

 {

 digitalWrite(columnPins[column], LOW); // turn off all LEDs in this

row

 }

 delayMicroseconds(300); // delay gives frame time of 20 ms for 64

LEDs

 digitalWrite(rowPins[row], LOW); // turn off LED

 }

 // disconnect this column from Ground

//

 digitalWrite(columnPins[column], HIGH);

 }

}

An LED matrix connected to 16 digital pins

WARNING
The wiring shown is based on Jameco part number 2132349, which represents a common form
factor for this kind of array. But LED matrix displays do not have a standard pinout, so you must
check the datasheet for your display. Wire the rows of anodes and columns of cathodes as shown
in Figure 7-16 or Figure 7-17, but use the LED pin numbers in your datasheet.

Figure 7-9 illustrates the logical arrangement of the pins as they relate to
columns and rows. The numbers of the pins in the diagram correspond to
the physical layout. Generally, the pin numbering follows a U-shaped
pattern starting in the top left (1–8 from the top of the left column of pins to

the bottom; 9–16 from the bottom of the right column of pins to the top).
The trick is orienting the part so that pin 1 is in the upper left. You will need
to look for an indentation, often in the shape of a small dot, that indicates
which pin is 1. It is probably on the side, directly on the casing of the
component. When in doubt, check the datasheet.

Discussion
The resistor’s value must be chosen to ensure that the maximum current
through a pin does not exceed 40 mA on the Arduino Uno (and other boards
based on the ATmega328; do not use this Solution with a 3.3V board or any
board that cannot handle 40 mA per pin). Because the current for up to
eight LEDs can flow through each column pin, the maximum current for
each LED must be one-eighth of 40 mA, or 5 mA. Each LED in a typical
small red matrix has a forward voltage of around 1.8 volts. Calculating the
resistor that results in 5 mA with a forward voltage of 1.8 volts gives a
value of 680 ohms. Check your datasheet to find the forward voltage of the
matrix you want to use. Each column of the matrix is connected through the
series resistor to a digital pin. When the column pin goes low and a row pin
goes high, the corresponding LED will light. For all LEDs where the
column pin is high or its row pin is low, no current will flow through the
LED and it will not light.

The for loop scans through each row and column and turns on sequential
LEDs until all LEDs are lit. The loop starts with the first column and row
and increments the row counter until all LEDs in that row are lit; it then
moves to the next column, and so on, lighting another LED with each pass
through the loop until all the LEDs are lit.

You can control the number of lit LEDs in proportion to the value from a
sensor (see Recipe 5.6 for connecting a sensor to the analog port) by
making the following changes to the sketch.

Comment out or remove these three lines from the beginning of the loop:

pixel = pixel + 1;

 if(pixel > 63)

 pixel = 0;

Replace them with the following lines that read the value of a sensor on pin
0 and map this to a number of pixels ranging from 0 to 63:

int sensorValue = analogRead(0); // read the analog in value

 pixel = map(sensorValue, 0, 1023, 0, 63); // map sensor value to pixel

(LED)

You can test this with a variable resistor connected to analog input pin 0
connected as shown in Figure 5-7 in Chapter 5. The number of LEDs lit
will be proportional to the value of the sensor.

You don’t have to light an entire row at once. The following sketch will
light one LED at a time as it goes through the sequence:

/*

 * matrixMpx sketch, one at a time

 *

 * Sequence LEDs starting from first column and row, one at a time

 * Multiplexing is used to control 64 LEDs with 16 pins

 */

const int columnPins[] = {2, 3, 4, 5, 6, 7, 8, 9};

const int rowPins[] = {10,11,12,A1,A2,A3,A4,A5};

int pixel = 0; // 0 to 63 LEDs in the matrix

void setup()

{

 for (int i = 0; i < 8; i++)

 {

 pinMode(columnPins[i], OUTPUT); // make all the LED pins outputs

 pinMode(rowPins[i], OUTPUT);

 digitalWrite(columnPins[i], HIGH);

 }

}

void loop()

{

 pixel = pixel + 1;

 if(pixel > 63)

 pixel = 0;

 int column = pixel / 8; // map to the number of columns

 int row = pixel % 8; // get the fractional value

 digitalWrite(columnPins[column], LOW); // Connect this column to GND

 digitalWrite(rowPins[row], HIGH); // Take this row HIGH

 delay(125); // pause briefly

 digitalWrite(rowPins[row], LOW); // Take the row low

 digitalWrite(columnPins[column], HIGH); // Disconnect the column from GND

}

7.9 Displaying Images on an LED Matrix
Problem
You want to display one or more images on an LED matrix, perhaps
creating an animation effect by quickly alternating multiple images.

Solution
This Solution can use the same wiring as in Recipe 7.8. The sketch creates
the effect of a heart beating by briefly lighting LEDs arranged in the shape
of a heart. A small heart followed by a larger heart is flashed for each
heartbeat (the images look like Figure 7-10):

/*

 * matrixMpxAnimation sketch

 * animates two heart images to show a beating heart

 */

// the heart images are stored as bitmaps - each bit corresponds to an LED

// a 0 indicates the LED is off, 1 is on

byte bigHeart[] = {

 B01100110,

 B11111111,

 B11111111,

 B11111111,

 B01111110,

 B00111100,

 B00011000,

 B00000000};

byte smallHeart[] = {

 B00000000,

 B00000000,

 B00010100,

 B00111110,

 B00111110,

 B00011100,

 B00001000,

 B00000000};

const int columnPins[] = { 2, 3, 4, 5, 6, 7, 8, 9};

const int rowPins[] = {10,11,12,A1,A2,A3,A4,A5};

void setup() {

 for (int i = 0; i < 8; i++)

 {

 pinMode(rowPins[i], OUTPUT); // make all the LED pins outputs

 pinMode(columnPins[i], OUTPUT);

 digitalWrite(columnPins[i], HIGH); // disconnect column pins from Ground

 }

}

void loop() {

 int pulseDelay = 800 ; // milliseconds to wait between beats

 show(smallHeart, 80); // show the small heart image for 80 ms

 show(bigHeart, 160); // followed by the big heart for 160 ms

 delay(pulseDelay); // show nothing between beats

}

// Show a frame of an image stored in the array pointed to by the image

// parameter. The frame is repeated for the given duration in milliseconds.

void show(byte * image, unsigned long duration)

{

 unsigned long start = millis(); // begin timing the animation

 while (start + duration > millis()) // loop until the duration has passed

 {

 for(int row = 0; row < 8; row++)

 {

 digitalWrite(rowPins[row], HIGH); // connect row to +5 volts

 for(int column = 0; column < 8; column++)

 {

 bool pixel = bitRead(image[row],column);

 if(pixel == 1)

 {

 digitalWrite(columnPins[column], LOW); // connect column to Gnd

 }

 delayMicroseconds(300); // a small delay for each

LED

 digitalWrite(columnPins[column], HIGH); // disconnect column from

Gnd

 }

 digitalWrite(rowPins[row], LOW); // disconnect LEDs

 }

 }

}

The two heart images displayed on each beat

Discussion
Columns and rows are multiplexed (switched) similar to Recipe 7.8, but
here the value written to the LED is based on images stored in the
bigHeart and smallHeart arrays. Each element in the array represents a
pixel (a single LED) and each array row represents a row in the matrix. A
row consists of eight bits represented using binary format (as designated by
the capital B at the start of each row). A bit with a value of 1 indicates that
the corresponding LED should be on; a 0 means off. The animation effect is
created by rapidly switching between the arrays.

The loop function waits a short time (800 ms) between beats and then calls
the show function, first with the smallHeart array and then followed by the
bigHeart array. The show function steps through each element in all the
rows and columns, lighting the LED if the corresponding bit is 1. The
bitRead function (see Recipe 2.20) is used to determine the value of each
bit.

A short delay of 300 microseconds between each pixel allows the eye
enough time to perceive the LED. The timing is chosen to allow each image
to repeat quickly enough (50 times per second) so that blinking is not
perceptible.

Here is a variation that changes the rate at which the heart beats, based on
the value from a sensor. You can test this using a variable resistor connected
to analog input pin 0, as shown in Recipe 5.6. Use the wiring and code
shown earlier, except replace the loop function with this code:

void loop() {

 int sensorValue = analogRead(A0); // read the analog in value

 int pulseRate = map(sensorValue,0,1023,40,240); // convert to beats /

minute

 int pulseDelay = (60000 / pulseRate); // milliseconds to wait between beats

 show(smallHeart, 80); // show the small heart image for 100 ms

 show(bigHeart, 160); // followed by the big heart for 200 ms

 delay(pulseDelay); // show nothing between beats

}

This version calculates the delay between pulses using the map function (see
Recipe 5.7) to convert the sensor value into beats per minute. The
calculation does not account for the time it takes to display the heart, but
you can subtract 240 ms (80 ms plus 160 ms for the two images) if you
want more accurate timing.

See Also
See Recipes 7.13 and 7.14 for information on how to use shift registers to
drive LEDs if you want to reduce the number of Arduino pins needed for

driving an LED matrix.

Recipes 12.2 and 12.1 provide more information on how to manage time
using the millis function.

7.10 Controlling a Matrix of LEDs:
Charlieplexing
Problem
You have a matrix of LEDs and you want to minimize the number of pins
needed to turn any of them on and off.

Solution
Charlieplexing is a special kind of multiplexing that increases the number
of LEDs that can be driven by a group of pins. This sketch sequences
through six LEDs using just three pins. Figure 7-11 shows the connections
(to calculate the correct resistor value for the LED connections, see Recipe
7.1):

/*

 * Charlieplexing sketch

 * light six LEDs in sequence that are connected to pins 2, 3, and 4

 */

int pins[] = {2,3,4}; // the pins that are connected to LEDs

// the next two lines calculate the number of pins and LEDs from the above

array

const int NUMBER_OF_PINS = sizeof(pins)/ sizeof(pins[0]);

const int NUMBER_OF_LEDS = NUMBER_OF_PINS * (NUMBER_OF_PINS-1);

byte pairs[NUMBER_OF_LEDS/2][2] = { {2,1}, {1,0}, {2,0} }; // maps pins to

LEDs

void setup()

{

 // nothing needed here

}

void loop(){

 for(int i=0; i < NUMBER_OF_LEDS; i++)

 {

 lightLed(i); // light each LED in turn

 delay(1000);

 }

}

// this function lights the given LED, the first LED is 0

void lightLed(int led)

{

 // the following four lines convert LED number to pin numbers

 int indexA = pairs[led/2][0];

 int indexB = pairs[led/2][1];

 int pinA = pins[indexA];

 int pinB = pins[indexB];

 // turn off all pins not connected to the given LED

 for(int i=0; i < NUMBER_OF_PINS; i++)

 {

 if(pins[i] != pinA && pins[i] != pinB)

 { // if this pin is not one of our pins

 pinMode(pins[i], INPUT); // set the mode to input

 digitalWrite(pins[i],LOW); // make sure pull-up is off

 }

 }

 // now turn on the pins for the given LED

 pinMode(pinA, OUTPUT);

 pinMode(pinB, OUTPUT);

 if(led % 2 == 0)

 {

 digitalWrite(pinA,LOW);

 digitalWrite(pinB,HIGH);

 }

 else

 {

 digitalWrite(pinB,LOW);

 digitalWrite(pinA,HIGH);

 }

}

Six LEDs driven through three pins using Charlieplexing

Discussion
The term Charlieplexing comes from Charlie Allen (of Microchip
Technology, Inc.), who published the method. The technique is based on the
fact that LEDs only turn on when connected the “right way” around (with
the anode more positive than the cathode). Here is the table showing the
LED number (see Figure 7-9) that is lit for the valid combinations of the
three pins. L is LOW, H is HIGH, and i is INPUT mode. Setting a pin in INPUT
mode effectively disconnects it from the circuit:

Pins LEDs

4 3 2 1 2 3 4 5 6

L L L 0 0 0 0 0 0

L H i 1 0 0 0 0 0

H L i 0 1 0 0 0 0

i L H 0 0 1 0 0 0

i H L 0 0 0 1 0 0

L i H 0 0 0 0 1 0

H i L 0 0 0 0 0 1

You can double the number of LEDs to 12 using just one more pin. The first
six LEDs are connected in the same way as in the preceding example; add
the additional six LEDs so that the connections look like Figure 7-12.

Charlieplexing using four pins to drive 12 LEDs

Modify the preceding sketch by adding the extra pin to the pins array:

byte pins[] = {2,3,4,5}; // the pins that are connected to LEDs

Add the extra entries to the pairs array so that it reads as follows:

byte pairs[NUMBER_OF_LEDS/2][2] = { {0,1}, {1,2}, {0,2}, {2,3}, {1,3}, {0,3}

};

Everything else can remain the same, so the loop will sequence through all
12 LEDs because the code determines the number of LEDs from the
number of entries in the pins array.

Because Charlieplexing works by controlling the Arduino pins so that only
a single LED is turned on at a time, it is more complicated to create the
impression of lighting multiple LEDs. But you can light multiple LEDs
using a multiplexing technique modified for Charlieplexing.

This sketch creates a bar graph by lighting a sequence of LEDs based on the
value of a sensor connected to analog pin 0:

byte pins[] = {2,3,4};

const int NUMBER_OF_PINS = sizeof(pins)/ sizeof(pins[0]);

const int NUMBER_OF_LEDS = NUMBER_OF_PINS * (NUMBER_OF_PINS-1);

byte pairs[NUMBER_OF_LEDS/2][2] = { {2,1}, {1,0}, {2,0} }; // maps pins to

LEDs

int ledStates = 0; //holds states for up to 15 LEDs

int refreshedLed; // the LED that gets refreshed

void setup()

{

 // nothing here

}

void loop()

{

const int analogInPin = 0; // Analog input pin connected to the variable

resistor

 // here is the code from the bargraph recipe

 int sensorValue = analogRead(analogInPin); // read the analog in

value

 // map to the number of LEDs

 int ledLevel = map(sensorValue, 0, 1023, 0, NUMBER_OF_LEDS);

 for (int led = 0; led < NUMBER_OF_LEDS; led++)

 {

 if (led < ledLevel) {

 setState(led, HIGH); // turn on pins less than the level

 }

 else {

 setState(led, LOW); // turn off pins higher than the level

 }

 }

 ledRefresh();

}

void setState(int led, bool state)

{

 bitWrite(ledStates,led, state);

}

void ledRefresh()

{

 // refresh a different LED each time this is called.

 if(refreshedLed++ > NUMBER_OF_LEDS) // increment to the next LED

 refreshedLed = 0; // repeat from the first LED if all have been

refreshed

 if(bitRead(ledStates, refreshedLed) == HIGH)

 lightLed(refreshedLed);

 else

 if(refreshedLed == 0) // Turn them all off if pin 0 is off

 for(int i=0; i < NUMBER_OF_PINS; i++)

 digitalWrite(pins[i],LOW);

}

// this function is identical to the one from the sketch in the Solution

// it lights the given LED, the first LED is 0

void lightLed(int led)

{

 // the following four lines convert LED number to pin numbers

 int indexA = pairs[led/2][0];

 int indexB = pairs[led/2][1];

 int pinA = pins[indexA];

 int pinB = pins[indexB];

 // turn off all pins not connected to the given LED

 for(int i=0; i < NUMBER_OF_PINS; i++)

 {

 if(pins[i] != pinA && pins[i] != pinB)

 { // if this pin is not one of our pins

 pinMode(pins[i], INPUT); // set the mode to input

 digitalWrite(pins[i],LOW); // make sure pull-up is off

 }

 }

 // now turn on the pins for the given LED

 pinMode(pinA, OUTPUT);

 pinMode(pinB, OUTPUT);

 if(led % 2 == 0)

 {

 digitalWrite(pinA,LOW);

 digitalWrite(pinB,HIGH);

 }

 else

 {

 digitalWrite(pinB,LOW);

 digitalWrite(pinA,HIGH);

 }

}

This sketch uses the value of the bits in the variable ledStates to represent
the state of the LEDs (0 if off, 1 if on). The refresh function checks each
bit and lights the LEDs for each bit that is set to 1. The refresh function
must be called quickly and repeatedly, or the LEDs will appear to blink.

WARNING
Adding delays into your code can interfere with the persistence of vision effect that creates the
illusion that hides the flashing of the LEDs.

You can use an interrupt to service the refresh function in the background
(without needing to explicitly call the function in loop). Timer interrupts
are covered in Chapter 18, but here is a preview of one approach for using
an interrupt to service your LED refreshes. This uses a third-party library
called FrequencyTimer2, available from the Library Manager, to create the
interrupt (for instructions on installing third-party libraries, see Recipe
16.2):

#include <FrequencyTimer2.h> // include this library to handle the refresh

byte pins[] = {2,3,4};

const int NUMBER_OF_PINS = sizeof(pins)/ sizeof(pins[0]);

const int NUMBER_OF_LEDS = NUMBER_OF_PINS * (NUMBER_OF_PINS-1);

byte pairs[NUMBER_OF_LEDS/2][2] = { {2,1}, {1,0}, {2,0} };

int ledStates = 0; //holds states for up to 15 LEDs

int refreshedLed; // the LED that gets refreshed

void setup()

{

 FrequencyTimer2::setPeriod(20000/NUMBER_OF_LEDS); // set the period

 // the next line tells FrequencyTimer2 the function to call (ledRefresh)

 FrequencyTimer2::setOnOverflow(ledRefresh);

 FrequencyTimer2::enable();

}

void loop()

{

const int analogInPin = 0; // Analog input pin connected to the variable

resistor

 // here is the code from the bargraph recipe

 int sensorValue = analogRead(analogInPin); // read the analog in

value

 // map to the number of LEDs

 int ledLevel = map(sensorValue, 0, 1023, 0, NUMBER_OF_LEDS);

 for (int led = 0; led < NUMBER_OF_LEDS; led++)

 {

 if (led < ledLevel) {

 setState(led, HIGH); // turn on pins less than the level

 }

 else {

 setState(led, LOW); // turn off pins higher than the level

 }

 }

 // the LED is no longer refreshed in loop, it's handled by FrequencyTimer2

}

// the remaining code is the same as the previous example

The FrequencyTimer2 library has the period set to 1,666 microseconds (20
ms divided by 12, the number of LEDs). The
FrequencyTimer2setOnOverflow method gets the function to call
(ledRefresh) each time the timer “triggers.” The FrequencyTimer2 library
is compatible with a limited number of boards: Arduino Uno (and likely
most ATmega328-based compatibles), the Arduino Mega, and several
Teensy variants. This PJRC page has more details on the library.

See Also
Chapter 18 provides more information on timer interrupts.

7.11 Driving a 7-Segment LED Display
Problem
You want to display numerals using a 7-segment numeric display.

https://oreil.ly/e-KTE

Solution
The following sketch displays numerals from 0 to 9 on a single-digit, 7-
segment display. Figure 7-13 shows the connections for a common anode
display. Your pin assignments may be different so check the datasheet for
your display. If yours is a common cathode, connect the common cathode
connection to GND. The output is produced by turning on combinations of
segments that represent the numerals:

/*

 * SevenSegment sketch

 * Shows numerals ranging from 0 through 9 on a single-digit display

 * This example counts seconds from 0 to 9

 */

// bits representing segments A through G (and decimal point) for numerals 0-9

const byte numeral[10] = {

 //ABCDEFG+dp

 B11111100, // 0

 B01100000, // 1

 B11011010, // 2

 B11110010, // 3

 B01100110, // 4

 B10110110, // 5

 B00111110, // 6

 B11100000, // 7

 B11111110, // 8

 B11100110, // 9

};

// pins for decimal point and each segment

// dp,G,F,E,D,C,B,A

const int segmentPins[8] = { 5,8,9,7,6,4,3,2};

void setup()

{

 for(int i=0; i < 8; i++)

 {

 pinMode(segmentPins[i], OUTPUT); // set segment and DP pins to output

 }

}

void loop()

{

 for(int i=0; i <= 10; i++)

 {

 showDigit(i);

 delay(1000);

 }

 // the last value if i is 10 and this will turn the display off

 delay(2000); // pause two seconds with the display off

}

// Displays a number from 0 through 9 on a 7-segment display

// any value not within the range of 0-9 turns the display off

void showDigit(int number)

{

 bool isBitSet;

 for(int segment = 1; segment < 8; segment++)

 {

 if(number < 0 || number > 9){

 isBitSet = 0; // turn off all segments

 }

 else{

 // isBitSet will be true if given bit is 1

 isBitSet = bitRead(numeral[number], segment);

 }

 isBitSet = ! isBitSet; // remove this line if common cathode display

 digitalWrite(segmentPins[segment], isBitSet);

 }

}

Connecting a 7-segment display

Discussion
The segments to be lit for each numeral are held in the array called
numeral. There is one byte per numeral where each bit in the byte
represents one of seven segments (or the decimal point).

The array called segmentPins holds the pins associated with each segment.
The showDigit function checks that the number ranges from 0 to 9, and if
valid, looks at each segment bit and turns on the segment if the bit is set
(equal to 1). See Recipe 3.12 for more on the bitRead function.

As mentioned in Recipe 7.4, a pin is set HIGH when turning on a segment on
a common cathode display, and it’s set LOW when turning on a segment on a
common anode display. The code here is for a common anode display, so it
inverts the value (sets 0 to 1 and 1 to 0) as follows:

isBitSet = ! isBitSet; // remove this line if common cathode display

The ! is the negation operator—see Recipe 2.20. If your display is a
common cathode display (all the cathodes are connected together; see the
datasheet if you are not sure), you can remove that line.

7.12 Driving Multidigit, 7-Segment LED
Displays: Multiplexing
Problem
You want to display numbers using a 7-segment display that shows two or
more digits.

Solution
Multidigit, 7-segment displays usually use multiplexing. In earlier recipes,
multiplexed rows and columns of LEDs were connected together to form an
array; here, corresponding segments from each digit are connected together
(Figure 7-14 shows the connection for a Lite-On LTC-2623, but you will
need to check the datasheet for your display if it’s different):

NOTE
The wiring diagram shown is for a Lite-On LTC-2623 display. If you are using a different display,
you can use the same Arduino pins, but you’ll need to look up the corresponding pins on your
display’s datasheet. The LTC-2623 is a common anode display. If yours is a common cathode,
you’ll need to change two things: first, connect the transistors differently: connect all the emitters
together and to ground, and each transistor’s collector to the corresponding pin on the display.
Second, comment out or delete this line from the sketch: isBitSet = ! isBitSet;.

/*

 * SevenSegmentMpx sketch

 * Shows numbers ranging from 0 through 9999 on a four-digit display

 * This example displays the value of a sensor connected to an analog input

 */

// bits representing segments A through G (and decimal point) for numerals 0-9

const int numeral[10] = {

 //ABCDEFG /dp

 B11111100, // 0

 B01100000, // 1

 B11011010, // 2

 B11110010, // 3

 B01100110, // 4

 B10110110, // 5

 B00111110, // 6

 B11100000, // 7

 B11111110, // 8

 B11100110, // 9

};

// pins for decimal point and each segment

 // dp,G,F,E,D,C,B,A

const int segmentPins[] = { 4, 7,8,6,5,3,2,9};

const int nbrDigits= 4; // the number of digits in the LED display

 //dig 1 2 3 4

const int digitPins[nbrDigits] = { 10,11,12,13};

void setup()

{

 for(int i=0; i < 8; i++)

 pinMode(segmentPins[i], OUTPUT); // set segment and DP pins to output

 for(int i=0; i < nbrDigits; i++)

 pinMode(digitPins[i], OUTPUT);

}

void loop()

{

 int value = analogRead(0);

 showNumber(value);

}

void showNumber(int number)

{

 if(number == 0)

 showDigit(0, nbrDigits-1) ; // display 0 in the rightmost digit

g (, g) ; // p y g g

 else

 {

 // display the value corresponding to each digit

 // leftmost digit is 0, rightmost is one less than the number of places

 for(int digit = nbrDigits-1; digit >= 0; digit--)

 {

 if(number > 0)

 {

 showDigit(number % 10, digit) ;

 number = number / 10;

 }

 }

 }

}

// Displays given number on a 7-segment display at the given digit position

void showDigit(int number, int digit)

{

 digitalWrite(digitPins[digit], HIGH);

 for(int segment = 1; segment < 8; segment++)

 {

 bool isBitSet = bitRead(numeral[number], segment);

 // isBitSet will be true if given bit is 1

 isBitSet = ! isBitSet; // remove this line if common cathode display

 digitalWrite(segmentPins[segment], isBitSet);

 }

 delay(5);

 digitalWrite(digitPins[digit], LOW);

}

Connecting a multidigit, 7-segment display (LTC-2623)

Discussion
This sketch has a showDigit function similar to that discussed in Recipe
7.11. Here the function is given the numeral and the digit place. The logic
to light the segments to correspond to the numeral is the same, but in
addition, the code sets the pin corresponding to the digit place HIGH, so only
that digit will be written (see the earlier multiplexing explanations).

7.13 Driving Multidigit, 7-Segment LED
Displays with the Fewest Pins
Problem
You want to control multiple 7-segment displays, but you want to minimize
the number of required Arduino pins.

Solution

This Solution uses an HT16K33-based breakout board to control four-digit
common cathode displays, such as the LuckyLight KW4-56NXBA-P or the
Betlux BL-Q56C-43. The HT16K33 provides a simpler solution than
Recipe 7.12, because it handles multiplexing and digit decoding in
hardware. You can obtain HT16K33-based boards from a variety of
sources. Adafruit makes the 7-Segment LED Matrix Backpack (part
number 877) that is designed to work with the four-digit 7-segment displays
that it stocks, but it also carries these boards with the displays included, and
in a variety of colors.

This sketch will display a number between 0 and 9,999 (Figure 7-15 shows
the connections):

/*

 HT16K33 seven segment display sketch

*/

#include <Wire.h>

#include <Adafruit_GFX.h>

#include "Adafruit_LEDBackpack.h"

Adafruit_7segment matrix = Adafruit_7segment();

const int numberOfDigits = 4; // change 4 to the # of digits wired up

const int maxCount = 9999;

int number = 0;

void setup()

{

 Serial.begin(9600);

 matrix.begin(0x70); // Initialize the display

 matrix.println(number); // Send the number (0 initially) to the display

 matrix.writeDisplay(); // Update the display

}

void loop()

{

 // display a number from serial port terminated by end of line character

 if (Serial.available())

 {

 char ch = Serial.read();

 if (ch == '\n')

https://www.adafruit.com/category/103

 {

 if (number <= maxCount)

 {

 matrix.println(number);

 matrix.writeDisplay();

 number = 0; // Reset the number to 0

 }

 }

 else

 number = (number * 10) + ch - '0'; // see Chapter 4 for details

 }

}

HT16K33 driving a multidigit common cathode 7-segment display

Solution
This recipe uses Arduino I2C communication to talk to the HT16K33 chip.
The Adafruit_LEDBackpack library provides an interface to the hardware,
via an instance of the Adafruit_7segment object (in this sketch, it’s called
matrix). Chapter 13 covers I2C in more detail.

This sketch displays a number if up to four digits are received on the serial
port—see Chapter 4 for an explanation of the serial code in loop. The

matrix.println function sends values to the HT16K33, and the
matrix.writeDisplay function updates the display with the latest value
sent to it.

The breakout board uses a four-digit, 7-segment display, but if you buy a
more generic HT16K33 breakout board (such as Adafruit part number
1427), you can use it with single- or dual-digit displays for up to eight
digits. When combining multiple displays, each corresponding segment pin
should be connected together. (Recipe 13.1 shows the connections for a
common dual-digit display.) You will need to consult the datasheet for your
segment display(s), as well as for whichever HT16K33 breakout you use.

7.14 Controlling an Array of LEDs by Using
MAX72xx Shift Registers
Problem
You have an 8 × 8 array of LEDs to control, and you want to minimize the
number of required Arduino pins.

Solution
As in Recipe 7.13, you can use a shift register to reduce the number of pins
needed to control an LED matrix. This Solution uses the popular MAX7219
or MAX7221 LED driver chip to provide this capability. Connect your
Arduino, matrix, and MAX72xx as shown in Figure 7-16.

MAX72xx driving an 8 × 8 LED array

This sketch is based on the powerful MD_MAX72XX library, which can
display text, draw objects on the display, and perform various
transformations on the display. You can find the library in the Arduino
Library Manager (see Recipe 16.2):

/*

 7219 Matrix demo

*/

#include <MD_MAX72xx.h>

// Pins to control 7219

#define LOAD_PIN 2

#define CLK_PIN 3

#define DATA_PIN 4

// Configure the hardware

#define MAX_DEVICES 1

#define HARDWARE_TYPE MD_MAX72XX::PAROLA_HW

MD_MAX72XX mx = MD_MAX72XX(HARDWARE_TYPE, DATA_PIN, CLK_PIN,

 LOAD_PIN, MAX_DEVICES);

void setup()

{

 mx.begin();

}

void loop()

{

 mx.clear(); // Clear the display

 // Draw rows and columns

 for (int r = 0; r < 8; r++)

 {

 for (int c = 0; c < 8; c++) {

 mx.setPoint(r, c, true); // Light each LED

 delay(50);

 }

 // Cycle through available brightness levels

 for (int k = 0; k <= MAX_INTENSITY; k++) {

 mx.control(MD_MAX72XX::INTENSITY, k);

 delay(100);

 }

 }

}

Discussion
A matrix is created by passing the hardware type, pin numbers for the data,
load, and clock pins, and also the maximum number of devices (in case you
are chaining modules). loop clears the display, then uses the setPoint
method to turn pixels on. After the sketch draws a row, it cycles through the
available brightness intensities and moves on to the next row.

The pin numbers shown here are for the green LEDs in the dual-color 8 × 8
matrix, available from Adafruit (part number 458). If you are using a
different LED matrix, consult the datasheet to determine which pins
correspond to each row and column. This sketch will work with a single-
color matrix as well, since it only uses one of the two colors. If you find
that your matrix is displaying text backward or not in the orientation you
expect, you can try changing the hardware type in the line #define

HARDWARE_TYPE MD_MAX72XX::PAROLA_HW from PAROLA_HW to one of
GENERIC_HW, ICSTATION_HW, or FC16_HW. There is a test sketch included in
the MD_MAX72xx library’s examples, MD_MAX72xx_HW_Mapper,
which will run a test and help you decide the right hardware type to use.

The resistor (marked R1 in Figure 7-16) is used to control the maximum
current that will be used to drive an LED. The MAX72xx datasheet has a
table that shows a range of values (see Table 7-3).

Table of resistor values (from MAX72xx
datasheet)

LED forward voltage

Current 1.5V 2.0V 2.5V 3.0V 3.5V

40 mA 12 kΩ 12 kΩ 11 kΩ 10 kΩ 10 kΩ

30 mA 18 kΩ 17 kΩ 16 kΩ 15 kΩ 14 kΩ

20 mA 30 kΩ 28 kΩ 26 kΩ 24 kΩ 22 kΩ

10 mA 68 kΩ 64 kΩ 60 kΩ 56 kΩ 51 kΩ

The green LED in the LED matrix shown in Figure 7-16 has a forward
voltage of 2 volts and a forward current of 20 mA. Table 7-3 indicates 28K
ohms, but to add a little safety margin, a resistor of 30K or 33K would be a
suitable choice. The capacitors (0.1 uf and 10 uf) are required to prevent
noise spikes from being generated when the LEDs are switched on and off
—see “Using Capacitors for Decoupling” in Appendix C if you are not
familiar with connecting decoupling capacitors.

See Also
The MAX72xx datasheet

7.15 Increasing the Number of Analog
Outputs Using PWM Extender Chips

https://oreil.ly/IH7U7

Problem
You want to have individual control of the intensity of more LEDs than
Arduino can support.

Solution
The PCA9685 chip drives up to 16 LEDs using only the two I2C data pins.
Adafruit makes a breakout board that can drive multiple servos or LEDs
(Adafruit part number 815). Figure 7-17 shows the connections. This sketch
is based on Adafruit’s Adafruit_PWMServoDriver library, which you can
install using the Arduino Library Manager (see Recipe 16.2):

/*

 PCA9685 sketch

 Create a Knight Rider-like effect on LEDs plugged into all the PCA9685

outputs

 this version assumes one PCA9685 with 16 LEDs

*/

#include <Wire.h>

#include <Adafruit_PWMServoDriver.h>

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

void setup()

{

 pwm.begin(); // Initialize the PWM board

}

int channel = 0;

int channel_direction = 1;

int intensity = 4095; // Maximum brightness

int dim = intensity / 4; // Intensity for a dim LED

void loop()

{

 channel += channel_direction; // increment (or decrement) the channel number

 // Turn off all the pins

 for (int pin = 0; pin < 16; pin++) {

 pwm.setPin(pin, 0);

 }

 // If we've hit channel 0, set direction to 1

 if (channel == 0) {

 channel_direction = 1;

 }

 else { // If we're at channel 1 or higher, set its previous neighbor to dim

 pwm.setPin(channel - 1, dim);

 }

 // Set this channel to maximum brightness

 pwm.setPin(channel, intensity);

 if (channel < 16) { // If we're below channel 16, set the next channel to

dim

 pwm.setPin(channel + 1, dim);

 }

 else { // If we've hit channel 16, set direction to -1

 channel_direction = -1;

 }

 delay(75);

}

Sixteen LEDs driven using external PWM

Discussion
This sketch loops through each channel (LED), setting the previous LED to
dim, the current channel to full intensity, and the next channel to dim. The
LEDs are controlled through a few core methods. The sketch assumes that
the PCA9685 is configured with the default I2C address of 0x40.

The Adafruit_PWMServoDriver.begin method initializes the driver prior
to any other function. The pwm.setPin method sets the duty cycle of a
given channel given as a number of ticks from 0 to 4,095. The first
argument is the channel number followed by the brightness. Each pulse-
width modulation cycle is divided into 4,096 ticks. The value you supply
for the brightness indicates the number of ticks in which the LED should be
on. You can change the PWM frequency with the pwm.setPWMFreq method
(supply the value in hertz, from 40 to 1,600).

See Also
More functions are available in the library.

You can chain multiple driver boards by chaining their pins together. Each
board must have a unique address, which you set by soldering the pads
labeled A0 through A5. You can chain up to 62 driver boards.

7.16 Using an Analog Panel Meter as a
Display
Problem
You would like to control the pointer of an analog panel meter from your
sketch. Fluctuating readings are easier to interpret on an analog meter, and
analog meters add a cool retro look to a project.

Solution
Connect the meter through a series resistor (5K ohms for the typical 1 mA
meter) and connect to an analog (PWM) output (see Figure 7-18).

The pointer movement corresponds to the position of a pot (variable
resistor):

/*

 * AnalogMeter sketch

 * Drives an analog meter through an Arduino PWM pin

https://oreil.ly/KRqyU
https://oreil.ly/9VnOv

 * The meter level is controlled by a variable resistor on an analog input pin

 */

const int analogInPin = A0; // Analog input connected to variable resistor

const int analogMeterPin = 9; // Analog output pin connected to the meter

int sensorValue = 0; // value read from the pot

int outputValue = 0; // value output to the PWM (analog out)

void setup()

{

 // nothing in setup

}

void loop()

{

 sensorValue = analogRead(analogInPin); // read the analog in

value

 outputValue = map(sensorValue, 0, 1023, 0, 255); // scale for analog out

 analogWrite(analogMeterPin, outputValue); // write the analog out

value

}

Driving an analog meter

Discussion
In this variation on Recipe 7.2, the Arduino analogWrite output drives a
panel meter. Panel meters are usually much more sensitive than LEDs; a
resistor must be connected between the Arduino output and the meter to
drop the current to the level for the meter.

The value of the series resistor depends on the sensitivity of the meter; 5K
ohms give full-scale deflection with a 1 mA meter. You can use 4.7K
resistors, as they are easier to obtain than 5K, although you will probably
need to reduce the maximum value given to analogWrite to 240 or so.
Here is how you can change the range in the map function if you use a 4.7K
ohm resistor with a 1 mA meter:

outputValue = map(sensorValue, 0, 1023, 0, 240); // map to meter's range

If your meter has a different sensitivity than 1 mA, you will need to use a
different value series resistor. The resistor value in ohms is:

resistor = 5,000 / mA
So, a 500 milliamp meter (0.5 mA) is 5,000 / 0.5, which is 10,000 (10K)
ohms. A 10 mA meter requires 500 ohms; 20 mA requires 250 ohms.

Some surplus meters already have an internal series resistor—you may need
to experiment to determine the correct value of the resistor, but be careful
not to apply too much voltage to your meter.

See Also
Recipe 7.2

Physical Output

8.0 Introduction
You can make things move by controlling motors with Arduino. Different
types of motors suit different applications, and this chapter shows how
Arduino can drive many different kinds of motors. You’ll see how to work
with servos, which are motors that have circuits within them to allow
moving to a specific motor position or to spin at a specific speed. You’ll
also learn about brushed and brushless motors, which use different designs
to drive a motor that spins at varying speeds and directions. There are
recipes in this chapter for stepper motors, which allow you to move a motor
a specific number of steps in one direction or the other. In addition to
motors that generate rotary motion, there are recipes for working with
relays and solenoids.

Servos
Servos enable you to accurately control physical movement because they
generally move to a position instead of continuously rotating. They are
ideal for making something rotate over a range of 0 to 180 degrees. Servos
are easy to connect and control because the motor driver is built into the
servo.

Servos contain a small motor connected through gears to an output shaft.
The output shaft drives a servo arm and is also connected to a potentiometer
to provide position feedback to an internal control circuit (see Figure 8-1).

You can get continuous rotation servos that have the positional feedback
disconnected so that you can instruct the servo to rotate continuously
clockwise and counterclockwise with some control over the speed. These
function a little like the brushed motors covered in Recipe 8.9, except that
continuous rotation servos use the servo library code instead of
analogWrite and don’t require a motor shield.

Continuous rotation servos are easy to use because they don’t need a motor
shield—the motor drivers are inside the servo. The disadvantages are that
the speed and power choices are limited compared to external motors, and
the precision of speed control is usually not as good as with a motor shield
(the electronics are designed for accurate positioning, not linear speed
control). See Recipe 8.3 for more on using continuous rotation servos.

Elements inside a hobby servo

Servos respond to changes in the duration of a pulse. A short pulse of 1 ms
or less will cause the servo to rotate to one extreme; a pulse duration of 2
ms or so will rotate the servo to the other extreme (see Figure 8-2). Pulses
ranging between these values will rotate the servo to a position proportional
to the pulse width. There is no standard for the exact relationship between
pulses and position, and you may need to tinker with the commands in your
sketch to adjust for the range of your servos.

WARNING
Although the duration of the pulse is modulated (controlled), servos require pulses that are
different from the Pulse Width Modulation (PWM) output from analogWrite. You can damage a
hobby servo by connecting it to the output from analogWrite—you must use the Servo library
instead.

Relationship between the pulse width and the servo angle; the servo output arm moves
proportionally as the pulse width increases from 1 ms to 2 ms

Solenoids and Relays
Although most motors produce rotary motion, a solenoid produces linear
movement when powered. A solenoid has a metallic core that is moved by a
magnetic field created when current is passed through a coil. A mechanical
relay is a type of solenoid that connects or disconnects electrical contacts
(it’s a solenoid operating a switch). Relays are controlled just like solenoids.
Relays and solenoids, like most motors, require more current than an

Arduino pin can safely provide, and the recipes in this chapter show how
you can use a transistor or external circuit to drive these devices.

Brushed and Brushless Motors
Most low-cost direct current (DC) motors are simple devices with two leads
connected to brushes (contacts) that control the magnetic field of the coils
that drives a metallic core (armature). The direction of rotation can be
reversed by reversing the polarity of the voltage on the contacts. DC motors
are available in many different sizes, but even the smallest (such as
vibration motors used in cell phones) require a transistor or other external
control to provide adequate current. The recipes that follow show how to
control motors using a transistor or an external control circuit called an H-
Bridge.

The primary characteristic in selecting a motor is torque. Torque determines
how much work the motor can do. Typically, higher-torque motors are
larger and heavier and draw more current than lower-torque motors.

Brushless motors usually are more powerful and efficient for a given size
than brushed motors, but they require more complicated electronic control.
Where the performance benefit of a brushless motor is desired, components
called electronic speed controllers intended for hobby radio control use can
be easily controlled by Arduino because they are controlled much like a
servo motor.

Stepper Motors
Steppers are motors that rotate a specific number of degrees in response to
control pulses. The number of degrees in each step is motor-dependent,
ranging from one or two degrees per step to 30 degrees or more.

Two types of steppers are commonly used with Arduino: bipolar (typically
with four leads attached to two coils) and unipolar (five or six leads
attached to two coils). The additional wires in a unipolar stepper are
internally connected to the center of the coils (in the five-lead version, each
coil has a center tap and both center taps are connected together). The

recipes covering bipolar and unipolar steppers have diagrams illustrating
these connections.

NOTE
The most common cause of problems when connecting devices that require external power is
neglecting to connect all the grounds together. Your Arduino ground must be connected to the
external power supply ground and the grounds of external devices being powered.

8.1 Controlling Rotational Position with a
Servo
Problem
You want to control rotation using an angle calculated in your sketch. For
example, you want a sensor on a robot to swing through an arc or move to a
position you select.

Solution
Use the Servo library distributed with Arduino. Connect the servo power
and ground to a suitable power supply (a single hobby servo can usually be
powered from the Arduino 5V line). You can connect the servo signal leads
to any Arduino digital pin.

Here is the example Sweep sketch distributed with Arduino; Figure 8-3
shows the connections:

/*

 * Servo rotation sketch

 */

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int angle = 0; // variable to store the servo position

void setup()

{

 myservo.attach(9); // attaches the servo on pin 9 to the servo object

}

void loop()

{

 for(angle = 0; angle < 180; angle += 1) // goes from 0 degrees to 180

degrees

 { // in steps of 1 degree

 myservo.write(angle); // tell servo to go to position in variable

'angle'

 delay(20); // waits 20 ms between servo commands

 }

 for(angle = 180; angle >= 1; angle -= 1) // goes from 180 degrees to 0

degrees

 {

 myservo.write(angle); // move servo in opposite direction

 delay(20); // waits 20 ms between servo commands

 }

}

Connecting a servo for testing with the example Sweep sketch

Discussion
This example sweeps the servo between 0 and 180 degrees. You may need
to tell the library to adjust the minimum and maximum positions so that you

get the range of movement you want. Calling Servo.attach with optional
arguments for minimum and maximum positions will adjust the movement:

myservo.attach(9,1000,2000); // use pin 9, set min to 1000 us, max to 2000 us

Because typical servos respond to pulses measured in microseconds and not
degrees, the arguments following the pin number inform the Servo library
how many microseconds to use when 0 degrees or 180 degrees are
requested. Not all servos will move over a full 180-degree range, so you
may need to experiment with yours to get the range you want.

The parameters for servo.attach(pin, min, max) are the following:

pin

The pin number that the servo is attached to (you can use any digital
pin)

min (optional)
The pulse width, in microseconds, corresponding to the minimum (0-
degree) angle on the servo (defaults to 544)

max (optional)
The pulse width, in microseconds, corresponding to the maximum (180-
degree) angle on the servo (defaults to 2,400)

NOTE
The Servo library can handle up to 12 servos on most Arduino boards, but 48 on the Arduino
Mega. On the Uno and other boards based on the ATmega328, you will give up analogWrite()
(PWM) on pins 9 and 10, even if you’re not connecting a servo to those pins. The Arduino Mega
is an exception, and you will likely find that some 32-bit boards do not have this limitation either.
See the Servo library reference for more information.

Power requirements vary depending on the servo and how much torque is
needed to rotate the shaft.

https://oreil.ly/_3elx

NOTE
You may need an external source of 5 or 6 volts when connecting multiple servos. Four AA cells
work well if you want to use battery power. Remember that you must connect the ground of the
external power source to Arduino ground.

8.2 Controlling Servo Rotation with a
Potentiometer or Sensor
Problem
You want to control rotational direction and position with a potentiometer.
For example, you want to control the pan and tilt of a camera or sensor.
This recipe can work with any variable voltage from a sensor that can be
read from an analog input.

Solution
You can use the same library as in Recipe 8.1, with the addition of code to
read the voltage on a potentiometer. This value is scaled so that the position
of the pot (from 0 to 1023) is mapped to a range of 0 to 180 degrees. The
only difference in the wiring is the addition of the potentiometer; see Figure
8-4:

/*

 * Servo With Sensor sketch

 * Control a servo with a sensor.

 */

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int potpin = A0; // analog pin used to connect the potentiometer

int val; // variable to read the value from the analog pin

void setup()

{

 myservo.attach(9); // attaches the servo on pin 9 to the servo object

}

void loop()

{

 val = analogRead(potpin); // reads the value of the potentiometer

 val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo

 myservo.write(val); // sets position to the scaled value

 delay(15); // waits for the servo to get there

}

Controlling a servo with a potentiometer

NOTE
Hobby servos have a cable with a three-pin female connector that can be directly plugged into a
“servo” header fitted to some shields, such as the Adafruit Motor Shield. The physical connector
is compatible with the Arduino connectors so you can use the same wire jumpers as those used to
connect Arduino pins. Bear in mind that the color of the signal lead is not standardized; yellow is
sometimes used instead of white. Red is always in the middle and the ground lead is usually black
or brown.

Discussion

Anything that can be read from analogRead (see Chapters 5 and 6) can be
used—for example, the gyro and accelerometer recipes in Chapter 6 can be
used, so that the angle of the servo is controlled by the yaw of the gyro or
angle of the accelerometer.

TIP
Not all servos will rotate over the full range of the Servo library. If your servo buzzes due to
hitting an end stop at an extreme of movement, try reducing the output range in the map function
until the buzzing stops. For example:

val=map(val,0,1023,10,170);

8.3 Controlling the Speed of Continuous
Rotation Servos
Problem
You want to control the rotational direction and speed of servos modified
for continuous rotation. For example, you are using two continuous rotation
servos to power a robot and you want the speed and direction to be
controlled by your sketch.

Solution
Continuous rotation servos are a form of gear-reduced motor with forward
and backward speed adjustment. Control of continuous rotation servos is
similar to normal servos. The servo rotates in one direction as the angle is
increased from 90 degrees; it rotates in the other direction when the angle is
decreased from 90 degrees. The actual direction forward or backward
depends on how you have the servos attached. Figure 8-5 shows the
connections for controlling two servos.

Controlling two servos

Servos are usually powered from a 4.8V to 6V source. Heavier-duty servos
may require more current than the Arduino board can provide through the
+5V pin and these will require an external power source. Four 1.2V
rechargeable batteries can be used to power Arduino and the servos. If you
are thinking of powering your Arduino from these batteries as well, bear in
mind that you are in something of a gray area: you could, in theory, power
the Arduino by connecting the batteries’ positive lead to Arduino’s 5V pin.
However, this bypasses the voltage regulator and is not a great idea. The
other option is to supply power to Arduino’s VIN pin, which requires a
minimum of 6 volts. But that’s not great either, because anything less than 7
volts could make the Arduino unstable. You’ll need to balance out these
constraints with the power needs of your servo motors to strike the right
balance.

The sketch sweeps the servos from 90 to 180 degrees, which translates to a
variable speed with continuous rotation servos. So, if the servos were
connected to wheels, the vehicle would move forward at a slowly
increasing pace and then slow down to a stop. Because the servo control
code is in loop, this will continue for as long as there is power:

/*

 * Continuous rotation

 */

#include <Servo.h>

Servo myservoLeft; // create servo object to control a servo

Servo myservoRight; // create servo object to control a servo

int angle = 0; // variable to store the servo position

void setup()

{

 myservoLeft.attach(9); // attaches left servo on pin 9 to servo object

 myservoRight.attach(10); // attaches right servo on pin 10 to servo object

}

void loop()

{

 for(angle = 90; angle < 180; angle += 1) // goes from 90 to 180 degrees

 { // in steps of 1 degree.

 // 90 degrees is stopped.

 myservoLeft.write(angle); // rotate servo at speed given by 'angle'

 myservoRight.write(180-angle); // go in the opposite direction

 delay(20); // waits 20 ms between servo commands

 }

 for(angle = 180; angle >= 90; angle -= 1) // goes from 180 to 90 degrees

 {

 myservoLeft.write(angle); // rotate at a speed given by 'angle'

 myservoRight.write(180-angle); // other servo goes in opposite direction

 }

}

Discussion
You can use similar code for continuous rotation and normal servos, but be
aware that continuous rotation servos may not stop rotating when writing
exactly 90 degrees. Some servos have a small potentiometer you can trim to
adjust for this, or you can add or subtract a few degrees to stop the servo.
For example, if the left servo stops rotating at 92 degrees, you can change
the lines that write to the servos as follows:

myservoLeft.write(angle+TRIM); // declare int TRIM=2; at beginning of sketch

8.4 Controlling Servos Using Computer
Commands
Problem
You want to provide commands to control servos from the serial port.
Perhaps you want to control servos from a program running on your
computer.

Solution
You can use software to control the servos. This has the advantage that any
number of servos can be supported. However, your sketch needs to
constantly attend to refreshing the servo position, so the logic can get
complicated as the number of servos increases if your project needs to
perform a lot of other tasks.

This recipe drives four servos according to commands received on the serial
port. The commands are of the following form:

180a writes 180 to servo a

90b writes 90 to servo b

0c writes 0 to servo c

17d writes 17 to servo d

Here is the sketch that drives four servos connected on pins 7 through 10:

/*

 * Computer Control of Servos sketch

 */

#include <Servo.h> // the servo library

#define SERVOS 4 // the number of servos

int servoPins[SERVOS] = {7,8,9,10}; // servos on pins 7 through 10

Servo myservo[SERVOS];

void setup()

{

 Serial.begin(9600);

 for(int i=0; i < SERVOS; i++)

 {

 myservo[i].attach(servoPins[i]);

 }

}

void loop()

{

 serviceSerial();

}

// serviceSerial checks the serial port and updates position with received

data

// it expects servo data in the form:

//

// "180a" writes 180 to servo a

// "90b writes 90 to servo b

//

void serviceSerial()

{

 if (Serial.available())

 {

 int pos = Serial.parseInt();

 char ch = Serial.read();

 if(ch >= 'a' && ch < 'a' + SERVOS) // If ch is a valid servo letter

 {

 Serial.print("Servo "); Serial.print(ch - 'a');

 Serial.print(" set to "); Serial.println(pos);

 myservo[ch - 'a'].write(pos); // write position to corresponding servo

 }

 }

}

Discussion
Connecting the servos is similar to the previous recipes. Each servo line
wire gets connected to a digital pin. All servo grounds are connected to
Arduino ground. The servo power lines are connected together, and you
may need an external 5V or 6V power source if your servos require more
current than the Arduino power supply can provide.

An array named myservo (see Recipe 2.4) is used to hold references for the
four servos. A for loop in setup attaches each servo in the array to
consecutive pins defined in the servoPins array.

The sketch uses parseInt to collect integer values over the serial port. If
the character is the letter a, the position is written to the first servo in the
array (the servo connected to pin 7). The letters b, c, and d control the
subsequent servos.

See Also
See Chapter 4 for more on handling values received over serial.

8.5 Driving a Brushless Motor (Using a
Hobby Speed Controller)
Problem
You have a hobby brushless motor and you want to control its speed.

Solution
This sketch uses the same code as Recipe 8.2. The wiring is similar, except
for the speed controller and motor. A hobby electronic speed controller
(ESC) is a device used to control brushless motors in radio-controlled
vehicles. Because these items are mass produced, they are a cost-effective
way to drive brushless motors. You can find a selection by typing “esc” into
the search field of your favorite hobby store website or searching for
“electronic speed controller” on Amazon, eBay, or AliExpress.

Brushless motors have three windings and these should be connected
following the instructions for your speed controller (see Figure 8-6). Check
the documentation for your ESC to see if there are any special
considerations when working with Arduino. For example, the ESC from RC
Electric Parts suggests initializing the Servo library with
Servo.attach(pin, 1000, 2000).

https://oreil.ly/c90yi

Connecting an electronic speed controller

Discussion
Consult the documentation for your speed controller to confirm that it is
suitable for your brushless motor and to verify the wiring. Brushless motors
have three connections for the three motor wires and two connections for
power. Many speed controllers provide power on the center pin of the
servo-style connector. Unless you want to power the Arduino board from
the speed controller, you must disconnect or cut this center wire.

WARNING
If your speed controller has a feature that provides 5V power to servos and other devices (called a
battery eliminator circuit or BEC for short), do not connect this wire to your Arduino (see Figure
8-6).

8.6 Controlling Solenoids and Relays
Problem

You want to activate a solenoid or relay under program control. Solenoids
are electromagnets that convert electrical energy into mechanical
movement. An electromagnetic relay is a switch that is activated by a
solenoid.

Solution
Most solenoids require more power than an Arduino pin can provide, so a
transistor is used to switch the current needed to activate a solenoid.
Activating the solenoid is achieved by using digitalWrite to set the pin
HIGH.

This sketch turns on a transistor connected as shown in Figure 8-7. The
solenoid will be activated for one second every hour:

/*

 * Solenoid sketch

 */

int solenoidPin = 2; // Solenoid connected to transistor on pin 2

void setup()

{

 pinMode(solenoidPin, OUTPUT);

}

void loop()

{

 long interval = 1000 * 60 * 60 ; // interval = 60 minutes

 digitalWrite(solenoidPin, HIGH); // activates the solenoid

 delay(1000); // waits for a second

 digitalWrite(solenoidPin, LOW); // deactivates the solenoid

 delay(interval); // waits one hour

}

Driving a solenoid with a transistor

Discussion
The choice of transistor is dependent on the amount of current required to
activate the solenoid or relay. The datasheet may specify this in
milliamperes (mA) or as the resistance of the coil. To find the current
needed by your solenoid or relay, divide the voltage of the coil by its
resistance in ohms. For example, a 12V relay with a coil of 185 ohms draws
65 mA: 12 (volts) / 185 (ohms) = 0.065 amps, which is 65 mA. If your
transistor is not capable of handling the current you drive through it, it will
overheat and may burn out.

Small transistors such as the 2N2222 are sufficient for solenoids requiring
up to a few hundred milliamps. Larger solenoids will require a higher-
power transistor, like the TIP102/TIP120 or similar. There are many

suitable transistor alternatives; see Appendix B for help reading a datasheet
and choosing transistors.

The purpose of the diode is to prevent reverse EMF from the coil from
damaging the transistor (reverse EMF is a voltage produced when current
through a coil is switched off). The polarity of the diode is important; there
is a colored band indicating the cathode—this should be connected to the
solenoid positive power supply.

Electromagnetic relays are activated just like solenoids. A special relay
called a solid state relay (SSR) has internal electronics that can be driven
directly from an Arduino pin without the need for the transistor. Check the
datasheet for your relay to see what voltage and current it requires; anything
more than 40 mA at 5 volts will require a circuit such as the one shown in
Figure 8-7.

8.7 Making an Object Vibrate
Problem
You want something to vibrate under Arduino control. For example, you
want your project to shake for one second every minute.

Solution
Connect a vibration motor as shown in Figure 8-8. You can use a ceramic
capacitor for the 0.1 uF capacitor, but if you use an electrolytic capacitor,
make sure the positive lead goes to the 33 ohm resistor that’s connected to
+5V.

Connecting a vibration motor

The following sketch will turn on the vibration motor for one second each
minute:

/*

 * Vibrate sketch

 * Vibrate for one second every minute

 */

const int motorPin = 3; // vibration motor transistor is connected to pin 3

void setup()

{

 pinMode(motorPin, OUTPUT);

}

void loop()

{

 digitalWrite(motorPin, HIGH); // vibrate

 delay(1000); // delay one second

 digitalWrite(motorPin, LOW); // stop vibrating

 delay(59000); // wait 59 seconds.

}

Discussion

This recipe uses a motor designed to vibrate, such as the SparkFun ROB-
08449. If you have an old cell phone you no longer need, it may contain
tiny vibration motors that would be suitable. Vibration motors require more
power than an Arduino pin can provide, so a transistor is used to switch the
motor current on and off. Almost any NPN transistor can be used; Figure 8-
8 shows the common 2N2222. A 1K ohm resistor connects the output pin to
the transistor base; the value is not critical, and you can use values up to
4.7K ohm or so (the resistor prevents too much current flowing through the
output pin). The diode absorbs (or snubs—it’s sometimes called a snubber
diode) voltages produced by the motor windings as it rotates. The capacitor
absorbs voltage spikes produced when the brushes (contacts connecting
electric current to the motor windings) open and close. The 33 ohm resistor
is needed to limit the amount of current flowing through the motor.

This sketch sets the output pin HIGH for one second (1,000 ms) and then
waits for 59 seconds. The transistor will turn on (conduct) when the pin is
HIGH, allowing current to flow through the motor.

Here is a variation of this sketch that uses a sensor to make the motor
vibrate. The wiring is similar to that shown in Figure 8-8, with the addition
of a photocell connected to analog pin 0 (see Recipe 6.3):

/*

 * Vibrate_Photocell sketch

 * Vibrate when photosensor detects light above ambient level

 */

const int motorPin = 3; // vibration motor transistor is connected to pin 3

const int sensorPin = A0; // Photodetector connected to analog input 0

int sensorAmbient = 0; // ambient light level (calibrated in

setup)

const int thresholdMargin = 100; // how much above ambient needed to vibrate

void setup()

{

 pinMode(motorPin, OUTPUT);

 sensorAmbient = analogRead(sensorPin); // get startup light level

}

void loop()

{

 int sensorValue = analogRead(sensorPin);

 if(sensorValue > sensorAmbient + thresholdMargin)

 {

 digitalWrite(motorPin, HIGH); // vibrate

 }

 else

 {

 digitalWrite(motorPin, LOW); // stop vibrating

 }

}

Here the output pin is turned on when a light shines on the photocell. When
the sketch starts, the background light level on the sensor is read and stored
in the variable sensorAmbient. Light levels read in loop that are higher
than this will turn on the vibration motor.

8.8 Driving a Brushed Motor Using a
Transistor
Problem
You want to turn a motor on and off. You may want to control its speed.
The motor only needs to turn in one direction.

Solution
This sketch turns the motor on and off and controls its speed from
commands received on the serial port. Connect the components as shown in
Figure 8-9. You can use a ceramic capacitor for the 0.1 uF capacitor, but if
you use an electrolytic capacitor, make sure the positive lead goes to +5V:

/*

 * SimpleBrushed sketch

 * commands from serial port control motor speed

 * digits '0' through '9' are valid where '0' is off, '9' is max speed

 */

const int motorPin = 3; // motor driver is connected to pin 3

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 if (Serial.available())

 {

 char ch = Serial.read();

 if(isDigit(ch)) // is ch a number?

 {

 int speed = map(ch, '0', '9', 0, 255);

 analogWrite(motorPin, speed);

 Serial.println(speed);

 }

 else

 {

 Serial.print("Unexpected character ");

 Serial.println(ch);

 }

 }

}

Driving a brushed motor

Discussion

This recipe is similar to Recipe 8.7; the difference is that analogWrite is
used to control the speed of the motor. See “Analog Output” for more on
analogWrite and Pulse Width Modulation (PWM).

8.9 Controlling the Direction of a Brushed
Motor with an H-Bridge
Problem
You want to control the direction of a brushed motor—for example, you
want to cause a motor to rotate in one direction or the other from serial port
commands.

Solution
An H-Bridge is a component that can reverse the polarity of a motor, or stop
it completely. Its name derives from the shape of the schematic
representation of an H-Bridge circuit, but this recipe uses an integrated
circuit version of an H-Bridge that can control two brushed motors. Figure
8-10 shows the connections for the L293D H-Bridge IC; you can also use
the SN754410, which has the same pin layout. You should use ceramic
capacitors for the 0.1 uF capacitors. Here’s the sketch:

/*

 * Brushed_H_Bridge_simple sketch

 * commands from serial port control motor direction

 * + or - set the direction, any other key stops the motor

 */

const int in1Pin = 5; // H-Bridge input pins

const int in2Pin = 4;

void setup()

{

 Serial.begin(9600);

 pinMode(in1Pin, OUTPUT);

 pinMode(in2Pin, OUTPUT);

 Serial.println("+ - to set direction, any other key stops motor");

}

void loop()

{

 if (Serial.available()) {

 char ch = Serial.read();

 if (ch == '+')

 {

 Serial.println("CW");

 digitalWrite(in1Pin,LOW);

 digitalWrite(in2Pin,HIGH);

 }

 else if (ch == '-')

 {

 Serial.println("CCW");

 digitalWrite(in1Pin,HIGH);

 digitalWrite(in2Pin,LOW);

 }

 else if (ch != '\n' && ch != '\r') // ignore cr or lf

 {

 Serial.print("Stop motor");

 digitalWrite(in1Pin,LOW);

 digitalWrite(in2Pin,LOW);

 }

 }

}

Connecting two brushed motors using an L293D H-Bridge

Discussion
Table 8-1 shows how the values on the H-Bridge input affect the motor. In
the sketch in this recipe’s Solution, a single motor is controlled using the
IN1 and IN2 pins; the EN pin is permanently HIGH because it is connected
to +5V.

Logic table for H-Bridge

EN IN1 IN2 Function

HIGH LOW HIGH Turn clockwise

HIGH HIGH LOW Turn counterclockwise

HIGH LOW LOW Motor stop

HIGH HIGH HIGH Motor stop

LOW Ignored Ignored Motor stop

Figure 8-10 shows how a second motor can be connected. The following
sketch controls both motors together:

/*

 * Brushed_H_Bridge_simple2 sketch

 * commands from serial port control motor direction

 * + or - set the direction, any other key stops the motors

 */

const int in1Pin = 5; // H-Bridge input pins

const int in2Pin = 4;

const int in3Pin = 3; // H-Bridge pins for second motor

const int in4Pin = 2;

void setup()

{

 Serial.begin(9600);

 pinMode(in1Pin, OUTPUT);

 pinMode(in2Pin, OUTPUT);

 pinMode(in3Pin, OUTPUT);

 pinMode(in4Pin, OUTPUT);

 Serial.println("+ - sets direction of motors, any other key stops motors");

}

void loop()

{

 if (Serial.available()) {

 char ch = Serial.read();

 if (ch == '+')

 {

 Serial.println("CW");

 // first motor

 digitalWrite(in1Pin,LOW);

 digitalWrite(in2Pin,HIGH);

 //second motor

 digitalWrite(in3Pin,LOW);

 digitalWrite(in4Pin,HIGH);

 }

 else if (ch == '-')

 {

 Serial.println("CCW");

 digitalWrite(in1Pin,HIGH);

 digitalWrite(in2Pin,LOW);

 digitalWrite(in3Pin,HIGH);

 digitalWrite(in4Pin,LOW);

 }

 else if (ch != '\n' && ch != '\r') // ignore cr or lf

 {

 Serial.print("Stop motors");

 digitalWrite(in1Pin,LOW);

 digitalWrite(in2Pin,LOW);

 digitalWrite(in3Pin,LOW);

 digitalWrite(in4Pin,LOW);

 }

 }

}

8.10 Controlling the Direction and Speed of a
Brushed Motor with an H-Bridge
Problem
You want to control the direction and speed of a brushed motor. This
extends the functionality of Recipe 8.9 by controlling both motor direction
and speed through commands from the serial port.

Solution
Connect a brushed motor to the output pins of the H-Bridge as shown in
Figure 8-11. You should use ceramic capacitors for the 0.1 uF capacitors.

Connecting a brushed motor using analogWrite for speed control

This sketch uses commands from the Serial Monitor to control the speed
and direction of the motor. Sending 0 will stop the motor, and the digits 1
through 9 will control the speed. Sending “+” and “-” will set the motor
direction:

/*

 * Brushed_H_Bridge sketch with speed control

 * commands from serial port control motor speed and direction

 * digits '0' through '9' are valid where '0' is off, '9' is max speed

 * + or - set the direction

 */

const int enPin = 5; // H-Bridge enable pin

const int in1Pin = 7; // H-Bridge input pins

const int in2Pin = 4;

void setup()

{

 Serial.begin(9600);

 pinMode(in1Pin, OUTPUT);

 pinMode(in2Pin, OUTPUT);

 Serial.println("Speed (0-9) or + - to set direction");

}

void loop()

{

 if (Serial.available())

 {

 char ch = Serial.read();

 if(isDigit(ch)) // is ch a number?

 {

 int speed = map(ch, '0', '9', 0, 255);

 analogWrite(enPin, speed);

 Serial.println(speed);

 }

 else if (ch == '+')

 {

 Serial.println("CW");

 digitalWrite(in1Pin,LOW);

 digitalWrite(in2Pin,HIGH);

 }

 else if (ch == '-')

 {

 Serial.println("CCW");

 digitalWrite(in1Pin,HIGH);

 digitalWrite(in2Pin,LOW);

 }

 else if (ch != '\n' && ch != '\r') // ignore cr or lf

 {

 Serial.print("Unexpected character ");

 Serial.println(ch);

 }

 }

}

Discussion
This recipe is similar to Recipe 8.9, in which motor direction is controlled
by the levels on the IN1 and IN2 pins. But in addition, speed is controlled
by the analogWrite value on the EN pin (see Chapter 7 for more on
PWM). Writing a value of 0 will stop the motor; writing 255 will run the
motor at full speed. The motor speed will vary in proportion to values
within this range.

8.11 Using Sensors to Control the Direction
and Speed of Brushed Motors
Problem
You want to control the direction and speed of brushed motors with
feedback from sensors. For example, you want two photo sensors to control
motor speed and direction to cause a robot to move toward a beam of light.

Solution
This Solution uses similar motor connections to those shown in Figure 8-
10, but with the addition of two photoresistors (or phototransitors; see
Recipe 1.6 for details), as shown in Figure 8-12. You should use ceramic
capacitors for the 0.1 uF capacitors.

Two motors controlled using sensors

The sketch monitors the light level on the sensors and drives the motors to
steer toward the sensor detecting the brighter light level:

/*

 * Brushed_H_Bridge_Direction sketch

 * uses photo sensors to control motor direction

 * robot moves in the direction of a light

 */

int leftPins[] = {5,7,4}; // on pin for PWM, two pins for motor direction

int rightPins[] = {6,3,2};

const int MIN_PWM = 64; // this can range from 0 to MAX_PWM

const int MAX_PWM = 128; // this can range from around 50 to 255

const int leftSensorPin = A0; // analog pins with sensors

const int rightSensorPin = A1;

int sensorThreshold = 0; // must have this much light on a sensor to move

void setup()

{

 for(int i=1; i < 3; i++)

 {

 pinMode(leftPins[i], OUTPUT);

 pinMode(rightPins[i], OUTPUT);

 }

}

void loop()

{

 int leftVal = analogRead(leftSensorPin);

 int rightVal = analogRead(rightSensorPin);

 if(sensorThreshold == 0) // have the sensors been calibrated?

 {

 // if not, calibrate sensors to something above the ambient average

 sensorThreshold = ((leftVal + rightVal) / 2) + 100 ;

 }

 if(leftVal > sensorThreshold || rightVal > sensorThreshold)

 {

 // if there is adequate light to move ahead

 setSpeed(rightPins, map(rightVal,0,1023, MIN_PWM, MAX_PWM));

 setSpeed(leftPins, map(leftVal ,0,1023, MIN_PWM, MAX_PWM));

 }

}

void setSpeed(int pins[], int speed)

{

 if(speed < 0)

 {

{

 digitalWrite(pins[1],HIGH);

 digitalWrite(pins[2],LOW);

 speed = -speed;

 }

 else

 {

 digitalWrite(pins[1],LOW);

 digitalWrite(pins[2],HIGH);

 }

 analogWrite(pins[0], speed);

}

Discussion
This sketch controls the speed of two motors in response to the amount of
light detected by two photocells. The photocells are arranged so that an
increase in light on one side will increase the speed of the motor on the
other side. This causes the robot to turn toward the side with the brighter
light. Light shining equally on both cells makes the robot move forward in a
straight line. Insufficient light causes the robot to stop.

TIP
If you build this into a robot and have inadvertently created a light-fearing, rather than light-
following, robot, try reversing the polarity of both motors. If your robot spins in place when it
should be moving forward, try reversing the polarity of just one of the motors.

Light is sensed through analog inputs 0 and 1 using analogRead (see
Recipe 6.3). When the program starts, the ambient light is measured and
this threshold is used to determine the minimum light level needed to move
the robot. A margin of 100 is added to the average level of the two sensors
so the robot won’t move for small changes in ambient light level. Light
level as measured with analogRead is converted into a PWM value using
the map function. Set MIN_PWM to the approximate value that enables your
robot to move (low values will not provide sufficient torque; find this
through trial and error with your robot). Set MAX_PWM to a value (up to 255)
to determine the fastest speed you want the robot to move.

Motor speed is controlled in the setSpeed function. Two pins are used to
control the direction for each motor, with another pin to control speed. The
pin numbers are held in the leftPins and rightPins arrays. The first pin
in each array is the speed pin; the other two pins are for direction.

An alternative to the L293 is the Toshiba TB6612FNG. This can be used in
any of the recipes showing the L293D. Figure 8-13 shows the wiring for the
TB6612 as used on the Pololu breakout board (Pololu item 713).

H-Bridge wiring for the Pololu breakout board

You can reduce the number of pins needed by adding additional hardware to
control the direction pins. This is done by using only one pin per motor for
direction, with a transistor or logic gate to invert the level on the other H-
Bridge input. You can find circuit diagrams for this in the Arduino wiki, but
if you want something already wired up, you can use an H-Bridge shield

such as the Arduino Motor Shield (7630049200371) or the Ardumoto from
SparkFun (DEV-09213). Both are based on the L298, an alternative to the
L293 that can drive more current. These shields plug directly into Arduino
and only require connections to the motor power supply and windings.

Here is the sketch revised for the Arduino Motor Shield (analog pins 0 and
1 are used for current sensing, so the sketch uses A2 and A3):

/*

 * Brushed_H_Bridge_Direction sketch for motor shield

 * uses photo sensors to control motor direction

 * robot moves in the direction of a light

 */

int leftPins[] = {3,12}; // one pin for PWM, one pin for motor direction

int rightPins[] = {11,13};

const int MIN_PWM = 64; // this can range from 0 to MAX_PWM

const int MAX_PWM = 128; // this can range from around 50 to 255

const int leftSensorPin = A2; // analog pins with sensors

const int rightSensorPin = A3;

int sensorThreshold = 0; // must have this much light on a sensor to move

void setup()

{

 pinMode(leftPins[1], OUTPUT);

 pinMode(rightPins[1], OUTPUT);

}

void loop()

{

 int leftVal = analogRead(leftSensorPin);

 int rightVal = analogRead(rightSensorPin);

 if(sensorThreshold == 0) // have the sensors been calibrated?

 {

 // if not, calibrate sensors to something above the ambient average

 sensorThreshold = ((leftVal + rightVal) / 2) + 100 ;

 }

 if(leftVal > sensorThreshold || rightVal > sensorThreshold)

 {

 // if there is adequate light to move ahead

 setSpeed(rightPins, map(rightVal,0,1023, MIN_PWM, MAX_PWM));

 setSpeed(leftPins, map(leftVal, 0,1023, MIN_PWM, MAX_PWM));

 }

}

void setSpeed(int pins[], int speed)

{

 if(speed < 0)

 {

 digitalWrite(pins[1], HIGH);

 speed = -speed;

 }

 else

 {

 digitalWrite(pins[1], LOW);

 }

 analogWrite(pins[0], speed);

}

The loop function is identical to the preceding sketch. setSpeed has less
code because hardware on the shield allows a single pin to control motor
direction.

The Ardumoto Shield uses different pins, so you’d need to modify the code
as shown:

int leftPins[] = {3, 2}; // one pin for PWM, one pin for motor direction

int rightPins[] = {11, 4};

Here is the same functionality implemented using the Adafruit Motor
Shield V2; see Figure 8-14. This uses a library named
Adafruit_MotorShield that you can install using the Library Manager.

https://oreil.ly/kFygk

Using the Adafruit Motor Shield

The Adafruit shield supports four connections for motor windings; the
sketch that follows has the motors connected to connectors 3 and 4:

/*

 * Brushed_H_Bridge_Direction sketch for Adafruit Motor shield

 * uses photo sensors to control motor direction

 * robot moves in the direction of a light

 */

#include <Wire.h>

#include <Adafruit_MotorShield.h> // Adafruit motor shield library

// Create an object for the shield

Adafruit_MotorShield AFMS = Adafruit_MotorShield();

Adafruit_DCMotor *leftMotor = AFMS.getMotor(1);

Adafruit_DCMotor *rightMotor = AFMS.getMotor(2);

const int MIN_PWM = 64; // this can range from 0 to MAX_PWM

const int MAX_PWM = 128; // this can range from around 50 to 255

const int leftSensorPin = A0; // analog pins with sensors

const int rightSensorPin = A1;

int sensorThreshold = 0; // must be more light than this on sensors to move

void setup()

{

 AFMS.begin(); // create with the default frequency 1.6KHz

}

void loop()

{

 int leftVal = analogRead(leftSensorPin);

 int rightVal = analogRead(rightSensorPin);

 if(sensorThreshold == 0) // have the sensors been calibrated?

 {

 // if not, calibrate sensors to something above the ambient average

 sensorThreshold = ((leftVal + rightVal) / 2) + 100 ;

 }

 if(leftVal > sensorThreshold || rightVal > sensorThreshold)

 {

 // if there is adequate light to move ahead

 setSpeed(rightMotor, map(rightVal,0,1023, MIN_PWM, MAX_PWM));

 setSpeed(leftMotor, map(leftVal ,0,1023, MIN_PWM, MAX_PWM));

 }

}

void setSpeed(Adafruit_DCMotor *motor, int speed)

{

 if(speed < 0)

 {

 motor->run(BACKWARD);

 speed = -speed;

 }

 else

 {

 motor->run(FORWARD);

 }

 motor->setSpeed(speed);

}

If you have a different shield than the ones mentioned in this recipe, you
will need to refer to the datasheet and make sure the values in the sketch

match the pins used for PWM and direction.

See Also
The datasheet for the Pololu board

The product page for the Ardumoto shield

The documentation for the Arduino Motor Shield

The Adafruit Motor Shield V2 documentation and library

8.12 Driving a Bipolar Stepper Motor
Problem
You have a bipolar (four-wire) stepper motor and you want to step it under
program control using an H-Bridge.

Solution
This sketch steps the motor in response to serial commands. A numeric
value followed by a + steps in one direction; a - steps in the other. For
example, “24+” steps a 24-step motor through one complete revolution in
one direction, and “12-” steps half a revolution in the other direction.
Connect the components as shown in Figure 8-15. You should use ceramic
capacitors for the 0.1 uF capacitors. Here’s the sketch:

/*

 * Stepper_bipolar sketch

 * stepper is controlled from the serial port.

 * a numeric value followed by '+' or '-' steps the motor

 */

#include <Stepper.h>

// change this to the number of steps on your motor

#define STEPS 24

// create an instance of the stepper class, specifying

// the number of steps of the motor and the pins it's

https://oreil.ly/bD_83
https://oreil.ly/XZTCY
https://oreil.ly/2gKoX
https://oreil.ly/T19_o

// attached to

Stepper stepper(STEPS, 2, 3, 4, 5);

int steps = 0;

void setup()

{

 // set the speed of the motor to 30 RPM

 stepper.setSpeed(30);

 Serial.begin(9600);

}

void loop()

{

 if (Serial.available())

 {

 char ch = Serial.read();

 if(isDigit(ch)) // is ch a number?

 {

 steps = steps * 10 + ch - '0'; // yes, accumulate the value

 }

 else if(ch == '+')

 {

 stepper.step(steps);

 steps = 0;

 }

 else if(ch == '-')

 {

 stepper.step(steps * -1);

 steps = 0;

 }

 }

}

Four-wire bipolar stepper using L293 H-Bridge

Discussion
This type of motor has two discrete groups of coils, and each group makes
up a phase of the stepper motor. When a phase is energized in a particular
direction, the motor turns a step in that direction. By pulsing the phases
alternately, the motor can move several steps. There are four wires, and
each pair of wires corresponds to a phase. You must consult the datasheet or
other documentation for your motor to ensure that you are using the correct
voltage and the correct number of steps (#define STEPS) with it, but if you
don’t know the wiring arrangement of it, there is a simple test you can do
with a multimeter. Measure the resistance between different pairs of wires:
you will find two pairs of wires that have the same resistance, and all the
other pairs will have infinite resistance because there is no connection
between them.

If your stepper requires a higher current than the L293 can provide (600 mA
for the L293D), you can use the SN754410 chip for up to 1 amp with the

same wiring and code as the L293. For current up to 2 amps, you can use
the L298 chip. The L298 can use the same sketch as shown in this recipe’s
Solution, and it should be connected as shown in Figure 8-16. You should
use a ceramic capacitor for the 0.1 uF capacitor.

Unipolar stepper with L298

A simple way to connect an L298 to Arduino is to use the Arduino Motor
Shield (7630049200371). This plugs on top of an Arduino board and only
requires external connection to the motor windings; the motor power comes
from the Arduino Vin (external Voltage Input) pin. In1/2 is controlled by
pin 12, and ENA is pin 3. In3/4 is connected to pin 13, and ENB is on pin
11. Make the following changes to the code to use the preceding sketch
with the Arduino Motor Shield:

Stepper stepper(STEPS, 12, 13);

Replace all the code inside of setup() with the following:

pinMode(3, OUTPUT);

digitalWrite(3, HIGH); // enable A, use LOW to turn off the motor

pinMode(11, OUTPUT);

digitalWrite(11, HIGH); // enable B, use LOW to turn off the motor

stepper.setSpeed(60); // set the speed of the motor to 60 rpm

Serial.begin(9600);

The loop code is the same as the previous sketch.

WARNING
Stepper motors can draw a substantial amount of current, including when they are not moving. If
you (gently; do not actually turn it) try to turn an energized stepper motor, you will feel resistance.
An L293 or even L298 on a breadboard will get very hot over time, quite possibly too hot for the
plastic composition of the breadboard. For this reason, we strongly suggest you use a motor
shield, described next. Motor shields will include the appropriate heat sink and thermal resilience
for this application. If you want to save power, you can turn off the stepper motors when you are
not actively using them by taking the ENA and ENB pins low when not in use. This often defeats
the purpose of using a stepper motor (that is, it will hold its position in between active stepping).
See Recipe 8.13 for an example that uses a timeout to turn off motors when not in use.

See Also
For more on stepper motor wiring, see Tom Igoe’s stepper motor notes.

Documentation for the Stepper library

The Adafruit stepper motor tutorial

8.13 Driving a Bipolar Stepper Motor (Using
the EasyDriver Board)
Problem
You have a bipolar (four-wire) stepper motor and you want to step it under
program control using the EasyDriver board.

https://oreil.ly/-Phfq
https://oreil.ly/PVcIJ
https://oreil.ly/AJaAG

Solution
This Solution is similar to Recipe 8.12, and uses the same serial command
protocol described there, but it uses the popular EasyDriver board. Figure 8-
17 shows the connections.

Connecting the EasyDriver board

The following sketch controls the step direction and count from the serial
port. Unlike the code in Recipe 8.12, it does not require the Stepper library,
because the EasyDriver board handles the control of the motor coils in
hardware:

/*

 * Stepper_Easystepper sketch

 * stepper is controlled from the serial port.

 * a numeric value followed by '+' or '-' steps the motor

 * a numeric value followed by 's' changes the speed

 */

const int dirPin = 2;

const int stepPin = 3;

const int enPin = 4;

int speed = 100; // desired speed in steps per second

int steps = 0; // the number of steps to make

long last_step = millis();

long timeout = 30 * 1000; // turn off the motor after 30 secs of inactivity

void setup()

{

 pinMode(dirPin, OUTPUT);

 pinMode(stepPin, OUTPUT);

 pinMode(enPin, OUTPUT);

 Serial.begin(9600);

}

void loop()

{

 if (millis() > last_step + timeout)

 {

 digitalWrite(enPin,HIGH); // Turn off the motor

 }

 if (Serial.available())

 {

 char ch = Serial.read();

 if(isDigit(ch)) // is ch a number?

 {

 steps = steps * 10 + ch - '0'; // yes, accumulate the value

 }

 else if(ch == '+')

 {

 step(steps);

 steps = 0;

 }

 else if(ch == '-')

 {

 step(-steps);

 steps = 0;

 }

 else if(ch == 's')

 {

 speed = steps;

 Serial.print("Setting speed to "); Serial.println(steps);

 steps = 0;

 }

 }

}

void step(int steps)

p(p)

{

 int stepDelay = 1000 / speed; //delay in ms for speed given as steps per

sec

 int stepsLeft;

 digitalWrite(enPin,LOW); // Enable the motor

 last_step = millis();

 // determine direction based on whether steps_to_mode is + or -

 if (steps > 0)

 {

 digitalWrite(dirPin, HIGH);

 stepsLeft = steps;

 }

 if (steps < 0)

 {

 digitalWrite(dirPin, LOW);

 stepsLeft = -steps;

 }

 // decrement the number of steps, moving one step each time

 while(stepsLeft > 0)

 {

 digitalWrite(stepPin,HIGH);

 delayMicroseconds(1);

 digitalWrite(stepPin,LOW);

 delay(stepDelay);

 stepsLeft--; // decrement the steps left

 }

}

Discussion
The EasyDriver board is powered through the pins marked M+ and GND
(shown in the upper right of Figure 8-17). The board operates with voltages
between 8 volts and 30 volts; check the specifications of your stepper motor
for the correct operating voltage. If you are using a 5V stepper, you must
provide 5 volts to the pins marked GND and +5V (these pins are on the
lower left of the EasyDriver board) and cut the jumper on the printed circuit
board marked APWR (this disconnects the onboard regulator and powers
the motor and EasyDriver board from an external 5V supply).

This sketch reduces power consumption when the motor has not moved for
more than 30 seconds by setting the Enable pin HIGH to disable output (a

LOW value enables output). You can adjust this timeout by changing the
last_step variable.

Stepping options are selected by connecting the MS1 and MS2 pins to +5V
(HIGH) or GND (LOW), as shown in Table 8-2. With the board connected as
shown in Figure 8-17, it will use full-step resolution (MS1 and MS2 are
both LOW). Additionally, note that the reset pin is in its default state when
not wired to GND (HIGH). Pulling it LOW will turn off stepper control.

Microstep options

Resolution MS1 MS2

Full step LOW LOW

Half step HIGH LOW

Quarter step LOW HIGH

Eighth step HIGH HIGH

You can modify the code so that the speed value determines the revolutions
per second as follows:

// use the following for speed given in RPM

int speed = 100; // desired speed in RPM

int stepsPerRevolution = 200; // this line sets steps for one revolution

Change the step function so that the first line is as follows:

int stepDelay = 60L * 1000L / stepsPerRevolution / speed; // speed as RPM

Everything else can remain the same, but now the speed command you send
will be the RPM of the motor when it steps.

8.14 Driving a Unipolar Stepper Motor with
the ULN2003A Driver Chip

Problem
You have a unipolar (five- or six-wire) stepper motor and you want to
control it using a ULN2003A Darlington driver chip.

Solution
Connect a unipolar stepper as shown in Figure 8-18. The +V connection
goes to a power supply rated for the voltage and current needed by your
motor. You should use a ceramic capacitor for the 0.1 uF capacitor.

The following sketch steps the motor using commands from the serial port.
A numeric value followed by a + steps in one direction; a - steps in the
other:

/*

 * Stepper sketch

 * stepper is controlled from the serial port.

 * a numeric value followed by '+' or '-' steps the motor

 */

#include <Stepper.h>

// change this to the number of steps on your motor

#define STEPS 24

// create an instance of the stepper class, specifying

// the number of steps of the motor and the pins it's

// attached to

Stepper stepper(STEPS, 2, 3, 4, 5);

int steps = 0;

void setup()

{

 stepper.setSpeed(30); // set the speed of the motor to 30 RPMs

 Serial.begin(9600);

}

void loop()

{

 if (Serial.available())

 {

 char ch = Serial.read();

 if(isDigit(ch)) // is ch a number?

 {

 steps = steps * 10 + ch - '0'; // yes, accumulate the value

 }

 else if(ch == '+')

 {

 stepper.step(steps);

 steps = 0;

 }

 else if(ch == '-')

 {

 stepper.step(steps * -1);

 steps = 0;

 }

 else if(ch == 's')

 {

 stepper.setSpeed(steps);

 Serial.print("Setting speed to "); Serial.println(steps);

 steps = 0;

 }

 }

}

Unipolar stepper connected using ULN2003 driver

Discussion
This type of motor has two coils, and each coil has a connection to the
center. Motors with only five wires have both center connections brought
out on a single wire. If the connections are not marked, you can identify the
wiring using a multimeter. Measure the resistance across pairs of wires to
find the two pairs of wires that have the maximum resistance. The center
tap wire should have half the resistance of the full coil. A step-by-step
procedure is available.

See Also
For more on stepper motor wiring, see Tom Igoe’s stepper motor notes.

Documentation for the Stepper library

https://oreil.ly/7ckQc
http://www.tigoe.net/pcomp/code/circuits/motors
https://oreil.ly/-Phfq

Audio Output

9.0 Introduction
There are millions of Google results for “Arduino music project” and there
is only space in this chapter to introduce Arduino audio techniques and
some examples to get you started. Arduino wasn’t built to be a sophisticated
audio synthesizer, but it can certainly produce sound through an output
device such as a speaker.

This chapter shows how to create noise, play prerecorded sounds and create
some simple output, and even experiment with sound synthesis.

If you want inspiration for your project, look through some of the many
websites featuring music projects:

Arduino blog entry with 172 music projects
Arduino blog entries about music

Here are just two excellent examples of what can be achieved with Arduino,
some hardware, and lots of creativity:

A laser harp
A theremin (See Recipe 9.6 for a very simple version of this early
electronic instrument, but the real thing can be made with this
information.)

Sound is produced by vibrating air. A sound has a distinctive pitch if the
vibration repeats regularly. The Arduino can create sound by driving a
loudspeaker or Piezo device (a small ceramic transducer that produces
sound when pulsed), converting electronic vibrations into speaker pulses
that vibrate the air. The pitch (frequency) of the sound is determined by the
time it takes to pulse the speaker in and out; the shorter the amount of time,
the higher the frequency.

https://oreil.ly/3Qbw5
https://oreil.ly/q60bC
https://oreil.ly/ZCAIH
https://oreil.ly/KgyaX

TIP
There are two types of Piezos you are likely to encounter. A Piezo speaker can produce sounds
across a range of frequencies. A Piezo buzzer, on the other hand, includes oscillator circuitry that
causes it to buzz at a fixed frequency when you apply power. The Piezo-based solutions in this
chapter assume you are working with a Piezo speaker, not a buzzer.

The unit of frequency is measured in hertz, and it refers to the number of
times the signal goes through its repeating cycle in one second. The range
of human hearing is from around 20 hertz (Hz) up to 20,000 hertz (although
it varies by person and changes with age).

The Arduino software includes a tone function for producing sound.
Recipes 9.1 and 9.2 show how to use this function to make sounds and
tunes. The tone function uses hardware timers. On a standard Arduino
board (the Uno and similar boards), only one tone can be produced at a
time. When you use the tone function, it will tie up the timer used for
analogWrite on pins 3 and 11 so you’ll need to choose different pins if you
need analog output. To overcome this limitation, Recipe 9.3 shows how to
use an enhanced tone library for multiple tones, and Recipe 9.4 shows how
sound can be produced without using the tone function or hardware timers.

The sound that can be produced by pulsing a speaker is limited and does not
sound very musical. The output is a square wave (see Figure 9-1), which
sounds harsh and more like an antique computer game than a musical
instrument.

It is difficult for basic boards like the Arduino Uno to produce more
musically complex sounds without external hardware. You can add a shield
that extends the Uno’s capabilities such as the Adafruit Wave Shield, to
play back audio files from a memory card on the shield.

Some of the more recent Arduino boards have a digital-to-analog converter
output (DAC), which can produce high quality audio—either playing sound
files from SD cards, or synthesizing sound in software (see Recipe 1.8).
Another option in newer boards is I2S (Inter-IC Sound). This is digital

interface for communicating with external chips produces high-quality
stereo audio interfaces—both input and output.

You can also use Arduino to control an external device that is built to make
sound. Recipe 9.5 shows how to send Musical Instrument Digital Interface
(MIDI) messages to a MIDI device. These devices produce high-quality
sounds of a huge variety of instruments and can produce the sounds of
many instruments simultaneously. The sketch in Recipe 9.5 shows how to
generate MIDI messages to play a musical scale.

Generating sound using digital pulses

Recipe 9.6 provides an overview of an application called Auduino that uses
complex software processing to synthesize sound. Recipe 9.7 shows a more
advanced audio synthesis library.

If you want to explore sophisticated musical applications, the 32-bit Teensy
boards from PJRC are a good choice. There is also a well-developed audio
library that makes use of the DSP capabilities of the chip on the Teensy to
provide complex synthesis and audio effects using the DAC that is also
built in, giving true analog audio output. An audio shield is available for
these boards that has a microSD card reader and an I2S audio chip that
produces stereo 16-bit 44.1 kHz audio output, as well as stereo audio in.
The Teensy can also serve as a native USB MIDI, and an audio input and
output device.

SparkFun offers a range of audio modules, including an Audio-Sound
Breakout (part number WIG-11125) and MP3 player shield (part number
DEV-12660).

The Arduino Zero, MKR1000, and MKRZero have a DAC pin, and if you
install the experimental AudioZero library they can play a WAV file from
an SD card.

This chapter covers the many ways you can generate sound electronically. If
you want to make music by getting Arduino to play acoustic instruments
(such as glockenspiels, drums, and acoustic pianos), you can employ
actuators such as solenoids and servos that are covered in Chapter 8.

Many of the recipes in this chapter will drive a small speaker or Piezo
device. The circuit for connecting one of these to an Arduino pin is shown
in Figure 9-2.

https://www.pjrc.com/teensy/index.html
https://oreil.ly/GBTYg
https://oreil.ly/qRMCZ
https://oreil.ly/lG0as

Connecting to an audio transducer

The volume control is a variable resistor; the value is not critical and
anything from 200 to 500 ohms would work. The capacitor is a 100
microfarad electrolytic with the positive end connected to the Arduino pin.
A speaker will work regardless of which wire is attached to ground, but a
Piezo is polarized, so connect the negative wire (usually black) to the GND
pin.

Alternatively, you can connect the output to an external audio amplifier.
Recipe 9.6 shows how an output pin can be connected to an audio jack.

WARNING
If you connect one of these circuits to headphones using an audio jack, make sure you set the
volume to a safe level before putting the headphones on. Depending on which board you are
using, and how you have wired it, the sound could be quite loud.

9.1 Playing Tones
Problem
You want to produce audio tones through a speaker or other audio
transducer. You want to specify the frequency and duration of the tone.

Solution
Use the Arduino tone function. This sketch plays a tone with the frequency
set by a variable resistor (or other sensor) connected to analog input 0 (see
Figure 9-3):

/*

 * Tone sketch

 *

 * Plays tones through a speaker on digital pin 9

 * Frequency determined by values read from analog pin

 */

const int speakerPin = 9; // connect speaker to pin 9

const int pitchPin = A0; // pot that will determine the frequency of the

tone

void setup()

{

}

void loop()

{

 int sensor0Reading = analogRead(pitchPin); // read input to set frequency

 // map the analog readings to a meaningful range

 int frequency = map(sensor0Reading, 0, 1023, 100, 5000); // 100 Hz to 5 kHz

 int duration = 250; // how long the tone lasts

 tone(speakerPin, frequency, duration); // play the tone

 delay(1000); // pause one second

}

Connections for the Tone sketch

The tone function can take up to three parameters: the pin attached to the
speaker, the frequency to play (in hertz), and the length of time (in
milliseconds) to play the note. The third parameter is optional. If it is
omitted, the note will continue until there is another call to tone, or a call to
noTone. The value for the frequency is mapped to sensible values for audio
frequencies in the following line:

int frequency = map(sensor0Reading, 0, 1023, 100, 5000); //100 Hz to 5 kHz

This variation uses a second variable resistor (the bottom-right pot in Figure
9-3) to set the duration of the tone:

const int speakerPin = 9; // connect speaker to pin 9

const int pitchPin = A0; // input that determines frequency of the tone

const int durationPin = A1; // input to determine the duration of the tone

void setup()

{

}

void loop()

{

 int sensor0Reading = analogRead(pitchPin); // read input for frequency

 int sensor1Reading = analogRead(durationPin); // read input for duration

 // map the analog readings to a meaningful range

 int frequency = map(sensor0Reading, 0, 1023, 100, 5000); // 100Hz to 5kHz

 int duration = map(sensor1Reading, 0, 1023, 100, 1000); // dur 0.1-1

second

 tone(speakerPin, frequency, duration); // play the tone

 delay(duration); // wait for the tone to finish

}

Another variation is to add a switch so that tones are generated only when
the switch is pressed.

Enable an input with pull-up resistors in setup with the following line (see
Recipe 5.2 for a connection diagram and explanation). You’ll also need to
define inputPin to specify the pin you want to use:

pinMode(inputPin, INPUT_PULLUP);

Modify the loop code so that the tone and delay functions are only called
when the switch is pressed:

if (digitalRead(inputPin) == LOW) // read input value

{

 tone(speakerPin, frequency, duration); // play the tone

 delay(duration); //wait for the tone to finish

}

You can use almost any audio transducer to produce sounds with Arduino.
Small speakers work very well. Piezo transducers also work and are
inexpensive, robust, and easily salvaged from old audio greeting cards.
Piezos draw little current (they are high-resistance devices), so they can be
connected directly to the pin. Speakers are usually of much lower resistance
and need a resistor to limit the current flow. The components to build the
circuit pictured in Figure 9-3 should be easy to find.

See Also
You can achieve enhanced functionality using the Tone library by Brett
Hagman that is described in Recipe 9.3.

9.2 Playing a Simple Melody
Problem
You want Arduino to play a simple melody.

Solution
You can use the tone function described in Recipe 9.1 to play sounds
corresponding to notes on a musical instrument. This sketch uses tone to
play a string of notes—the “Hello world” of learning the piano, “Twinkle,
Twinkle Little Star”:

/*

 * Twinkle sketch

 * Plays "Twinkle, Twinkle Little Star"

 * Speaker is connected to digital pin 9

 */

const int speakerPin = 9; // connect speaker to pin 9

char noteNames[] = {'C','D','E','F','G','a','b'};

unsigned int frequencies[] = {262,294,330,349,392,440,494};

const byte noteCount = sizeof(noteNames); // number of notes (7 here)

//notes, a space represents a rest

char score[] = "CCGGaaGFFEEDDC GGFFEEDGGFFEED CCGGaaGFFEEDDC ";

const byte scoreLen = sizeof(score); // the number of notes in the score

void setup()

{

}

void loop()

{

 for (int i = 0; i < scoreLen; i++)

 {

 int duration = 333; // each note lasts for a third of a second

 playNote(score[i], duration); // play the note

 delay(duration/10); // slight pause to separate the notes

 }

 delay(4000); // wait four seconds before repeating the song

}

void playNote(char note, int duration)

{

 // play the tone corresponding to the note name

 for (int i = 0; i < noteCount; i++)

 {

 // try and find a match for the noteName to get the index to the note

 if (noteNames[i] == note) // find a matching note name in the array

 tone(speakerPin, frequencies[i], duration); // play the note

 }

 // if there is no match then the note is a rest, so just do the delay

 delay(duration);

}

noteNames is an array of characters to identify notes in a score. Each entry
in the array is associated with a frequency defined in the notes array. For
example, note C (the first entry in the noteNames array) has a frequency of
262 Hz (the first entry in the notes array).

score is an array of notes representing the note names you want to play
(lowercase notes are an octave higher than the uppercase notes):

// a space represents a rest

char score[] = "CCGGaaGFFEEDDC GGFFEEDGGFFEED CCGGaaGFFEEDDC ";

Each character in the score that matches a character in the noteNames array
will make the note play. The space character is used as a rest, but any
character not defined in noteNames will also produce a rest (no note
playing).

The sketch calls playNote with each character in the score and a duration
for the notes of one-third of a second.

The playNote function does a lookup in the noteNames array to find a
match and uses the corresponding entry in the frequencies array to get the
frequency to sound.

Every note has the same duration. If you want to specify the length of each
note, you can add the following code to the sketch:

byte beats[scoreLen] = {1,1,1,1,1,1,2, 1,1,1,1,1,1,2,1,

 1,1,1,1,1,1,2, 1,1,1,1,1,1,2,1,

 1,1,1,1,1,1,2, 1,1,1,1,1,1,2};

byte beat = 180; // beats per minute for eighth notes

unsigned int speed = 60000 / beat; // the time in ms for one beat

beats is an array showing the length of each note: 1 is an eighth note, 2 a
quarter note, and so on.

beat is the number of beats per minute.

speed is the calculation to convert beats per minute into a duration in
milliseconds.

The only change to the loop code is to set the duration to use the value in
the beats array. Change:

int duration = 333; // each note lasts for a third of a second

to:

int duration = beats[i] * speed; // use beats array to determine duration

9.3 Generating More than One Simultaneous
Tone
Problem
You want to play two tones at the same time. The Arduino Tone library only
produces a single tone on a standard board, and you want two simultaneous

tones. Note that the Mega board has more timers and can produce up to six
tones.

Solution
The Arduino Tone library is limited to a single tone because a different
timer is required for each tone, and although a standard Arduino board has
three timers, one is used for the millis function and another for servos.
This recipe uses a library written by Brett Hagman, the author of the
Arduino tone function. The library enables you to generate multiple
simultaneous tones. You can download it or simply install it with the
Library Manager.

This is an example sketch that plays part of Twinkle, Twinkle Little Star
with the same notes across two octaves:

/*

 * Dual Tones

 * Plays Twinkle, Twinkle Little Star over two octaves.

 */

#include <Tone.h>

int notes1[] = {NOTE_C3, NOTE_C3, NOTE_G3, NOTE_G3, NOTE_A4, NOTE_A4,

 NOTE_G3, NOTE_F3, NOTE_F3, NOTE_E3, NOTE_E3, NOTE_D3,

 NOTE_D3, NOTE_C3 };

int notes2[] = {NOTE_C3, NOTE_C3, NOTE_G3, NOTE_G3, NOTE_A4, NOTE_A4,

 NOTE_G3, NOTE_F3, NOTE_F3, NOTE_E3, NOTE_E3, NOTE_D3,

 NOTE_D3, NOTE_C3 };

const byte scoreLen = sizeof(notes1)/sizeof(notes1[0]); // number of notes

// You can declare the tones as an array

Tone notePlayer[2];

void setup(void)

{

 notePlayer[0].begin(11);

 notePlayer[1].begin(12);

}

void loop(void)

{

 for (int i = 0; i < scoreLen; i++)

 {

https://github.com/bhagman/Tone

 notePlayer[0].play(notes1[i]);

 delay(100); // Slight delay before starting the next note

 notePlayer[1].play(notes2[i]);

 delay(400);

 notePlayer[0].stop();

 notePlayer[1].stop();

 delay(30);

 }

 delay(1000);

}

Discussion
To mix the output of the two tones to a single speaker, use 500 ohm
resistors from each output pin and tie them together at the speaker. The
other speaker lead connects to GND, as shown in the previous sketches.

On a standard Arduino board, the first tone will use timer 2 (so PWM on
pins 9 and 10 will not be available); the second tone uses timer 1
(preventing the Servo library and PWM on pins 11 and 12 from working).
On a Mega board, each simultaneous tone will use timers in the following
order: 2, 3, 4, 5, 1, 0. At the time of this writing, this library uses features
that are specific to the AVR architecture and is not supported on ARM
boards or MegaAVR boards such as the Uno WiFi R2 or the Nano Every.

When you play two notes that are the same frequency, or are the same note
from a different octave, you may notice an effect known as a beat that is
similar to a tremelo. This happens because the two channels are not in
perfect sync. This effect is used to tune guitar strings manually: the beat
ceases to be heard once the string is in tune with the reference note.

WARNING
Playing three simultaneous notes on a standard Uno Arduino board, or more than six on a Mega,
is possible, but millis and delay will no longer work properly. It is safest to use only two
simultaneous tones (or five on a Mega).

9.4 Generating Audio Tones Without
Interfering with PWM
Problem
You want to produce sounds through a speaker or other audio transducer,
and you need to generate the tone in software instead of with a timer; for
example, if you need to use analogWrite on pin 3 or 11.

Solution
The tone function discussed in earlier recipes is easy to use, but it requires
a hardware timer, which may be needed for other tasks such as
analogWrite. This code does not use a timer, but it will not do anything
else while the note is played. Unlike the Arduino tone function, the
playTone function described here will block—it will not return until the
note has finished.

The sketch plays six notes, each one twice the frequency of (an octave
higher than) the previous one. The playTone function generates a tone for a
specified duration on a speaker or Piezo device connected to a digital output
pin and ground; see Figure 9-4:

/*

 * Tone and fade sketch

 * Plays tones while fading an LED

 */

byte speakerPin = 9;

byte ledPin = 3;

void setup()

{

 pinMode(speakerPin, OUTPUT);

}

void playTone(int period, int duration)

{

 // period is one cycle of tone

 // duration is how long the pulsing should last in milliseconds

 int pulse = period / 2;

 for (long i = 0; i < duration * 1000L; i += period)

(g ; ; p)

 {

 digitalWrite(speakerPin, HIGH);

 delayMicroseconds(pulse);

 digitalWrite(speakerPin, LOW);

 delayMicroseconds(pulse);

 }

}

void fadeLED(){

 // These two static variables are assigned initial values

 // only the first time the function is called.

 static int brightness = 0;

 static int changeval = 5;

 analogWrite(ledPin, brightness);

 // If we've exceeded the limits of analogWrite

 brightness += changeval;

 if (brightness >= 255 || brightness <= 0)

 changeval *= -1; // Change direction

 delay(2);

}

void loop()

{

 // a note with period of 15289 is deep C (second lowest C note on piano)

 for(int period=15289; period >= 477; period=period / 2) // play 6 octaves

 {

 playTone(period, 200); // play tone for 200 ms

 fadeLED();

 }

}

Connections for speaker and LED

Discussion
Two values are used by playTone: period and duration. The variable
period represents the time for one cycle of the tone to play. The speaker is
pulsed high and then low for the number of microseconds given by period.
The for loop repeats the pulsing for the number of milliseconds given in
the duration argument.

If you prefer to work in frequency rather than period, you can use the
reciprocal relationship between frequency and period; period is equal to 1
divided by frequency. You need the period value in microseconds; because
there are 1 million microseconds in one second, the period is calculated as
1000000L / frequency (the “L” at the end of that number tells the compiler
that it should calculate using long integer math to prevent the calculation
from exceeding the range of a normal integer—see the explanation of long
integers in Recipe 2.2):

void playFrequency(int frequency, int duration)

{

 int period = 1000000L / frequency;

 int pulse = period / 2;

The rest of the code is the same as playTone:

for (long i = 0; i < duration * 1000L; i += period)

 {

 digitalWrite(speakerPin, HIGH);

 delayMicroseconds(pulse);

 digitalWrite(speakerPin, LOW);

 delayMicroseconds(pulse);

 }

}

The code in this recipe stops and waits until a tone has completed before it
can do any other processing. It is possible to produce the sound in the
background (without waiting for the sound to finish) by putting the sound
generation code in an interrupt handler. The source code for the tone
function that comes with the Arduino distribution shows how this is done.

See Also
Recipe 9.6

Some examples of more complex audio synthesis you can do with the
Arduino:

Pulse-Code Modulation
PCM allows you to approximate analog audio using digital signaling.
This Arduino wiki article explains how to produce 8-bit PCM using a
timer.

Pocket Piano shield
Modern Device’s Fluxamasynth Shield is a 64-voice polyphonic
synthesizer shield for Arduino.

9.5 Controlling MIDI
Problem
You want to get a MIDI synthesizer to play music using Arduino.

Solution

https://oreil.ly/-ddze
https://oreil.ly/qvo9h

To connect to a MIDI device, you need a five-pin DIN plug or socket. If
you use a socket, you will also need a lead to connect to the device.
Connect the MIDI connector to Arduino using a 220 ohm resistor, as shown
in Figure 9-5.

MIDI connections

To upload the code onto Arduino, you should disconnect the MIDI device,
as it may interfere with the upload. After the sketch is uploaded, connect a
MIDI sound device to the Arduino output. A musical scale will play each
time you press the button connected to pin 2:

/*

 * midiOut sketch

 * Sends MIDI messages to play a scale on a MIDI instrument

 * each time the switch on pin 2 is pressed

*/

// these numbers specify which note to play

const byte notes[8] = {60, 62, 64, 65, 67, 69, 71, 72};

const int num_notes = sizeof(notes)/ sizeof(notes[0]);

const int switchPin = 2;

const int ledPin = LED_BUILTIN;

void setup() {

 Serial.begin(31250);

 pinMode(switchPin, INPUT_PULLUP);

 pinMode(ledPin, OUTPUT);

}

void loop() {

 if (digitalRead(switchPin) == LOW)

 {

 for (byte noteNumber = 0; noteNumber < num_notes; noteNumber++)

 {

 // Play the note

 playMidiNote(1, notes[noteNumber], 127);

 digitalWrite(ledPin, HIGH);

 delay(70); // Hold the note

 // Stop playing the note (velocity of 0)

 playMidiNote(1, notes[noteNumber], 0);

 digitalWrite(ledPin, HIGH);

 delay(30);

 }

 }

}

void playMidiNote(byte channel, byte note, byte velocity)

{

 byte midiMessage= 0x90 + (channel - 1);

 Serial.write(midiMessage);

 Serial.write(note);

 Serial.write(velocity);

}

Discussion
This sketch uses the serial TX pin to send MIDI information. The circuit
connected to pin 1 may interfere with uploading code to the board. Remove
the wire from pin 1 while you upload, and plug it back in afterward.

MIDI was originally used to connect digital musical instruments together so
that one could control another. The MIDI specification describes the
electrical connections and the messages you need to send.

MIDI is actually a serial connection (at a nonstandard serial speed, 31,250
baud), so Arduino can send and receive MIDI messages using its serial port
hardware from pins 0 and 1. Because the serial port is occupied by MIDI
messages, you can’t print messages to the Serial Monitor, so the sketch
flashes the onboard LED each time it sends a note.

Each MIDI message consists of at least one byte. This byte specifies what is
to be done. Some commands need no other information, but other
commands need data to make sense. The message in this sketch is note on,
which needs two pieces of information: which note and how loud. Both of
these bits of data are in the range of zero to 127.

The sketch initializes the serial port to a speed of 31,250 baud; the other
MIDI-specific code is in the function playMidiNote:

void playMidiNote(byte channel, byte note, byte velocity)

{

 byte midiMessage= 0x90 + (channel - 1);

 Serial.write(midiMessage);

 Serial.write(note);

 Serial.write(velocity);

}

This function takes three parameters and calculates the first byte to send
using the channel information.

MIDI information is sent on different channels between 1 and 16. Each
channel can be set to be a different instrument, so multichannel music can
be played. The command for note on (to play a sound) is a combination of
0x90 (the top four bits at b1001), with the bottom four bits set to the
numbers between b0000 and b1111 to represent the MIDI channels. The
byte represents channels using 0 to 15 for channels 1 to 16, so 1 is
subtracted first.

Then the note value and the volume (referred to as velocity in MIDI, as it
originally related to how fast the key was moving on a keyboard) are sent.

The serial write statements specify that the values must be sent as bytes
(rather than as the ASCII value). println is not used because a line return

character would insert additional bytes into the signal that are not wanted.

The sound is turned off by sending a similar message, but with velocity set
to 0.

This recipe works with MIDI devices having five-pin DIN MIDI in
connectors. If your MIDI device only has a USB connector, this will not
work. It will not enable the Arduino to control MIDI music programs
running on your computer without additional hardware (a MIDI-to-USB
adapter). Although Arduino has a USB connector, your computer
recognizes it as a serial device, not a MIDI device.

See Also
To send and receive MIDI, have a look at the MIDI library.

MIDI messages are detailed on this MIDI Association page.

The SparkFun MIDI shield is a kit that includes MIDI in and out
connectors, some buttons, and an optoisolator to keep the MIDI device and
the Arduino electrically isolated.

The Teensy board is also able to be programmed to be a native USB MIDI
device.

9.6 Making an Audio Synthesizer
Problem
You want to generate complex sounds similar to those used to produce
electronic music.

Solution
The simulation of audio oscillators used in a sound synthesizer is complex,
but Peter Knight has created a sketch called Auduino that enables Arduino
to produce more complex and interesting sounds. Because it uses many
low-level capabilities, Auduino is unlikely to run on anything other than 8-
bit boards based on the ATmega such as the Uno.

https://oreil.ly/zoZA_
https://oreil.ly/Oh857
https://oreil.ly/faK0c

Download the sketch by following this link.

Connect five 4.7K ohm linear potentiometers to analog pins 0 through 4, as
shown in Figure 9-6. Potentiometers with full-size shafts are better than
small presets because you can easily twiddle the settings. Pin 3 is used for
audio output and is connected to an amplifier using a jack plug.

WARNING
The voltage level (5 volts) is higher than audio amplifiers expect, so you may need to use a 4.7K
variable resistor to reduce the voltage (connect one end to pin 9 and the other end to ground; then
connect the slider to the tip of the jack plug. The barrel of the jack plug is connected to ground).

Discussion
The sketch code is complex because it is directly manipulating hardware
timers to generate the desired frequencies, which are transformed in
software to produce the audio effects. It is not included in the text because
you do not need to understand the code to use Auduino.

Auduino uses a technique called granular synthesis to generate the sound. It
uses two electronically produced sound sources (called grains). The
variable resistors control the frequency and decay of each grain (inputs 0
and 2 for one grain and inputs 3 and 1 for the other). Input 4 controls the
synchronization between the grains.

https://oreil.ly/JwHYy

Wiring diagram for controlling and listening to Auduino

If you want to tweak the code, you can change the scale used to calculate
the frequency. The default setting is pentatonic, but you can comment that
out and uncomment another option to use a different scale.

Be careful when adding code to the main loop, because the sketch is highly
optimized and additional code could slow things down too much, causing
the audio synthesis to not work well.

You can replace any of the pots with sensors that can produce an analog
voltage signal (see Chapter 6). For example, a photoresistor (see Recipe
6.3) or a distance sensor (the analog output described toward the end of
Recipe 6.5) connected to one of the frequency inputs (pin 0 or 3) would
enable you to control the pitch by moving your hand closer to or farther
from the sensor (look up “theremin” in Wikipedia or on Google to read
more about this musical instrument that is played by sensing hand
movement).

See Also
Video demonstration of Auduino

Wikipedia article explaining granular synthesis

Wikipedia article on the theremin

9.7 Attain High-Quality Audio Synthesis
Problem
You want to generate higher-quality audio than is possible with the Tone
library on an 8-bit board, which can generally produce only square wave
signals without additional hardware. For example, you want to play music
with sine waves, play back WAV files, or perform advanced sound synthesis
without additional hardware.

Solution
As you saw in Recipe 1.8, SAMD-based boards have a digital-to-analog
converter (DAC) on one pin that can generate true voltages between 0V and
the operating voltage (3.3V) of the board. This, coupled with the higher
speed of 32-bit boards, allows you to generate complex waveforms.
Connect your board to a transducer as shown in Figure 9-2, but instead of
connecting your transducer to pin 9, use the DAC pin (analog 0 on the
Arduino Zero, Adafruit Metro M0, and SparkFun RedBoard Turbo). Install
Mozzi (see Recipe 16.2) and run the following script:

/*

 * Mozzi Melody

 * Play the Chimes of Big Ben

 */

#include <MozziGuts.h>

#include <Oscil.h> // oscillator template

#include <tables/sin2048_int8.h> // sine table for oscillator

#include <EventDelay.h>

#include <mozzi_midi.h>

https://oreil.ly/hHL5H
https://oreil.ly/kPaLq
https://oreil.ly/LjVSt
https://github.com/sensorium/Mozzi

#define CONTROL_RATE 64 // Control rate in Hz, use powers of 2

enum notes

{

 E3 = 52, B4 = 59, E4 = 64, F4S = 66, G4S = 68, REST = 0

};

int score[] = { E4, G4S, F4S, B4, REST,

 E4, F4S, G4S, E4, REST,

 G4S, E4, F4S, B4, REST,

 B4, F4S, G4S, E4, REST,

 E3, REST, E3, REST, E3, REST, E3, REST };

const byte scoreLen = sizeof(score) / sizeof(score[0]);

byte beats[scoreLen] = {2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 10,

 4, 4, 4, 4, 4, 4, 4, 10};

unsigned int beat_ms = 60000 / 180; // the time in ms for 1/8 note

const int pauseTime = 200; // pause between notes

int currNote = 0; // index of the note we're playing

bool pausing = false; // Mini-rest between beats

Oscil <SIN2048_NUM_CELLS, AUDIO_RATE> aSin(SIN2048_DATA); // Sine wave

EventDelay kChangeNoteDelay; // Delay object

void setup() {

 startMozzi(CONTROL_RATE);

 kChangeNoteDelay.start();

}

void updateControl() {

 if (kChangeNoteDelay.ready()) { // Is the delay up?

 pausing = !pausing; // Toggle rest state

 if (pausing) {

 aSin.setFreq(0); // set the frequency

 kChangeNoteDelay.set(pauseTime); // Hold the rest for 200 ms

 } else {

 if (currNote >= scoreLen) {

 currNote = 0; // Go back to the beginning when done

 }

 int duration = beats[currNote] * beat_ms; // get duration from array

 kChangeNoteDelay.set(duration - pauseTime); // Set the note duration

 aSin.setFreq(mtof(score[currNote])); // set the frequency

 currNote++;

;

 }

 kChangeNoteDelay.start();

 }

}

int updateAudio() {

 return aSin.next();

}

void loop() {

 audioHook(); // You must have this in your loop

}

Discussion
Mozzi is an advanced audio synthesis library for Arduino and compatible
boards. Although it supports 8-bit boards, it uses PWM, so the sound
quality is limited. But on 32-bit boards such as SAMD-based boards and the
Teensy, it excels. Mozzi is a powerful framework with many features, and it
includes dozens of sample programs.

The sketch sets things up by including the Mozzi header files and defining
the Mozzi control rate, which determines how often the update functions
are called. The sketch then defines an enum of the notes used in this sketch.
For convenience, it uses MIDI notes (see Recipe 9.5). Because MIDI notes
can be represented as integers, this allows you to use them in an enum,
which in turn makes it easy to use their symbolic names in an array of
integers. You could accomplish the same thing with #defines, and in that
case, you could use floating-point frequencies instead of MIDI numbers.

Similar to the sketch in Recipe 9.2, this sketch uses an array to represent the
score, and an array to represent how many beats each note should be held. It
then initializes some variables and objects that are used later in the sketch.

In setup(), the sketch initializes the Mozzi system and starts a timer. This
is where things become noticeably different from a typical Arduino sketch.
Instead of using delay() to wait until it’s time to play the next note, all the
changes take place in the updateControl() function. When the timer is up,
the sketch toggles the pausing state, which is used to determine when to

take a brief pause between notes. If pausing is true, the sketch goes silent
for 200 ms. Otherwise, the sketch advances to the next note in the score
array, calculates the duration, and sets the frequency by converting the
MIDI number to a frequency in hertz. It then sets the timer to the duration
of the note (subtracting the pause time so as to keep closer to standard
musical timing).

See Also
The ArduTouch board and software is an Arduino-compatible music
synthesizer kit that has similar capabilities to Mozzi. You can also run the
ArduTouch software on an Arduino Uno.

The Teensy Audio library supports high-quality audio for Teensy boards. It
includes polyphonic capabilities, as well as audio recording, synthesis,
filtering, and more.

https://oreil.ly/g1p93

Remotely Controlling External
Devices

10.0 Introduction
The Arduino can interact with almost any device that uses some form of
remote control, including TVs, audio equipment, cameras, garage doors,
appliances, and toys. Most remote controls work by sending digital data
from a transmitter to a receiver using infrared light (IR) or wireless radio
technology. Different protocols (signal patterns) are used to translate key
presses into a digital signal, and the recipes in this chapter show you how to
use commonly found remote controls and protocols.

An IR remote works by turning an LED on and off in patterns to produce
unique codes. The codes are typically 12 to 32 bits (pieces of data). Each
key on the remote is associated with a specific code that is transmitted when
the key is pressed. If the key is held down, the remote usually sends the
same code repeatedly, although some remotes (e.g., NEC) send a special
repeat code when a key is held down. For Philips RC-5 or RC-6 remotes, a
bit in the code is toggled each time a key is pressed; the receiver uses this
toggle bit to determine when a key is pressed a second time. You can read
more about the technologies used in IR remote controls on the SB-Projects
site.

The IR recipes here use a low-cost IR receiver module to detect the signal
and provide a digital output that the Arduino can read. The digital output is
then decoded by a library called IRremote, which was written by Ken
Shirriff and can be installed using the Arduino IDE Library Manager (see
Chapter 16).

The same library is used in the recipes in which Arduino sends commands
to act like a remote control.

https://oreil.ly/BeSzk

Remote controls using wireless radio technology are more difficult to
emulate than IR controls. However, the button contacts on these controls
can be activated by Arduino. The recipes using wireless remotes simulate
button presses by closing the button contacts inside the remote control.
With wireless remotes, you may need to take apart the remote control and
connect wires from the contacts to Arduino to be able to use these devices.
Components called optocouplers are used to provide electrical separation
between Arduino and the remote control. This isolation prevents voltages
from Arduino from harming the remote control, and vice versa.

Optocouplers (also called optoisolators) enable you to safely control
another circuit that may be operating at different voltage levels from
Arduino. As the “isolator” part of the name implies, optoisolators provide a
way to keep things electrically separated. These devices contain an LED,
which can be controlled by an Arduino digital pin. The light from the LED
in the optocoupler shines onto a light-sensitive transistor. Turning on the
LED causes the transistor to conduct, closing the circuit between its two
connections—the equivalent of pressing a switch.

10.1 Responding to an Infrared Remote
Control
Problem
You want to respond to any key pressed on a TV or other remote control.

Solution
Arduino responds to IR remote signals using a device called an IR receiver
module. Common devices are the TSOP38238, TSOP4838, PNA4602, and
TSOP2438. The first three have the same connections, so the circuit is the
same; the TSOP2438 has the +5V and GND pins reversed. Check the
datasheet for your device to ensure that you connect it correctly.

This recipe uses the IRremote library, which you can install with the
Library Manager. Connect the IR receiver module according to your

datasheet. The Arduino wiring in Figure 10-1 is for the
TSOP38238/TSOP4838/PNA4602 devices.

This sketch will toggle the built-in LED when any button on an infrared
remote control is pressed:

/*

 IR_remote_detector sketch

 An IR remote receiver is connected to pin 2.

 The built-in LED toggles each time a button on the remote is pressed.

 */

#include <IRremote.h> // adds the library code to the sketch

const int irReceiverPin = 2; // pin the receiver is connected to

const int ledPin = LED_BUILTIN;

IRrecv irrecv(irReceiverPin); // create an IRrecv object

decode_results decodedSignal; // stores results from IR detector

void setup()

{

 pinMode(ledPin, OUTPUT);

 irrecv.enableIRIn(); // Start the receiver object

}

bool lightState = LOW; // keep track of whether the LED is on

unsigned long last = millis(); // remember when we last received an IR

message

void loop()

{

 if (irrecv.decode(&decodedSignal) == true) // this is true if a message has

 // been received

 {

 if (millis() - last > 250) { // has it been 1/4 sec since last

message?

 if (lightState == LOW)

 lightState = HIGH;

 else

 lightState = LOW;

 lightState = lightState ; // Yes: toggle the LED

 digitalWrite(ledPin, lightState);

 }

 last = millis();

 irrecv.resume(); // watch out for another message

 }

}

Connecting an infrared receiver module

WARNING
If you are using a 3.3V board that is not 5-volt tolerant, you should power the infrared receiver
from 3.3V instead of 5V.

Discussion
The IR receiver converts the IR signal to digital pulses. These are a
sequence of ones and zeros that correspond to buttons on the remote. The
IRremote library decodes these pulses and provides a numeric value for
each key (the actual values that your sketch will receive are dependent on
the specific remote control you use).

#include <IRremote.h> at the top of the sketch makes the library code
available to your sketch, and the line IRrecv irrecv(irReceiverPin);
creates an IRrecv object named irrecv to receive signals from an IR

receiver module connected to irReceiverPin (pin 2 in the sketch). Chapter
16 has more on using libraries.

You use the irrecv object to access the signal from the IR receiver. You
can give it commands to look for and decode signals. The decoded
responses provided by the library are stored in a variable named
decode_results. The receiver object (irrecv) is started in setup with the
line irrecv.enableIRIn();. The results are checked in loop by calling
the function irrecv.decode(&decodedSignal).

The decode function returns true if there is data, which will be placed in
the decodedSignal variable. Recipe 2.11 explains how the ampersand
symbol is used in function calls where parameters are modified so that
information can be passed back.

If a remote message has been received, the code toggles the LED (flips its
state) if it is more than one-quarter of a second since the last time it was
toggled (otherwise, the LED will get turned on and off quickly by remotes
that send codes more than once when you press the button, and may appear
to be flashing randomly).

The decodedSignal variable will contain a value associated with a key.
This value is ignored in this recipe (although it is used in the next recipe)—
you can print the value by adding to the sketch the Serial.println line
highlighted in the following code (you will also need to add
Serial.begin(9600); in the setup function):

if (irrecv.decode(&decodedSignal) == true) // this is true if a message has

 // been received

{

 if (millis() - last > 250) { // has it been 1/4 sec since last message

 Serial.println(decodedSignal.value);

The library needs to be told to continue monitoring for signals, and this is
achieved with the line irrecv.resume();.

This sketch flashes an LED when any button on the remote control is
pressed, but you can control other things—for example, you can use a

stepper motor to turn a knob on a lamp or stereo (for more on controlling
physical devices, see Chapter 8).

See Also
The Infrared category of Ken Shirriff’s blog

10.2 Decoding Infrared Remote Control
Signals
Problem
You want to detect a specific key pressed on a TV or other remote control.

Solution
This sketch uses remote control key presses to adjust the brightness of an
LED. The code prompts for remote control keys 0 through 4 when the
sketch starts. These codes are stored in Arduino memory (RAM), and the
sketch then responds to these keys by setting the brightness of an LED to
correspond with the button pressed, with 0 turning the LED off and 1
through 4 providing increased brightness:

/*

 * RemoteDecode sketch

 * Infrared remote control signals are decoded to control LED brightness.

 * The values for keys 0-4 are detected and stored when the sketch starts.

 * Key 0 turns the LED off; brightness increases in steps with keys 1-4.

 */

#include <IRremote.h> // IR remote control library

const int irReceivePin = 2; // pin connected to IR detector output

const int ledPin = 9; // LED is connected to a PWM pin

const int numberOfKeys = 5; // 5 keys are learned (0 through 4)

long irKeyCodes[numberOfKeys]; // holds the codes for each key

IRrecv irrecv(irReceivePin); // create the IR library

decode_results results; // IR data goes here

https://oreil.ly/Jkryi

void setup()

{

 Serial.begin(9600);

 while(!Serial); // Needed for Leonardo and ARM boards

 pinMode(irReceivePin, INPUT);

 pinMode(ledPin, OUTPUT);

 irrecv.enableIRIn(); // Start the IR receiver

 learnKeycodes(); // learn remote control key codes

 Serial.println("Press a remote key");

}

void loop()

{

 long key;

 int brightness;

 if (irrecv.decode(&results))

 {

 // here if data is received

 irrecv.resume();

 key = convertCodeToKey(results.value);

 if(key >= 0)

 {

 Serial.print("Got key ");

 Serial.println(key);

 brightness = map(key, 0,numberOfKeys-1, 0, 255);

 analogWrite(ledPin, brightness);

 }

 }

}

/*

 * get remote control codes

 */

void learnKeycodes()

{

 while(irrecv.decode(&results)) // empty the buffer

 irrecv.resume();

 Serial.println("Ready to learn remote codes");

 long prevValue = -1;

 int i=0;

 while(i < numberOfKeys)

 {

 Serial.print("press remote key ");

 Serial.print(i);

 while(true)

()

 {

 if(irrecv.decode(&results))

 {

 if(results.value != -1 &&

 results.decode_type != UNKNOWN &&

 results.value != prevValue)

 {

 showReceivedData();

 Serial.println(results.value);

 irKeyCodes[i] = results.value;

 i = i + 1;

 prevValue = results.value;

 irrecv.resume(); // Receive the next value

 break;

 }

 irrecv.resume(); // Receive the next value

 }

 }

 }

 Serial.println("Learning complete");

}

/*

 * converts a remote protocol code to a logical key code

 * (or -1 if no digit received)

 */

int convertCodeToKey(long code)

{

 for(int i=0; i < numberOfKeys; i++)

 {

 if(code == irKeyCodes[i])

 {

 return i; // found the key so return it

 }

 }

 return -1;

}

/*

 * display the protocol type and value

 */

void showReceivedData()

{

 if (results.decode_type == UNKNOWN)

 {

 Serial.println("-Could not decode message");

 }

 else

 {

 if (results.decode_type == NEC) {

 Serial.print("- decoded NEC: ");

 }

 else if (results.decode_type == SONY) {

 Serial.print("- decoded SONY: ");

 }

 else if (results.decode_type == RC5) {

 Serial.print("- decoded RC5: ");

 }

 else if (results.decode_type == RC6) {

 Serial.print("- decoded RC6: ");

 }

 Serial.print("hex value = ");

 Serial.println(results.value, HEX);

 }

}

Discussion
This solution is based on the IRremote library; see this chapter’s
introduction for details.

The sketch starts the remote control library with the following code:

irrecv.enableIRIn(); // Start the IR receiver

It then calls the learnKeyCodes function to prompt the user to press keys 0
through 4. The code for each key is stored in an array named irKeyCodes.
After all the keys are detected and stored, the loop code waits for a key
press and checks if this was one of the digits stored in the irKeyCodes
array. If so, the value is used to control the brightness of an LED using
analogWrite.

NOTE
See Recipe 5.7 for more on using the map function and analogWrite to control the brightness of
an LED.

The library should be capable of working with most any IR remote control;
it can discover and remember the timings and repeat the signal on
command.

You can permanently store the key code values so that you don’t need to
learn them each time you start the sketch. Replace the declaration of
irKeyCodes with the following lines to initialize the values for each key,
and comment out the call to learnKeycodes();. Change the values to
coincide with the ones for your remote (these will be displayed in the Serial
Monitor when you press keys in the learnKeyCodes function):

long irKeyCodes[numberOfKeys] = {

 0x18E758A7, //0 key

 0x18E708F7, //1 key

 0x18E78877, //2 key

 0x18E748B7, //3 key

 0x18E7C837, //4 key

 };

See Also
Recipe 18.1 explains how you can store learned data in EEPROM
(nonvolatile memory).

10.3 Imitating Remote Control Signals
Problem
You want to use Arduino to control a TV or other remotely controlled
appliance by emulating the infrared signal. This is the inverse of Recipe
10.2—it sends commands instead of receiving them.

Solution
This sketch uses the remote control codes from Recipe 10.2 to control a
device (your remote codes are likely to differ so make sure you run that
recipe’s Solution code and use the values unique to your remote). Five

buttons select and send one of five codes. Connect an infrared LED to send
the signal as shown in Figure 10-2:

/*

 * irSend sketch

 * this code needs an IR LED connected to pin 3

 * and 5 switches connected to pins 6 - 10

 */

#include <IRremote.h> // IR remote control library

const int numberOfKeys = 5;

const int firstKey = 6; // the first pin of the 5 sequential pins connected

 // to buttons

bool buttonState[numberOfKeys];

bool lastButtonState[numberOfKeys];

long irKeyCodes[numberOfKeys] = {

 0x18E758A7, //0 key

 0x18E708F7, //1 key

 0x18E78877, //2 key

 0x18E748B7, //3 key

 0x18E7C837, //4 key

};

IRsend irsend;

void setup()

{

 for (int i = 0; i < numberOfKeys; i++) {

 buttonState[i] = true;

 lastButtonState[i] = true;

 int physicalPin=i + firstKey;

 pinMode(physicalPin, INPUT_PULLUP); // turn on pull-ups

 }

 Serial.begin(9600);

}

void loop() {

 for (int keyNumber=0; keyNumber<numberOfKeys; keyNumber++)

 {

 int physicalPinToRead = keyNumber + firstKey;

 buttonState[keyNumber] = digitalRead(physicalPinToRead);

 if (buttonState[keyNumber] != lastButtonState[keyNumber])

 {

 if (buttonState[keyNumber] == LOW)

 {

 irsend.sendSony(irKeyCodes[keyNumber], 32);

 Serial.println("Sending");

 }

 lastButtonState[keyNumber] = buttonState[keyNumber];

 }

 }

}

Buttons and LED for IR sender

TIP
You won’t see anything when the codes are sent because the light from the infrared LED isn’t
visible to the naked eye.

However, you can verify that an infrared LED is working with a digital camera—you should be
able to see it flashing in the camera’s LCD viewfinder.

Discussion
Arduino controls the device by flashing an IR LED to duplicate the signal
that would be sent from your remote control. This requires an IR LED. The
specifications are not critical; see Appendix A for suitable components.

The IR library handles the translation from numeric code to IR LED
flashes. You need to create an object for sending IR messages. The
following line creates an IRsend object that will control the LED on pin 3
(you are not able to specify which pin to use; this is hardcoded within the
library):

IRsend irsend;

NOTE
Depending on which board you are using, the IRremote library may require a different pin for the
infrared LED. For example, Teensy 3.x boards use pin 5. See the README for the IRremote
library. If your board uses a pin that overlaps with the range of pins used for the buttons (pins 6–
10 in the Solution sketch), you may need to change the range of pins.

The code uses an array (see Recipe 2.4) called irKeyCodes to hold the
range of values that can be sent. It monitors five switches to see which one
has been pressed and sends the relevant code in the following line:

irsend.sendSony(irKeyCodes[keyNumber], 32);

The irSend object has different functions for various popular infrared code
formats, so check the library documentation if you are using one of the

https://oreil.ly/XOfdd

other remote control formats. You can use Recipe 10.2 if you want to
display the format used in your remote control.

The sketch passes the code from the array, and the number after it tells the
function how many bits long that number is. The 0x at the beginning of the
numbers in the definition of irKeyCodes at the top of the sketch means the
codes are written in hex (see Chapter 2 for details about hex numbers).
Each character in hex represents a 4-bit value. The codes here use eight
characters, so they are 32 bits long.

The LED is connected with a current-limiting resistor (see the introduction
to Chapter 7).

If you need to increase the sending range, you can use multiple LEDs or
select one with greater output.

See Also
Chapter 7 provides more information on controlling LEDs.

Mitch Altman’s TV-B-Gone is a clever remote control application.

10.4 Controlling a Digital Camera
Problem
You want Arduino to control a digital camera to take pictures under
program control. You may want to do time lapse photography or take
pictures triggered by an event detected by the Arduino.

Solution
There are a few ways to do this. If your camera has an infrared remote, use
Recipe 10.2 to learn the relevant remote codes and Recipe 10.3 to get
Arduino to send those codes to the camera.

If your camera doesn’t have an infrared remote but does have a socket for a
wired remote, you can use this recipe to control the camera.

https://oreil.ly/7BzKh

WARNING
A camera shutter connector, usually called a TRS (tip, ring, sleeve) connector, typically comes in
2.5 mm or 3.5 mm sizes, but the length and shape of the tip may be nonstandard. The safest way
to get the correct plug is to buy a cheap wired remote switch for your model of camera and modify
that or buy an adapter cable from a specialist supplier (Google “TRS camera shutter”).

You connect the Arduino to a suitable cable for your camera using
optocouplers, as shown in Figure 10-3.

This sketch takes 10 pictures, one every 20 seconds:

/*

 * camera sketch

 * takes 20 pictures with a digital camera

 * using pin 4 to trigger focus

 * pin 3 to trigger the shutter

 */

int focus = 4; // optocoupler attached to focus

int shutter = 3; // optocoupler attached to shutter

long exposure = 250; // exposure time in milliseconds

long interval = 10000; // time between shots, in milliseconds

void setup()

{

 pinMode(focus, OUTPUT);

 pinMode(shutter, OUTPUT);

 for (int i=0; i<20; i++) // camera will take 20 pictures

 {

 takePicture(exposure); // takes picture

 delay(interval); // wait to take the next picture

 }

}

void loop()

{

 // once it's taken 20 pictures it is done,

 // so loop is empty

 // but loop still needs to be here or the

 // sketch won't compile

}

void takePicture(long exposureTime)

{

 int wakeup = 10; // camera will take some time to wake up and focus

 // adjust this to suit your camera

 digitalWrite(focus, HIGH); // wake the camera and focus

 delay(wakeup); // wait for it to wake up and focus

 digitalWrite(shutter, HIGH); // open the shutter

 delay(exposureTime); // wait for the exposure time

 digitalWrite(shutter, LOW); // release shutter

 digitalWrite(focus, LOW); // release the focus

}

Using optocouplers with a TRS camera connector

Discussion
It’s not advisable to connect Arduino pins directly to a camera—the
voltages may not be compatible and you risk damaging your Arduino or
your camera. Optocouplers are used to isolate Arduino from your camera;
see the introduction of this chapter for more about these devices.

You will need to check the user manual for your camera to identify the
correct TRS connector to use.

You may need to change the order of the pins turning on and off in the
takePicture function to get the behavior you want. For a Canon camera to
do bulb exposures, you need to turn on the focus, then open the shutter
without releasing the focus, then release the shutter, and then release the
focus (as in the sketch). To take a picture and have the camera calculate the
exposure, press the focus button, release it, and then press the shutter.

See Also
If you want to control aspects of a camera’s operation, have a look at the
Canon Hack Development Kit.

Also see The Canon Camera Hackers Manual: Teach Your Camera New
Tricks by Berthold Daum (Rocky Nook).

You can control a GoPro camera using an Arduino with WiFi using this
library.

It is also possible to control video cameras in a similar fashion using
LANC. This library supports this feature.

There is also an Arduino shield for controlling high-end Black Magic
Design video equipment, including cameras using their open protocol.

10.5 Controlling AC Devices by Hacking a
Remote-Controlled Switch
Problem
You want to safely switch AC line currents on and off to control lights and
appliances using a remote-controlled switch.

Solution
Arduino can trigger the buttons of a remote-controlled switch using an
optocoupler. This may be necessary for remotes that use wireless instead of
infrared technology. This technique can be used for almost any remote
control. Hacking a remote is particularly useful to isolate potentially

https://oreil.ly/QcWci
https://oreil.ly/ybd1u
https://oreil.ly/LkfXb
https://oreil.ly/ZxrnK

dangerous AC voltages from you and Arduino because only the battery-
operated controller is modified.

WARNING
Opening the remote control will void the warranty and can potentially damage the device. The
infrared recipes in this chapter are preferable because they avoid modifying the remote control.

If you want to use this recipe to control a switch, but you want to keep using the remote control,
consider purchasing a spare remote control for hacking. Most manufacturers will be happy to sell
you a spare (but make sure you choose the right frequency for the variant of appliance, light, or
outlet you want to control). After you receive the spare, you may need to configure the channel
that it uses.

Open the remote control and connect the optocoupler so that the photo-
emitter (pins 1 and 2 in Figure 10-4) is connected to Arduino and the photo
transistor (pins 3 and 4) is connected across the remote control contacts.

Optocouplers connected to remote control contacts

This sketch uses momentary contact switches (push and release) to activate
the remote’s on and off buttons:

/*

 * OptoRemote sketch

 * Switches connected to pins 2 and 3 turn a remote device on and off

 * using optocouplers.

 * The outputs are pulsed for at least half a second when a switch is pressed

 */

const int onSwitchPin = 2; // input pin for the On switch

const int offSwitchPin = 3; // input pin for the Off switch

const int remoteOnPin = 4; // output pin to turn the remote on

const int remoteOffPin = 5; // output pin to turn the remote off

const int PUSHED = LOW; // value when button is pressed

void setup() {

 pinMode(remoteOnPin, OUTPUT);

 pinMode(remoteOffPin, OUTPUT);

 pinMode(onSwitchPin, INPUT_PULLUP); // turn on internal pull-ups

 pinMode(offSwitchPin, INPUT_PULLUP);

}

void loop(){

 int val = digitalRead(onSwitchPin); // read input value

 // if the switch is pushed then switch on if not already on

 if(val == PUSHED)

 {

 pulseRemote(remoteOnPin);

 }

 val = digitalRead(offSwitchPin); // read input value

 // if the switch is pushed then switch off if not already off

 if(val == PUSHED)

 {

 pulseRemote(remoteOffPin);

 }

}

// turn the optocoupler on for half a second to blip the remote control button

void pulseRemote(int pin)

{

 digitalWrite(pin, HIGH); // turn the optocoupler on

 delay(500); // wait half a second

 digitalWrite(pin, LOW); // turn the optocoupler off

}

Discussion
The switches in most remote controls consist of interleaved bare copper
traces with a conductive button that closes a connection across the traces
when pressed. Less common are controls that contain conventional push
switches; these are easier to use as the legs of the switches provide a
convenient connection point.

TIP
Though the original remote button and the optocoupler can be used together—the switching action
is performed if either method is activated (pressing the button or turning on the optocoupler)—the
wires tethered to Arduino can make this inconvenient.

The transistor in the optocoupler will only allow electricity to flow in one
direction, so if it doesn’t work the first time, try switching the transistor-
side connections over and see if that fixes it.

Some remotes have one side of all of the switches connected together
(usually to the ground of that circuit). You can trace the connections on the
board to check for this or use a multimeter to see what the resistance is
between the traces on different switches. If traces have common
connections, it is only necessary to connect one wire to each common
group. Fewer traces are easier because connecting the wires can be fiddly if
the remote is small.

The remote control may have multiple contacts corresponding to each
button. You may need more than one optocoupler for each button position
to connect the contacts. Figure 10-5 shows three optocouplers controlled
from a single Arduino pin.

Another approach to controlling AC line currents is to use an isolated relay
that can be switched on and off directly from Arduino pins, such as the
Digital Loggers IoT Power Relay, available from Adafruit (part 2935) or
SparkFun (part 14236). The IoT Power Relay is a great alternative to the
now-discontinued PowerSwitch Tail.

Multiple optocouplers connected to a single remote control button

See Also
Optocouplers are used in Recipe 10.4, so check out that recipe for an
example of how they are used in a circuit.

Using Displays

11.0 Introduction
Liquid crystal displays (LCDs) and LED displays offer a convenient and
inexpensive way to provide a user interface for a project. This chapter
explains how to connect and use common text and graphical LCD/LED
panels with Arduino. By far the most popular LCD is the text panel based
on the Hitachi HD44780 chip. This displays two or four lines of text, with
16 or 20 characters per line (32- and 40-character versions are available, but
usually at higher prices). A library for driving text LCD displays is
provided with Arduino, and you can print text on your LCD as easily as on
the Serial Monitor (see Chapter 4), because LCD and serial share the same
underlying print functions.

LCDs can do more than display simple text: words can be scrolled or
highlighted and you can display a selection of special symbols and non-
English characters.

You can create your own symbols and block graphics with a text LCD, but
if you want fine graphical detail, you need a graphical display. Graphical
LCD (GLCD) and graphical LED displays are available at a small price
premium over text displays.

Graphical displays can have more wires connecting to Arduino than most
other recipes in this book. Incorrect connections are the major cause of
problems with graphical displays, so take your time wiring things up and
triple-check that things are connected correctly. An inexpensive multimeter
capable of measuring voltage and resistance is a big help for verifying that
your wiring is correct. It can save you a lot of head scratching if nothing is
being displayed. You don’t need anything fancy, as even the cheapest
multimeter will help you verify that the correct pins are connected and that
the voltages are correct.

11.1 Connecting and Using a Text LCD
Display
Problem
You have a text LCD based on the industry-standard HD44780 or a
compatible controller chip, and you want to display text and numeric
values.

Solution
The Arduino software includes the LiquidCrystal library for driving LCD
displays based on the HD44780 chip such as the SparkFun LCD-00255 or
Adafruit part number 181.

TIP
Most text LCDs supplied for use with Arduino will be compatible with the Hitachi HD44780
controller. If you are not sure about your controller, check the datasheet to see if it is a 44780 or
compatible. If your LCD has a backpack-style controller board on it, you may be able to interface
with it over a serial protocol with far fewer wires. See Recipe 4.11 for more details.

To get the display working, you need to wire the power, data, and control
pins. Connect the data and status lines to digital output pins, and wire up a
contrast potentiometer and connect the power lines. If your display has a
backlight, this needs connecting, usually through a resistor.

Figure 11-1 shows the most common LCD connections. It’s important to
check the datasheet for your LCD to verify the pin connections. Table 11-1
shows the most common pin connections, but if your LCD uses different
pins, make sure it is compatible with the Hitachi HD44780—this recipe will
only work on LCD displays that are compatible with that chip. The LCD
will have 16 pins (or 14 pins if there is no backlight)—make sure you
identify pin 1 on your panel; it may be in a different position than shown in
the figure.

TIP
Most problems with LCDs are due to bad connections. Double-check that the Arduino wires go to
the correct LCD pins, as these could be positioned or numbered differently from what is shown in
Figure 11-1. Also check that the wires or headers are properly soldered.

Connections for a text LCD

NOTE
You may wonder why LCD pins 7 through 10 are not connected. The LCD display can be
connected using either four pins or eight pins for data transfer. This recipe uses the four-pin mode
because this frees up the other four Arduino pins for other uses. There is a theoretical performance
improvement using eight pins, but it’s insignificant and not worth the loss of four Arduino pins.

LCD pin connections

LCD pin Function Arduino pin

1 GND or 0V or Vss GND

2 +5V or Vdd 5V

3 Vo or contrast

4 RS 12

5 R/W GND

6 E 11

7 D0

8 D1

9 D2

10 D3

11 D4 5

12 D5 4

13 D6 3

14 D7 2

15 A or anode

16 K or cathode

You will need to connect a 10K potentiometer to provide the contrast
voltage to LCD pin 3. Without the correct voltage on this pin, you may not
see anything displayed. In Figure 11-1, one side of the pot connects to GND
(ground), the other side connects to Arduino +5V, and the center of the pot
goes to LCD pin 3. The LCD is powered by connecting GND and +5V from
Arduino to LCD pins 1 and 2.

Many LCD panels have an internal lamp called a backlight to illuminate the
display. Your datasheet should indicate whether there is a backlight and if it

requires an external resistor—many do need this to prevent burning out the
backlight LED assembly (if you are not sure, you can be safe by using a
220 ohm resistor). The backlight is polarized, so make sure pin 15 is
connected to +5V and pin 16 to GND. (The resistor is shown connected
between pin 16 and GND, but it can also be connected between pin 15 and
+5V.)

Double-check the wiring before you apply power, as you can damage the
LCD if you connect the power pins incorrectly. To run the HelloWorld
sketch provided with Arduino, click the IDE Files menu item and navigate
to Examples→Library→LiquidCrystal→HelloWorld.

The following code is modified slightly from the example. Change numRows
and numCols to match the rows and columns in your LCD:

/*

 * LiquidCrystal Library - Hello World

 *

 * Demonstrates the use of a 16 × 2 LCD display.

 * https://www.arduino.cc/en/Tutorial/HelloWorld

 */

#include <LiquidCrystal.h> // include the library code

//constants for the number of rows and columns in the LCD

const int numRows = 2;

const int numCols = 16;

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

 lcd.begin(numCols, numRows);

 lcd.print("Hello, World!"); // Print a message to the LCD.

}

void loop()

{

 // set the cursor to column 0, line 1

 // (row numbering starts with 0, so line 1 is the second row):

 lcd.setCursor(0, 1);

 // print the number of seconds since the sketch started:

 lcd.print(millis()/1000);

}

Run the sketch; you should see “hello world” displayed on the first line of
your LCD. The second line will display a number that increases by one
every second.

Discussion
If you don’t see any text and you have double-checked that all wires are
connected correctly, you may need to adjust the contrast pot. With the pot
shaft rotated to one side (usually the side connected to GND), you will have
maximum contrast and should see blocks appear in all the character
positions. With the pot rotated to the other extreme, you probably won’t see
anything at all. The correct setting will depend on many factors, including
viewing angle and temperature—turn the pot until you get the best-looking
display.

If you can’t see blocks of pixels appear at any setting of the pot, check that
the LCD is being driven on the correct pins.

Once you can see text on the screen, using the LCD in a sketch is easy. You
use similar print commands to those for serial printing, covered in Chapter
4. The next recipe reviews the print commands and explains how to control
text position.

See Also
See the LiquidCrystal reference.

See Chapter 4 for details on print commands.

The datasheet for the Hitachi HD44780 LCD controller is the definitive
reference for detailed, low-level functionality. The Arduino library insulates
you from most of the complexity, but if you want to read about the raw
capabilities of the chip, you can download the datasheet.

The LCD page in the Arduino Playground contains software and hardware
tips and links.

https://oreil.ly/J_UEr
https://oreil.ly/xgocv
https://oreil.ly/Sz3Hb

11.2 Formatting Text
Problem
You want to control the position of text displayed on the LCD screen; for
example, to display values in specific positions.

Solution
This sketch displays a countdown from 9 to 0. It then displays a sequence of
digits in three columns of four characters. Change numRows and numCols to
match the rows and columns in your LCD:

/*

 * LiquidCrystal Library - FormatText

 */

#include <LiquidCrystal.h> // include the library code:

//constants for the number of rows and columns in the LCD

const int numRows = 2;

const int numCols = 16;

int count;

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

 lcd.begin(numCols, numRows);

 lcd.print("Starting in "); // this string is 12 characters long

 for(int i=9; i > 0; i--) // count down from 9

 {

 // the top line is row 0

 lcd.setCursor(12,0); // move the cursor to the end of the string

 lcd.print(i);

 delay(1000);

 }

}

void loop()

{

 int columnWidth = 4; //spacing for the columns

 int displayColumns = 3; //how many columns of numbers

 lcd.clear();

 for(int col=0; col < displayColumns; col++)

 {

 lcd.setCursor(col * columnWidth, 0);

 count = count+ 1;

 lcd.print(count);

 }

 delay(1000);

}

Discussion
The lcd.print functions are similar to Serial.print. In addition, the
LCD library has commands that control the cursor location (the row and
column where text will be printed).

The lcd.print statement displays each new character after the previous
one. Text printed beyond the end of a line may not be displayed or may be
displayed on another line. The lcd.setCursor() command enables you to
specify where the next lcd.print will start. You specify the column and
row position (the top-left corner is 0,0). Once the cursor is positioned, the
next lcd.print will start from that point, and it will overwrite existing
text. The sketch in this recipe’s Solution uses this to print numbers in fixed
locations.

For example, in setup:

lcd.setCursor(12,0); // move the cursor to the 13th position

lcd.print(i);

lcd.setCursor(12,0) ensures that each number is printed in the same
position, the thirteenth column, first row, producing the digit shown at a
fixed position, rather than each number being displayed after the previous
number.

TIP
Rows and columns start from zero, so setCursor(4,0) would set the cursor to the fifth column
on the first row.

The following lines use setCursor to space out the start of each column to
provide columnwidth spaces from the start of the previous column:

lcd.setCursor(col * columnWidth, 0);

count = count+ 1;

lcd.print(count);

lcd.clear clears the screen and moves the cursor back to the top-left
corner:

lcd.clear();

Here is a variation on loop that displays numbers using all the rows of your
LCD. Replace your loop code with the following (make sure you set
numRows and numCols at the top of the sketch to match the rows and
columns in your LCD):

void loop()

{

int columnWidth = 4;

int displayColumns = 3;

 lcd.clear();

 for(int row=0; row < numRows; row++)

 {

 for(int col=0; col < displayColumns; col++)

 {

 lcd.setCursor(col * columnWidth, row);

 count = count+ 1;

 lcd.print(count);

 }

 }

 delay(1000);

}

The first for loop steps through the available rows, and the second for
loop steps through the columns.

To adjust how many numbers are displayed in a row to fit the LCD,
calculate the displayColumns value rather than setting it. Change:

int displayColumns = 3;

to:

int displayColumns = numCols / columnWidth;

See Also
The LiquidCrystal library tutorial

11.3 Turning the Cursor and Display On or
Off
Problem
You want to blink the cursor and turn the display on or off. You may also
want to draw attention to a specific area of the display.

Solution
This sketch shows how you can cause the cursor (a flashing block at the
position where the next character will be displayed) to blink. It also
illustrates how to turn the display on and off; for example, to draw attention
by blinking the entire display:

/*

 * blink

 */

// include the library code:

#include <LiquidCrystal.h>

https://oreil.ly/aBU2C

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

 // set up the LCD's number of columns and rows and:

 lcd.begin(16, 2);

 // Print a message to the LCD.

 lcd.print("hello, world!");

}

void loop()

{

 lcd.setCursor(0, 1);

 lcd.print("cursor blink");

 lcd.blink();

 delay(2000);

 lcd.noBlink();

 lcd.print(" noBlink");

 delay(2000);

 lcd.clear();

 lcd.print("Display off ...");

 delay(1000);

 lcd.noDisplay();

 delay(2000);

 lcd.display(); // turn the display back on

 lcd.setCursor(0, 0);

 lcd.print(" display flash !");

 displayBlink(2, 250); // blink twice

 displayBlink(2, 500); // and again for twice as long

 lcd.clear();

}

void displayBlink(int blinks, int duration)

{

 while(blinks--)

 {

 lcd.noDisplay();

 delay(duration);

 lcd.display();

 delay(duration);

y();

 }

}

Discussion
The sketch calls the blink and noBlink functions to toggle cursor blinking
on and off.

The code to blink the entire display is in a function named displayBlink
that makes the display flash a specified number of times. The function uses
lcd.display() and lcd.noDisplay() to turn the display text on and off
(without clearing it from the screen’s internal memory).

11.4 Scrolling Text
Problem
You want to scroll text; for example, to create a marquee that displays more
characters than can fit on one line of the LCD display.

Solution
This sketch demonstrates both lcd.ScrollDisplayLeft and
lcd.ScrollDisplayRight.

It scrolls a line of text to the left when tilted and to the right when not tilted.
Connect one side of a tilt sensor to pin 7 and the other pin to GND (see
Recipe 6.2 if you are not familiar with tilt sensors):

/*

 * Scroll

 * this sketch scrolls text left when tilted

 * text scrolls right when not tilted.

 */

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int numRows = 2;

const int numCols = 16;

const int tiltPin = 7; // pin connected to tilt sensor

const char textString[] = "tilt to scroll";

const int textLen = sizeof(textString) - 1; // the number of characters

bool isTilted = false;

void setup()

{

 // set up the LCD's number of columns and rows:

 lcd.begin(numCols, numRows);

 pinMode(tiltPin, INPUT_PULLUP);

 lcd.print(textString);

}

void loop()

{

 if(digitalRead(tiltPin) == LOW && isTilted == false)

 {

 // here if tilted left so scroll text left

 isTilted = true;

 for (int position = 0; position < textLen; position++)

 {

 lcd.scrollDisplayLeft();

 delay(150);

 }

 }

 if(digitalRead(tiltPin) == HIGH && isTilted == true)

 {

 // here if previously tilted but now flat, so scroll text right

 isTilted = false;

 for (int position = 0; position < textLen; position++)

 {

 lcd.scrollDisplayRight();

 delay(150);

 }

 }

}

Discussion
The first half of the loop code handles the change from not tilted to tilted.
The code checks to see if the tilt switch is closed (LOW) or open (HIGH). If
it’s LOW and the current state (stored in the isTilted variable) is not tilted,

the text is scrolled left. The delay in the for loop controls the speed of the
scroll; adjust the delay if the text moves too fast or too slow.

The second half of the code uses similar logic to handle the change from
tilted to not tilted.

A scrolling capability is particularly useful when you need to display more
text than can fit on an LCD line.

This sketch has a marquee function that will scroll text up to 32 characters
in length:

/*

 * Marquee

 * this sketch can scroll a very long line of text

 */

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int numRows = 2;

const int numCols = 16;

void setup()

{

 // set up the LCD's number of columns and rows:

 lcd.begin(numCols, numRows);

 marquee("This is a very long string of text that will scroll");

}

void loop()

{

}

// this function uses scrolling to display a message up to 32 bytes long

void marquee(char *text)

{

 lcd.print(text);

 delay(1000);

 for (int position = 0; position < strlen(text)-numCols; position++)

 {

 lcd.scrollDisplayLeft();

 delay(300);

 }

}

The sketch uses the lcd.scrollDisplayLeft function to scroll the display
when the text is longer than the width of the screen.

The LCD chip has internal memory that stores the text. This memory is
limited (32 bytes on most four-line displays). If you try to use longer
messages, they may start to wrap over themselves. If you want to scroll
longer messages (e.g., a tweet), or control scrolling more precisely, you
need a different technique. The following function stores the text in RAM
on Arduino and sends sections to the screen to create the scrolling effect.
These messages can be any length that can fit into Arduino memory:

// this version of marquee uses manual scrolling for very long messages

void marquee(char *text)

{

 int length = strlen(text); // the number of characters in the text

 if(length < numCols)

 lcd.print(text);

 else

 {

 int pos;

 for(pos = 0; pos < numCols; pos++)

 lcd.print(text[pos]);

 delay(1000); // allow time to read the first line before scrolling

 pos=1;

 while(pos <= length - numCols)

 {

 lcd.setCursor(0,0);

 for(int i=0; i < numCols; i++)

 lcd.print(text[pos+i]);

 delay(300);

 pos = pos + 1;

 }

 }

}

11.5 Displaying Special Symbols
Problem
You want to display special symbols: ° (degrees), ¢, ÷, π (pi), or any other
symbol stored in the LCD character memory.

Solution
Identify the character code you want to display by locating the symbol in
the character pattern table in the LCD datasheet. This sketch prints some
common symbols in setup. It then shows all displayable symbols in loop:

/*

 * LiquidCrystal Library - Special Chars

 */

#include <LiquidCrystal.h>

//set constants for number of rows and columns to match your LCD

const int numRows = 2;

const int numCols = 16;

// defines for some useful symbols

const byte degreeSymbol = B11011111;

const byte piSymbol = B11110111;

const byte centsSymbol = B11101100;

const byte sqrtSymbol = B11101000;

const byte omegaSymbol = B11110100; // the symbol used for ohms

byte charCode = 32; // the first printable ascii character

int col;

int row;

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

 lcd.begin(numRows, numCols);

 showSymbol(degreeSymbol, "degrees");

 showSymbol(piSymbol, "pi");

 showSymbol(centsSymbol, "cents");

 showSymbol(sqrtSymbol, "sqrt");

 showSymbol(omegaSymbol, "ohms");

 lcd.clear();

}

void loop()

{

 lcd.write(charCode);

 calculatePosition();

 if(charCode == 255)

 {

 // finished all characters so wait another few seconds and start over

 delay(2000);

 lcd.clear();

 row = col = 0;

 charCode = 32;

 }

 charCode = charCode + 1;

}

void calculatePosition()

{

 col = col + 1;

 if(col == numCols)

 {

 col = 0;

 row = row + 1;

 if(row == numRows)

 {

 row = 0;

 delay(2000); // pause

 lcd.clear();

 }

 lcd.setCursor(col, row);

 }

}

// function to display a symbol and its description

void showSymbol(byte symbol, char *description)

{

 lcd.clear();

 lcd.write(symbol);

 lcd.print(' '); // add a space before the description

 lcd.print(description);

 delay(3000);

}

Discussion
The datasheet for the LCD controller chip contains a table showing the
available character patterns.

To use the table, locate the symbol you want to display. The code for that
character is determined by combining the binary values for the column and

https://oreil.ly/nv0ZJ

row for the desired symbol (see Figure 11-2).

Using the datasheet to derive character codes

For example, the degree symbol (°) is the third-from-last entry at the bottom
row of the table shown in Figure 11-2. Its column indicates the upper four
bits are 1101 and its row indicates the lower four bits are 1111. Combining
these gives the code for this symbol: B11011111. You can use this binary
value or convert this to its hex value (0xDF) or decimal value (223). Note
that Figure 11-2 shows only four of the 16 actual rows in the datasheet.

The LCD screen can also show any of the ASCII characters listed in the
datasheet by passing the ASCII value to lcd.write.

The sketch uses a function named showSymbol to print the symbol and its
description:

void showSymbol(byte symbol, char *description)

(See Recipe 2.6 if you need a refresher on using character strings and
passing them to functions.)

See Also
The datasheet for the Hitachi HD44780 display

https://oreil.ly/xu4li

11.6 Creating Custom Characters
Problem
You want to define and display characters or symbols (glyphs) that you
have created. The symbols you want are not predefined in the LCD
character memory.

Solution
Uploading the following code will create an animation of a face, switching
between smiling and frowning:

/*

 * custom_char sketch

 * creates an animated face using custom characters

 */

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

byte happy[8] =

{

 B00000,

 B10001,

 B00000,

 B00000,

 B10001,

 B01110,

 B00000,

 B00000

};

byte saddy[8] =

{

 B00000,

 B10001,

 B00000,

 B00000,

 B01110,

 B10001,

 B00000,

 B00000

};

void setup() {

 lcd.createChar(0, happy);

 lcd.createChar(1, saddy);

 lcd.begin(16, 2);

}

void loop() {

 for (int i=0; i<2; i++)

 {

 lcd.setCursor(0,0);

 lcd.write(i);

 delay(500);

 }

}

Discussion
The LiquidCrystal library enables you to create up to eight custom
characters, which can be printed as character codes 0 through 8. Each
character on the screen is drawn on a grid of 5 × 8 pixels. To define a
character, you need to create an array of eight bytes. Each byte defines one
of the rows in the character. When written as a binary number, the 1
indicates a pixel is on, 0 is off (any values after the fifth bit are ignored).
The sketch example creates two characters, named happy and saddy (see
Figure 11-3).

Defining custom characters

The following line in setup creates the character using data defined in the
happy array that is assigned to character 0:

lcd.createChar(0, happy);

To print the custom character to the screen you would use this line:

lcd.write(0);

Code in the for loop switches between character 0 and character 1 to
produce an animation.

NOTE
Note the difference between writing a character with or without an apostrophe. The following will
print a zero, not the happy symbol:

lcd.write('0'); // this prints a zero

11.7 Displaying Symbols Larger than a
Single Character
Problem
You want to combine two or more custom characters to print symbols larger
than a single character; for example, double-height numbers on the screen.

Solution
The following sketch writes double-height numbers using custom
characters:

/*

 * customChars

 * This sketch displays double-height digits

 * the bigDigit arrays were inspired by Arduino forum member dcb

 */

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

byte glyphs[5][8] = {

 { B11111,B11111,B00000,B00000,B00000,B00000,B00000,B00000 },

 { B00000,B00000,B00000,B00000,B00000,B00000,B11111,B11111 },

 { B11111,B11111,B00000,B00000,B00000,B00000,B11111,B11111 },

 { B11111,B11111,B11111,B11111,B11111,B11111,B11111,B11111 } ,

 { B00000,B00000,B00000,B00000,B00000,B01110,B01110,B01110 } };

const int digitWidth = 3; // the width in characters of a big digit

 // (excludes space between characters)

//arrays to index into custom characters that will comprise the big numbers

// digits 0 - 4 0 1 2 3 4

const char bigDigitsTop[10][digitWidth]={ 3,0,3, 0,3,32, 2,2,3, 0,2,3, 3,1,3,

// digits 5-9 5 6 7 8 9

 3,2,2, 3,2,2, 0,0,3, 3,2,3,

3,2,3};

const char bigDigitsBot[10][digitWidth]={ 3,1,3, 1,3,1, 3,1,1, 1,1,3,

32,32,3,

 1,1,3, 3,1,3, 32,32,3, 3,1,3,

1,1,3};

char buffer[12]; // used to convert a number into a string

void setup ()

{

 lcd.begin(20,4);

 // create the custom glyphs

 for(int i=0; i < 5; i++)

 lcd.createChar(i, glyphs[i]); // create the 5 custom glyphs

 // show a countdown timer

 for(int digit = 9; digit >= 0; digit--)

 {

 showDigit(digit, 0); // show the digit

 delay(1000);

 }

 lcd.clear();

}

void loop ()

{

 // now show the number of seconds since the sketch started

//

 int number = millis() / 1000;

 showNumber(number, 0);

 delay(1000);

 Serial.begin(9600);

}

void showDigit(int digit, int position)

{

 lcd.setCursor(position * (digitWidth + 1), 0);

 for(int i=0; i < digitWidth; i++)

 lcd.write(bigDigitsTop[digit][i]);

 lcd.setCursor(position * (digitWidth + 1), 1);

 for(int i=0; i < digitWidth; i++)

 lcd.write(bigDigitsBot[digit][i]);

}

void showNumber(int value, int position)

{

 int index; // index to the digit being printed, 0 is the leftmost digit

 String valStr = String(value);

 // display each digit in sequence

 for(index = 0; index < 5; index++) // display up to five digits

 {

 char c = valStr.charAt(index);

 if(c == 0) // check for null (not the same as '0')

 return; // the end of string character is a null

 c = c - 48; // convert ascii value to a numeric value (see Chapter 2)

 showDigit(c, position + index);

 }

}

Discussion
The LCD display has fixed-size characters, but you can create larger
symbols by combining characters. This recipe creates five custom
characters using the technique described in Recipe 11.6. These symbols (see
Figure 11-4) can be combined to create double-sized digits (see Figure 11-
5). The sketch displays a countdown from 9 to 0 on the LCD using the big
digits. It then displays the number of seconds since the sketch started.

The glyphs array defines pixels for the five custom characters. The array
has two dimensions given in the square brackets:

byte glyphs[5][8] = {

[5] is the number of glyphs and [8] is the number of rows in each glyph.
Each element contains 1s and 0s to indicate whether a pixel is on or off in
that row. If you compare the values in glyph[0] (the first glyph) with
Figure 11-2, you can see that the 1s correspond to dark pixels:

{ B11111,B11111,B00000,B00000,B00000,B00000,B00000,B00000 } ,

Custom characters used to form big digits

Ten big digits composed of custom glyphs

Each big number is built from six of these glyphs, three forming the upper
half of the big digit and three forming the lower half. bigDigitsTop and
bigDigitsBot are arrays defining which custom glyph is used for the top
and bottom rows on the LCD screen.

See Also
See Chapter 7 for information on 7-segment LED displays if you need
really big numerals. Note that 7-segment displays can give you digit sizes

from one-half inch to two inches or more. They can use much more power
than LCD displays and don’t present letters and symbols very well, but they
are a good choice if you need something big.

11.8 Displaying Pixels Smaller than a Single
Character
Problem
You want to display information with finer resolution than an individual
character; for example, to display a bar chart.

Solution
Recipe 11.7 describes how to build big symbols composed of more than one
character. This recipe uses custom characters to do the opposite; it creates
eight small symbols, each a single pixel higher than the previous one (see
Figure 11-6).

Eight custom characters used to form vertical bars

These symbols are used to draw bar charts, as shown in the sketch that
follows:

/*

 * customCharPixels

 */

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

//set constants for number of rows and columns to match your LCD

const int numRows = 2;

const int numCols = 16;

// array of bits defining pixels for 8 custom characters

// ones and zeros indicate if a pixel is on or off

byte glyphs[8][8] = {

 {B00000,B00000,B00000,B00000,B00000,B00000,B00000,B11111}, // 0

 {B00000,B00000,B00000,B00000,B00000,B00000,B11111,B11111}, // 1

 {B00000,B00000,B00000,B00000,B00000,B11111,B11111,B11111}, // 2

 {B00000,B00000,B00000,B00000,B11111,B11111,B11111,B11111}, // 3

 {B00000,B00000,B00000,B11111,B11111,B11111,B11111,B11111}, // 4

 {B00000,B00000,B11111,B11111,B11111,B11111,B11111,B11111}, // 5

 {B00000,B11111,B11111,B11111,B11111,B11111,B11111,B11111}, // 6

 {B11111,B11111,B11111,B11111,B11111,B11111,B11111,B11111}}; // 7

void setup ()

{

 lcd.begin(numCols, numRows);

 for(int i=0; i < 8; i++)

 lcd.createChar(i, glyphs[i]); // create the custom glyphs

 lcd.clear();

}

void loop ()

{

 for(byte i=0; i < 8; i++)

 lcd.write(i); // show all eight single height bars

 delay(2000);

 lcd.clear();

}

Discussion
The sketch creates eight characters, each a single pixel higher than the one
before; see Figure 11-6. These are displayed in sequence on the top row of
the LCD. These “bar chart” characters can be used to display values in your
sketch that can be mapped to a range from 0 to 7. For example, the
following will display a value read from analog input 0:

int value = analogRead(A0);

byte glyph = map(value, 0,1023, 0,8); // proportional value from 0 through 7

lcd.write(glyph);

delay(100);

You can stack the bars for greater resolution. The doubleHeightBars
function shown in the following code displays a value from 0 to 15 with a
resolution of 16 pixels, using two lines of the display:

void doubleHeightBars(int value, int column)

{

 char upperGlyph;

 char lowerGlyph;

 if(value < 8)

 {

 upperGlyph = ' '; // no pixels lit

 lowerGlyph = value;

 }

 else

 {

 upperGlyph = value - 8;

 lowerGlyph = 7; // all pixels lit

 }

 lcd.setCursor(column, 0); // do the upper half

 lcd.write(upperGlyph);

 lcd.setCursor(column, 1); // now to the lower half

 lcd.write(lowerGlyph);

}

The doubleHeightBars function can be used as follows to display the
value of an analog input:

for(int i=0; i < 16; i++)

{

 int value = analogRead(A0);

 value = map(value, 0, 1023, 0,16);

 doubleHeightBars(value, i); // show a value from 0 to 15

 delay(1000); // one second interval between readings

}

If you want horizontal bars, you can define five characters, each a single
pixel wider than the previous one, and use similar logic to the vertical bars

to calculate the character to show.

11.9 Selecting a Graphical LCD Display
Problem
You want to show graphics or text on either a color or monochrome display.

Solution
There are many graphical displays suitable for use with Arduino. Some of
the things to consider when choosing a display are: resolution (number of
pixels and text lines), display size, color, touch screen capability, onboard
SD memory, and price. You will also need a library to interface with your
display and you may be spoiled for choice for well-written and documented
libraries that you can use. This recipe provides an overview of what is
available along with links for more reading to help you select and use the
display that is right for your project.

The increasingly rapid introduction of new smartphones and related devices
has resulted in reducing costs to a level where monochrome or color
displays can be purchased for a fraction of the cost of an Arduino board.
When selecting a graphical display, the first thing to consider is color or
monochrome. This is partially an aesthetic decision, but it can also be
influenced by things like display size (in some cases, larger color panels
may be cheaper than large monochrome displays), power consumption
(OLED displays described later need less power), touch capability (color
panels tend to have better support for touch), and connection type.

Graphical displays that are popular for Arduino projects typically use either
liquid crystal display (LCD) or organic light-emitting diode (OLED)
technology. OLED is newer technology that consumes less power than a
conventional LCD because it does not need a backlight to be visible in low-
light conditions. However, OLED panels cost more to manufacture so they
tend to be much smaller in size than similarly priced LCD panels. Color

OLEDs are available but are very expensive and those sold for use with
Arduino tend to be very small.

Discussion
Monochrome displays were historically much cheaper than color but the
price differential is decreasing. Monochrome displays are a good choice if
you want a small display or if low current consumption is important. Also,
sketch memory needed for monochrome is generally much less than color
so that may be a factor if you have limited available memory.

There are Adafruit libraries for the SSD1306, SSD1325, SSD1331, and
SSD1351 OLED displays. A nice feature of these is that the API is similar
to the Adafruit color libraries if you want to use both mono and color panels
in future projects, or may upgrade the screen in the project you are working
on at a later date. Refer to the documentation for the Adafruit displays and
libraries.

A highly capable monochrome library supporting over 60 controller
variants is the u8g2 library. These include: SSD1305, SSD1306, SSD1309,
SSD1322, SSD1325, SSD1327, SSD1606, SH1106, T6963, RA8835,
LC7981, PCD8544, PCF8812, UC1604, UC1608, UC1610, UC1611,
UC1701, ST7565, ST7567, NT7534, IST3020, ST7920, LD7032, and
KS0108.

U8g2 is a good choice if you want the widest range of monochrome
options. The full list of controller variants can be found on the u8g2
website.

This library supports common connection types including I2C, SPI, and
parallel. If you have a monochrome graphical display, the u8g2 will more
than likely work with it. You can find the library source here. The u8g2
wiki has extensive documentation.

Color displays offer the ability to display information in full color. The
Adafruit GFX library provides a common set of graphic primitives that
support many display-specific libraries such as the Adafruit_ST7735,
Adafruit_HX8340B, Adafruit_HX8357D, Adafruit_ILI9340/1, and

https://oreil.ly/RYQqV
https://oreil.ly/P_Hoh
https://oreil.ly/3js9H
https://oreil.ly/D5UK4

Adafruit_PCD8544 libraries. This library is popular because it is well
documented with many tutorials. This Adafruit tutorial covers the graphical
functions common to all Adafruit libraries. The Adafruit Arcada library
combines GFX support with a large collection of functionality useful for
creating games or rich graphical user experiences, including various types
of user input.

See Also
The library for four-wire resistive touch screens

The library for touch screens

If you have a low-cost TFT screen with or without touch capability that
uses ITDB02 or ILI9341 display controllers, check out the UTFT library.

URTouch is a companion to UTFT supporting touch screens.

Beware Low-Cost Displays with Limited or No Supplier
Support
Because of the vast variety of graphical displays, selecting a display can be daunting. If you don’t
have the experience to understand highly technical display controller datasheets, then do not be
tempted by some ultra-cheap item from suppliers that do not provide documentation and support.
A product listing may say it comes with software for Arduino, but it is not unusual for that code to
not actually work with the supplied display or with the latest Arduino environment. The safer
choice is through suppliers like Adafruit and SparkFun that have libraries and tutorials and
support forums for their products.

11.10 Control a Full-Color LCD Display
Problem
You want to display full-color graphics on a graphical LCD such as the ones
based on the ST7735.

https://oreil.ly/3X4bh
https://oreil.ly/IHghh
https://oreil.ly/cP5Yc
https://oreil.ly/JhdoN
https://oreil.ly/b5xcw
https://oreil.ly/vcKn2
https://oreil.ly/xVM9X

Solution
This recipe uses the Adafruit ST7735 and ST7789 library, which provides
support for ST7735- and ST7789-based TFT LCD displays, such as the
1.8aʺ breakout (Adafruit product ID 358) or the 2.0ʺ IPS breakout (product
ID 4311). Or if you want a simple and strange all-in-one option, the
Adafruit HalloWing M0 combines a SAMD21 dev board, 8 MB of flash,
sensors, speaker driver, and a 1.44ʺ full-color LCD, all on a skull-shaped
PCB board. You can install this library using the Arduino Library Manager
(see Chapter 16).

The sketch initializes the display on a HalloWing M0, shows three lines of
text in varying sizes, and then switches to an animation of a yellow ball
moving back and forth:

/*

 * Adafruit GFX ST7735 sketch

 * Display text and a moving ball on the display

 */

#include <Adafruit_GFX.h> // Core graphics library

#include <Adafruit_ST7735.h> // Hardware-specific library for ST7735

#include <SPI.h>

// Define the connections for your panel. This will vary depending on

// your display and the board you are using

#define TFT_CS 39

#define TFT_RST 37

#define TFT_DC 38

#define TFT_BACKLIGHT 7

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

void setup(void)

{

 tft.initR(INITR_144GREENTAB); // Initialize ST7735, green tab packaging

 pinMode(TFT_BACKLIGHT, OUTPUT); // Backlight pin

 digitalWrite(TFT_BACKLIGHT, HIGH); // Turn on the backlight

 tft.setRotation(2); // This will depend on how you mounted the panel

 tft.fillScreen(ST77XX_BLACK); // Fill the screen with black

 // Display some text in a variety of fonts

 tft.setCursor(0, 0);

 tft.setTextWrap(false);

 tft.setTextColor(ST77XX_RED);

 tft.setTextSize(1);

 tft.println("Small");

 tft.setTextColor(ST77XX_GREEN);

 tft.setTextSize(2);

 tft.println("Medium");

 tft.setTextColor(ST77XX_BLUE);

 tft.setTextSize(3);

 tft.println("Large");

}

int ballDir = 1; // Current direction of motion

int ballDiameter = 8; // Diameter

int ballX = ballDiameter; // Starting X position

void loop()

{

 // If the ball is approaching the edge of the screen, reverse direction

 if (ballX >= tft.width() - ballDiameter || ballX < ballDiameter) {

 ballDir *= -1;

 }

 ballX += ballDir; // Move the ball's X position

 // Calculate the Y position based on where the cursor was

 int ballY = tft.getCursorY() + ballDiameter*2;

 tft.fillCircle(ballX, ballY, ballDiameter/2, 0xffff00); // Yellow ball

 delay(25);

 tft.fillCircle(ballX, ballY, ballDiameter/2, 0x000000); // Erase the ball

}

NOTE
If you are using the HalloWing all-in-one board (or any Adafruit board), you’ll need to add the
Adafruit board manager URL to the Arduino IDE and use Tools→Board→Boards Manager to
install support for Adafruit SAMD boards, then select the Adafruit HalloWing M0 from the
Tools→Board menu.

https://oreil.ly/t_F3z

Discussion
If you use this sketch with a standalone Arduino board (or compatible), you
will need a graphical LCD supported by the Adafruit ST7735/ST7789
library such as those sold by Adafruit. You’ll need to connect the board as
shown in Figure 11-7. The pins used for MOSI and SCLK are dependent on
your board (the Uno wiring is shown in the figure, but see “SPI” for other
boards). For the Uno, you’d need to modify the #defines and the
initialization as follows:

#define TFT_CS 10

#define TFT_RST 9

#define TFT_DC 8

#define TFT_BACKLIGHT 7

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

The chip select and data/command pins are defined by TFT_CS and TFT_DC,
and you are free to change these to another pin. The TFT_RST pin is used to
reset the display, and you can change this as well. If you use a different
connection for any of these, be sure to change the code, too.

Wiring an ST7735 LCD display to Arduino

The code sets up the #defines for the pins that are not defined by your
board, and then initializes an instance of Adafruit_ST7735 as the object
tft. Depending on what board you are using and how you’ve wired it, this
initialization could vary. For example, you can, in fact, use software SPI
and choose different pins for MOSI and SCLK, but this will result in slower
performance (and if your LCD board has an SD card included, it won’t
work with software SPI):

#define TFT_SCLK 5

#define TFT_MOSI 6

Adafruit_ST7735 tft =

 Adafruit_ST7735(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK, TFT_RST);

Within setup(), the sketch initializes the display with a call to initR().
There are many variants of these displays, so be sure to consult the
documentation for them (the graphics test example program included with
the library has explanatory comments for many of the supported boards).
For example, there is a group of variants that can be identified by the color
of the tab on the tape that’s affixed to the screen when you unbox it. The
Adafruit 1.8ʺ TFT screen uses INITR_BLACKTAB. The 1.44ʺ display on the
HalloWing M0 is the same as the 1.44ʺ green tab display, except that it’s
mounted upside down. You can either use INITR_144GREENTAB and
setRotation(2) (upside-down portrait mode) as shown in the sketch or
just pass INITR_HALLOWING to initR().

After initialization is complete, the sketch draws black over the entire
screen, and uses setCursor() to position the cursor on the screen before
displaying three lines of text that get progressively larger. In the loop()
function, the sketch moves a ball from one side of the screen to the other. It
uses a ballDir variable to determine whether the ball moves to the right (1)
or to the left (–1). When the ball comes within a ball’s width of one side or
the other, it reverses direction.

See Also
The datasheet for the ST7735

11.11 Control a Monochrome OLED Display
Problem
You want to display single-color graphics on a monochrome OLED such as
the ones based on the SSD13xx.

https://oreil.ly/1S04i

Solution
This recipe uses the Adafruit 128x32 SPI SSD1306 OLED display and the
Adafruit SSD1306 library to display text and graphics on the display. The
SSD1306 library works with a variety of OLED displays that use this
chipset. You can install this library using the Arduino Library Manager (see
Chapter 16).

Wire the display to your Arduino as shown in Figure 11-8, and run this
sketch, which displays some scrolling text followed by a moving ball:

/*

 * OLED SSD13xx sketch

 * Display text and a moving ball on an OLED display.

 */

#include <SPI.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1306.h>

#define WIDTH 128

#define HEIGHT 32

#define OLED_DC 8

#define OLED_CS 10

#define OLED_RESET 9

Adafruit_SSD1306 display(WIDTH, HEIGHT, &SPI, OLED_DC, OLED_RESET, OLED_CS);

#define MODE SSD1306_SWITCHCAPVCC // get display voltage from 3.3V internally

void setup()

{

 Serial.begin(9600);

 if(!display.begin(MODE))

 {

 Serial.println("Could not initialize display");

 while(1); // halt

 }

 showAndScroll("Small", 1);

 showAndScroll("Medium", 2);

 showAndScroll("Large", 3);

}

// Show text and scroll it briefly

void showAndScroll(String text, int textSize)

{

 display.setTextColor(SSD1306_WHITE); // Draw white text

 display.setCursor(0, 0); // Move the cursor to 0,0

 display.clearDisplay(); // clear the screen

 display.setTextSize(textSize);

 display.println(text);

 display.display();

 // Scroll the display right for 3 seconds

 display.startscrollright(0x00, 0x0F);

 delay(3000);

 display.stopscroll();

}

int ballDir = 1; // Current direction of motion

int ballDiameter = 8; // Diameter

int ballX = ballDiameter; // Starting X position

int ballY = ballDiameter*2; // Y position

void loop()

{

 display.clearDisplay();

 // If the ball is approaching the edge of the screen, reverse direction

 if (ballX >= WIDTH - ballDiameter || ballX < ballDiameter)

 {

 ballDir *= -1;

 }

 // Move the ball's X position

 ballX += ballDir;

 // Draw a ball

 display.fillCircle(ballX, ballY, ballDiameter/2, SSD1306_INVERSE);

 display.display();

 delay(25);

 // Erase the ball

 display.fillCircle(ballX, ballY, ballDiameter/2, SSD1306_INVERSE);

 display.display();

}

Wiring an SSD13xx OLED display to Arduino

Discussion
The chip select and data/command pins are defined in the sketch by
OLED_CS and OLED_DC. The OLED_RESET pin is used to reset the display.
You can use different pins for any of those. The pins used for MOSI and
SCLK are dependent on your board (the Uno wiring is shown in the figure,
but see “SPI” for other boards).

The wiring in the Solution uses hardware SPI. If you want to use software
SPI, you will need to add a #define for each of those pins, wire them up,
and use a different form of the constructor:

#define OLED_CLK 5

#define OLED_MOSI 6

Adafruit_SSD1306 display(WIDTH, HEIGHT,

 OLED_MOSI, OLED_CLK, OLED_DC, OLED_RESET, OLED_CS);

The Adafruit library supports a variety of boards that use this chipset, and
you’ll need to change your code to match the display you are using. If your
display is a different size but also uses SPI, you can probably just change
the #defines for WIDTH and HEIGHT. If your display uses I2C instead of
SPI, you can connect with fewer wires. You’ll need to connect the reset pin
as before, but you’ll then only need to connect the SCL and SDA pins
between the Arduino and the display. You’ll need to modify the sketch to
include Wire.h and use a different variant of the initialization:

#include <Wire.h>

#define WIDTH 128

#define HEIGHT 32

#define OLED_RESET 13

Adafruit_SSD1306 display(WIDTH, HEIGHT, &Wire, OLED_RESET);

The initialization of display gives you an Adafruit_SSD1306 object that
you can use to control the display. In setup(), the sketch starts the display
in the SSD1306_SWITCHCAPVCC mode (to tell the display to get its voltage
internally). After that, the sketch uses the showAndScroll function to
display and scroll text in three sizes. This function configures the display to
draw in white text, clears the screen, and sets the cursor position to the top
left. Then it sets the font, draws it on the screen, and calls
display.display() to show what you’ve drawn. This is different from
how you worked with the color LCD (Recipe 11.10) where anything you
drew was immediately displayed. After the text is displayed, the sketch
scrolls the screen for three seconds.

In the loop(), the sketch draws a ball on the screen and moves it back and
forth across the screen. It uses the SSD1306_INVERSE color to alternate the
color from white to black each time it’s drawn. Each time through loop(),
the sketch increments the ballX variable until it hits the right side of the

screen, when it starts decrementing it (until it hits the left wall). It then
displays the ball and shows it for a fraction of a second, before erasing it.

You can also use the u8g2 library to generate a similar display. The code is
slightly different, but mostly the same. The biggest difference is that instead
of drawing on the screen and calling display.display() to update it, the
sketch uses the u8g2 library’s page buffer to update the display in stages. To
use this, you must first call u8g2.firstPage(), then set up a do-while loop
that calls u8g2.nextPage() at the end. Your drawing commands go inside
the loop, and u8g2 goes as many times through the loop as is needed to
draw the complete screen. U8g2 supports a wide variety of monochrome
displays, and there are variants of each display (for example, hardware SPI,
software SPI, I2C, and also permutations of the preceding for a variety of
frame buffer/page buffer sizes). See the list of supported devices and their
corresponding setup functions.

/*

 * u8g2 oled sketch

 * Draw some text, move a ball.

 */

#include <Arduino.h>

#include <U8g2lib.h>

#include <SPI.h>

#define OLED_DC 8

#define OLED_CS 10

#define OLED_RESET 9

U8G2_SSD1306_128X32_UNIVISION_2_4W_HW_SPI u8g2(U8G2_R0, OLED_CS,

 OLED_DC, OLED_RESET);

u8g2_uint_t displayWidth;

void setup(void)

{

 u8g2.begin();

 u8g2.setFontPosTop();

 displayWidth = u8g2.getDisplayWidth();

 showAndScroll("Small", u8g2_font_6x10_tf);

 showAndScroll("Medium", u8g2_font_9x15_tf);

 showAndScroll("Large", u8g2_font_10x20_tf);

}

https://oreil.ly/XhGA0

int ballDir = 1; // Current direction of motion

int ballRadius = 4; // Radius

int ballX = ballRadius*2; // Starting X position

int ballY = ballRadius*4; // Y position

void loop(void)

{

 u8g2.firstPage(); // picture loop

 do

 {

 // If the ball is approaching the edge of the screen, reverse direction

 if (ballX >= displayWidth - ballRadius*2 || ballX < ballRadius*2)

 {

 ballDir *= -1;

 }

 ballX += ballDir; // Move the ball's X position

 u8g2.drawDisc(ballX, ballY, ballRadius); // Draw the ball

 } while (u8g2.nextPage());

 delay(25);

}

void showAndScroll(String text, uint8_t *font)

{

 for (int i = 0; i < 20; i++)

 {

 u8g2.firstPage(); // picture loop

 do

 {

 u8g2.setFont(font);

 u8g2.drawStr(10 + i, 10, text.c_str());

 } while (u8g2.nextPage());

 delay(125);

 }

}

See Also
The documentation for Adafruit OLED displays

The SSD1306 datasheet

https://oreil.ly/Bn3Y8
https://oreil.ly/TBjHf

Using Time and Dates

12.0 Introduction
Managing time is a fundamental element of interactive computing. This
chapter covers built-in Arduino functions and introduces many additional
techniques for handling time delays, time measurement, and real-world
times and dates. You’ll learn about Arduino’s built-in function for
introducing delays into your sketch, as well as more advanced techniques
for intermittently performing operations. Other recipes in this chapter cover
how to measure time as it passes, and even how to use an external real-time
clock for tracking time and dates.

12.1 Using millis to Determine Duration
Problem
You want to know how much time has elapsed since an event happened; for
example, how long a switch has been held down.

Solution
The following sketch uses the millis() function to print how long a button
was pressed (see Recipe 5.2 for details on how to connect the switch):

/*

 millisDuration sketch

 returns the number of milliseconds that a button has been pressed

 */

const int switchPin = 2; // the number of the input pin

unsigned long startTime; // the value of millis when the switch is pressed

unsigned long duration; // variable to store the duration

void setup()

{

 pinMode(switchPin, INPUT_PULLUP);

 Serial.begin(9600);

}

void loop()

{

 if(digitalRead(switchPin) == LOW)

 {

 // here if the switch is pressed

 startTime = millis();

 while(digitalRead(switchPin) == LOW)

 ; // wait while the switch is still pressed

 unsigned long duration = millis() - startTime;

 Serial.println(duration);

 }

}

Discussion
The millis function returns the number of milliseconds since the current
sketch started running.

WARNING
The millis function will overflow (go back to zero) after approximately 50 days. See Recipes
12.4 and 12.5 for information about using the Time library for handling intervals from seconds to
years.

By storing the start time for an event, you can determine the duration of the
event by subtracting the start time from the current time, as shown here:

unsigned long duration = millis() - startTime;

See Also
The Arduino reference for millis

See Recipes 12.4 and 12.5 for information about using the Time library to
handle intervals from seconds to years.

https://oreil.ly/WwCZl

12.2 Creating Pauses in Your Sketch
Problem
You want your sketch to pause for some period of time. This may be some
number of milliseconds, or a time given in seconds, minutes, hours, or days.

Solution
The Arduino delay function is used in many sketches throughout this book.
It pauses a sketch for the number of milliseconds specified as a parameter.
(There are 1,000 ms in one second.) The sketch that follows shows how you
can use delay to get almost any interval:

/*

 * delay sketch

 */

const unsigned long oneSecond = 1000; // a second is 1,000 ms

const unsigned long oneMinute = oneSecond * 60;

const unsigned long oneHour = oneMinute * 60;

const unsigned long oneDay = oneHour * 24;

void setup()

{

 Serial.begin(9600);

 while(!Serial); // Needed on Leonardo and ARM-based boards

}

void loop()

{

 Serial.println("delay for 1 millisecond");

 delay(1);

 Serial.println("delay for 1 second");

 delay(oneSecond);

 Serial.println("delay for 1 minute");

 delay(oneMinute);

 Serial.println("delay for 1 hour");

 delay(oneHour);

 Serial.println("delay for 1 day");

 delay(oneDay);

 Serial.println("Ready to start over");

}

Discussion
Because it is limited by the maximum value of an integer, the delay
function has a range from one one-thousandth of a second to around 25
days when you use a long integer. If you used an unsigned long, it will
reach just under 50 days; see Chapter 2 for more on variable types).

You can use delayMicroseconds to delay short periods. There are 1,000
microseconds in 1 ms, and 1 million ms in 1 second. delayMicroseconds
will pause from one microsecond to around 16 ms, but for delays longer
than a few thousand microseconds you should use delay instead:

delayMicroseconds(10); // delay for 10 microseconds

NOTE
delay and delayMicroseconds will delay for at least the amount of time given as the parameter,
but they could delay a little longer if interrupts occur within the delay time.

The drawback of using the delay function is that your sketch can’t do
anything else during the delay period. You can find an alternative approach
in the BlinkWithoutDelay example (File→Examples→02.
Digital→BlinkWithoutDelay). This approach uses a variable,
previousMillis, to store the time at which an action was last performed.
The sketch then checks the value of millis() (which is based on an
internal clock that ticks once every millisecond the sketch is running).
When the difference between the current value of millis() and
previousMillis reaches or exceeds a given interval, it performs an action,
such as blinking an LED. Here is an abbreviated version of that sketch:

int ledState = LOW;

unsigned long previousMillis = 0;

const long interval = 1000;

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 unsigned long currentMillis = millis();

 if (currentMillis - previousMillis >= interval)

 {

 previousMillis = currentMillis;

 if (ledState == LOW)

 {

 ledState = HIGH;

 }

 else

 {

 ledState = LOW;

 }

 digitalWrite(LED_BUILTIN, ledState);

 }

 // You can perform other actions here.

}

Here is a way to package this logic into a function named myDelay that will
delay the code in loop but can perform some action during the delay
period. You can customize the functionality for your application, but in this
example, an LED is blinked on or off every 250 ms:

/*

 * myDelay example sketch to blink an LED for a set amount of time

 */

const int ledPin = LED_BUILTIN; // the number of the LED pin

int ledState = LOW; // ledState used to set the LED

unsigned long previousMillis = 0; // will store last time LED was updated

void setup()

{

 pinMode(ledPin, OUTPUT);

 Serial.begin(9600);

}

void loop()

{

 if (myDelay(blink, 250))

 {

 Serial.println(millis() / 1000.0); // print elapsed time in seconds

 }

}

/*

 * Perform the specified function, return true if it was performed

 */

bool myDelay(void (*func)(void), long interval)

{

 unsigned long currentMillis = millis();

 if (currentMillis - previousMillis >= interval)

 {

 // save the last time you blinked the LED

 previousMillis = currentMillis;

 func(); // invoke the function

 return true;

 }

 return false;

}

void blink()

{

 // if the LED is off turn it on and vice versa:

 if (ledState == LOW)

 {

 ledState = HIGH;

 }

 else

 {

 ledState = LOW;

 }

 digitalWrite(ledPin, ledState);

}

The void (*func)(void) parameter in the definition of myDelay indicates
that the func argument is a pointer to a void function that takes no
((void)) arguments. So, every time func() is invoked in myDelay, it’s
really calling blink(). When the interval is reached, myDelay resets
previousMillis, calls blink, and returns true.

Arduino style is to avoid the use of pointers in sketches and to reserve those
for use in libraries, which avoids confusing beginners who use your sketch.
So, another approach is to use a third-party library available from the
Library Manager, such as Tasker. This example blinks LEDs on two pins at

https://oreil.ly/04Yz6

different rates, the built-in LED and an LED connected to pin 10. The
sketch avoids needing to store the state of each pin in a separate variable by
using digitalRead to determine whether the LED is currently on or off:

/*

 * Tasker demo sketch

 */

#define TASKER_MAX_TASKS 2 // Set this to the number of tasks you need

#include <Tasker.h>

// Declare the Tasker object

Tasker tasker;

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(10, OUTPUT);

 // Blink the built-in LED every second

 tasker.setInterval(blink, 1000, LED_BUILTIN);

 // Blink the LED on pin 10 twice per second

 tasker.setInterval(blink, 500, 10);

}

void loop()

{

 tasker.loop(); // Run any pending tasks

}

void blink(int pinNumber)

{

 bool ledState = !digitalRead(pinNumber); // Toggle the current pin state

 if (ledState)

 {

 digitalWrite(pinNumber, HIGH);

 }

 else

 {

 digitalWrite(pinNumber, LOW);

 }

}

See Also

The Arduino reference for delay

12.3 More Precisely Measuring the Duration
of a Pulse
Problem
You want to determine the duration of a pulse (when a digital signal
transitions from low to high back to low again, or high to low back to high)
with microsecond accuracy; for example, to measure the exact duration of
HIGH or LOW pulses on a pin.

Solution
The pulseIn function returns the duration in microseconds for a changing
signal on a digital pin. This sketch prints the time in microseconds of the
HIGH and LOW pulses generated by analogWrite (see the section on
“Analog Output” in Chapter 7). Because the analogWrite pulses are
generated internally by Arduino, no external wiring is required:

/*

 PulseIn sketch

 displays duration of high and low pulses from analogWrite

 */

const int inputPin = 3; // analog output pin to monitor

unsigned long val; // this will hold the value from pulseIn

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 analogWrite(inputPin, 128);

 Serial.print("Writing 128 to pin ");

 Serial.print(inputPin);

 printPulseWidth(inputPin);

https://oreil.ly/6_Jnj

 analogWrite(inputPin, 254);

 Serial.print("Writing 254 to pin ");

 Serial.print(inputPin);

 printPulseWidth(inputPin);

 delay(3000);

}

void printPulseWidth(int pin)

{

 val = pulseIn(pin, HIGH);

 Serial.print(": High Pulse width = ");

 Serial.print(val);

 val = pulseIn(pin, LOW);

 Serial.print(", Low Pulse width = ");

 Serial.println(val);

}

Discussion
The Serial Monitor will display:

Writing 128 to pin 3: High Pulse width = 989, Low Pulse width = 997

Writing 254 to pin 3: High Pulse width = 1977, Low Pulse width = 8

pulseIn can measure how long a pulse is either HIGH or LOW:

pulseIn(pin, HIGH); // returns microseconds that pulse is HIGH

pulseIn(pin, LOW); // returns microseconds that pulse is LOW

The pulseIn function waits for the pulse to start (or for a timeout if there is
no pulse). By default, it will stop waiting after one second, but you can
change that by specifying the time to wait in microseconds as a third
parameter (note that 1,000 microseconds equals 1 millisecond):

pulseIn(pin, HIGH, 5000); // wait 5 ms for the pulse to start

TIP
The timeout value only matters if the pulse does not start within the given period. Once the start of
a pulse is detected, the function will start timing and will not return until the pulse ends.

pulseIn can measure values between around 10 microseconds to three
minutes in duration, but the value of long pulses may not be very accurate.

See Also
The Arduino reference for pulseIn

Recipe 6.5 shows pulseIn used to measure the pulse width of an ultrasonic
distance sensor.

Recipe 18.2 provides more information on using hardware interrupts.

12.4 Using Arduino as a Clock
Problem
You want to use the time of day (hours, minutes, and seconds) in a sketch,
and you don’t want to connect external hardware.

Solution
This sketch uses the Time library to display the time of day. The Time
library can be installed using the Arduino Library Manager (if you have
trouble finding it, try searching the Arduino Library Manager for
“timekeeping”):

/*

 * Time sketch

 */

#include <TimeLib.h>

void setup()

{

 Serial.begin(9600);

 setTime(12,0,0,1,1,2020); // set time to noon Jan 1 2020

}

void loop()

{

 digitalClockDisplay();

https://oreil.ly/Qnvoy

 delay(1000);

}

// Pad digits with a leading 0

String padDigits(int digit)

{

 String str = String("0") + digit; // Put a zero in front of the digit

 return str.substring(str.length() - 2); // Remove all but the

 // last two characters

}

void digitalClockDisplay(){

 String timestr = String(hour()) + ":" + padDigits(minute()) +

 ":" + padDigits(second());

 Serial.println(timestr);

 String datestr = String(year()) + "-" + padDigits(month()) +

 "-" + padDigits(day());

 Serial.println(datestr);

}

Discussion
The Time library enables you to keep track of the date and time. Many
Arduino boards use a quartz crystal for timing, and this is accurate to a
couple of seconds per day, but it does not have a battery to remember the
time when power is switched off. Therefore, time will restart from 0 each
time a sketch starts, so you need to set the time using the setTime function.
The sketch sets the time to noon on January 1, 2020 each time it starts.

NOTE
The Time library uses a standard known as Unix time (also called POSIX time or Epoch time).
The values represent the number of elapsed seconds since January 1, 1970. Experienced C
programmers may recognize that this is the same as the time_t used in the ISO standard C library
for storing time values.

Of course, it’s more useful to set the time to your current local time instead
of a fixed value. The following sketch gets the numerical time value (the
number of elapsed seconds since January 1, 1970) from the serial port to set

the time. You can enter a value using the Serial Monitor (the current Unix
time can be found on a number of websites, including Epoch Converter):

/*

 * SetTimeSerial sketch

 * Set the time from the serial port. Simplified version of TimeSerial example

 * from the Time library.

 *

 * Set the time by sending the letter T followed by 10 digits indicating

 * number of seconds since January 1, 1970, for example T1569888000 would

 * represent 12am on October 1, 2019.

 */

#include <TimeLib.h>

#define TIME_HEADER 'T' // Header tag for serial time sync message

void setup() {

 Serial.begin(9600);

 Serial.println("Waiting for time sync message");

}

void loop(){

 if(Serial.available())

 {

 processSyncMessage();

 }

 if(timeStatus() != timeNotSet)

 {

 // Display the time and date

 digitalClockDisplay();

 }

 delay(1000);

}

// Pad digits with a leading 0

String padDigits(int digit)

{

 String str = String("0") + digit; // Put a zero in front of the digit

 return str.substring(str.length() - 2); // Remove all but the last two

characters

}

void digitalClockDisplay(){

 String timestr = String(hour()) + ":" + padDigits(minute()) +

 ":" + padDigits(second());

https://www.epochconverter.com/

 Serial.println(timestr);

 String datestr = String(year()) + "-" + padDigits(month()) +

 "-" + padDigits(day());

 Serial.println(datestr);

}

// Parse the time message

void processSyncMessage() {

 time_t pctime = 0;

 if(Serial.find(TIME_HEADER)) {

 pctime = Serial.parseInt();

 setTime(pctime); // Set clock to the time received on serial port

 }

}

The code to display the time and date is the same as before, but now the
sketch waits to receive the time from the serial port. See the Discussion in
Recipe 4.3 if you are not familiar with how to receive numeric data using
the serial port.

A processing sketch named SyncArduinoClock is included with the Time
library examples (it’s in the Time/Examples/Processing/SyncArduinoClock
folder). This Processing sketch will send the current time from your
computer to Arduino at the click of a mouse. Run SyncArduinoClock in
Processing, ensuring that the serial port is the one connected to Arduino
(Chapter 4 describes how to run a Processing sketch that talks to Arduino).
You should see the message Waiting for time sync message sent by
Arduino and displayed in the Processing text area (the black area for text
messages at the bottom of the Processing IDE). Click the Processing
application window (it’s a 200-pixel gray square) and you should see the
text area display the time as printed by the Arduino sketch.

You can also set the clock from the Serial Monitor if you can get the current
Unix time; Epoch Converter is one of many websites that provide the time
in this format. Make sure the converter you use is configured for
microseconds (a 10-digit value, at least until sometime in 2286); if it is

configured for milliseconds the number will be 1,000 times too large. Copy
the 10-digit number indicated as the current Unix time and paste this into
the Serial Monitor Send window. Precede the number with the letter T and
click Send. For example, if you send this:

T1282041639

Arduino should respond by displaying the time every second:

10:40:49 17 8 2019

10:40:50 17 8 2019

10:40:51 17 8 2019

10:40:52 17 8 2019

10:40:53 17 8 2019

10:40:54 17 8 2019

. . .

You can also set the time using buttons or other input devices such as tilt
sensors, a joystick, or a rotary encoder.

The following sketch uses two buttons to move the clock “hands” forward
or backward. Figure 12-1 shows the connections (see Recipe 5.2 if you
need help using switches):

/*

 AdjustClockTime sketch

 buttons on pins 2 and 3 adjust the time

 */

#include <TimeLib.h>

const int btnForward = 2; // button to move time forward

const int btnBack = 3; // button to move time back

unsigned long prevtime; // when the clock was last displayed

void setup()

{

 pinMode(btnForward, INPUT_PULLUP); // enable internal pull-up resistors

 pinMode(btnBack, INPUT_PULLUP);

 setTime(12,0,0,1,1,2020); // start with the time set to noon Jan 1 2020

 Serial.begin(9600);

}

void loop()

{

 prevtime = now(); // note the time

 while(prevtime == now()) // stay in this loop till the second changes

 {

 // check if the set button pressed while waiting for second to roll over

 if(checkSetTime())

 prevtime = now(); // time changed so reset start time

 }

 digitalClockDisplay();

}

// functions check to see if the time should be adjusted

// return true if time was changed

bool checkSetTime()

{

 int step; // the number of seconds to move (backward if negative)

 bool isTimeAdjusted = false; // set to true if the time is adjusted

 step = 1; // ready to step forward

 while(digitalRead(btnForward)== LOW)

 {

 adjustTime(step);

 isTimeAdjusted = true; // to tell the user that the time has changed

 step = step + 1; // next step will be bigger

 digitalClockDisplay(); // update clock

 delay(100);

 }

 step = -1; // negative numbers step backward

 while(digitalRead(btnBack)== LOW)

 {

 adjustTime(step);

 isTimeAdjusted = true; // to tell the user that the time has changed

 step = step - 1; // next step will be a bigger negative number

 digitalClockDisplay(); // update clock

 delay(100);

 }

 return isTimeAdjusted; // tell the user if the time was adjusted

}

// Pad digits with a leading 0

String padDigits(int digit)

{

 String str = String("0") + digit; // Put a zero in front of the digit

 return str.substring(str.length() - 2); // Remove all but the

 // last two characters

//

}

void digitalClockDisplay(){

 String timestr = String(hour()) + ":" + padDigits(minute()) +

 ":" + padDigits(second());

 Serial.println(timestr);

 String datestr = String(year()) + "-" + padDigits(month()) +

 "-" + padDigits(day());

 Serial.println(datestr);

}

Two buttons used to adjust the time

The sketch uses the same digitalClockDisplay and printDigits
functions from Recipe 12.3, so copy those prior to running the sketch.

Here is a variation on this sketch that uses the position of a variable resistor
to determine the direction and rate of adjustment when a switch is pressed:

#include <TimeLib.h>

const int potPin = A0; // pot to determine direction and speed

const int buttonPin = 2; // button enables time adjustment

unsigned long prevtime; // when the clock was last displayed

void setup()

{

 digitalWrite(buttonPin, HIGH); // enable internal pull-up resistors

 setTime(12,0,0,1,1,2020); // start with the time set to noon Jan 1 2020

 Serial.begin(9600);

}

void loop()

{

 prevtime = now(); // note the time

 while(prevtime == now()) // stay in this loop till the second changes

 {

 // check if the set button pressed while waiting for second to roll over

 if(checkSetTime())

 prevtime = now(); // time has changed, so reset start time

 }

 digitalClockDisplay();

}

// functions check to see if the time should be adjusted

// return true if time was changed

bool checkSetTime()

{

 int value; // a value read from the pot

 int step; // the number of seconds to move (backward if negative)

 bool isTimeAdjusted = false; // set to true if the time is adjusted

 while(digitalRead(buttonPin)== LOW)

 {

 // here while button is pressed

 value = analogRead(potPin); // read the pot value

 step = map(value, 0,1023, 10, -10); // map value to the desired range

 if(step != 0)

 {

 adjustTime(step);

 isTimeAdjusted = true; // to tell the user that the time has changed

 digitalClockDisplay(); // update clock

 delay(100);

 }

 }

 return isTimeAdjusted;

}

The preceding sketch uses the same digitalClockDisplay and
printDigits functions from Recipe 12.3, so copy those prior to running

the sketch. Figure 12-2 shows how the variable resistor and switch are
connected. If you are using a 3.3V board that is not 5-volt tolerant, connect
the positive side of the variable resistor to 3.3V instead of 5V.

All these examples print to the serial port, but you can print the output to
LEDs or LCDs. The download for the Graphical LCD covered in Recipe
11.9 contains example sketches for displaying and setting time using an
analog clock display drawn on the LCD.

The Time library includes convenience functions for converting to and from
various time formats. For example, you can find out how much time has
elapsed since the start of the day and how much time remains until the day’s
end.

A variable resistor used to adjust the time

You can look in TimeLib.h in the libraries folder for the complete list. More
details are available in Chapter 16:

dayOfWeek(now()); // the day of the week (Sunday is day 1)

elapsedSecsToday(now()); // returns the number of seconds since the start

 // of today

nextMidnight(now()); // how much time to the end of the day

elapsedSecsThisWeek(now()); // how much time has elapsed since the start of

 // the week

You can also print text strings for the days and months; here is a variation
on the digital clock display code that prints the names of the day and
month:

void digitalClockDisplay(){

 String timestr = String(hour()) + ":" + padDigits(minute()) +

 ":" + padDigits(second());

 Serial.println(timestr);

 String datestr = String(dayStr(weekday())) + ", " +

 String(monthShortStr(month())) + " " + String(year());

 Serial.println(datestr);

}

See Also
The Time library reference

This Wikipedia article on Unix time

Epoch Converter and OnlineConversion.com are two popular Unix time-
conversion tools.

12.5 Creating an Alarm to Periodically Call a
Function
Problem
You want to perform some action on specific days and at specific times of
the day.

https://oreil.ly/XxRdv
https://oreil.ly/w3xpW
http://www.epochconverter.com/
https://oreil.ly/1PF2b

Solution
TimeAlarms is a companion to the Time library discussed in Recipe 12.4.
Install the TimeAlarms library using the Arduino Library Manager (and
install the Time library also if not already installed). TimeAlarms makes it
easy to create time and date alarms:

/*

 * TimeAlarmsExample sketch

 *

 * This example calls alarm functions at 8:30 am and at 5:45 pm (17:45)

 * and simulates turning lights on at night and off in the morning

 *

 * A timer is called every 15 seconds

 * Another timer is called once only after 10 seconds

 *

 * At startup the time is set to Jan 1 2020 8:29 am

 */

#include <TimeLib.h>

#include <TimeAlarms.h>

void setup()

{

 Serial.begin(9600);

 while(!Serial);

 Serial.println("TimeAlarms Example");

 Serial.println("Alarms are triggered daily at 8:30 am and 17:45 pm");

 Serial.println("One timer is triggered every 15 seconds");

 Serial.println("Another timer is set to trigger only once after 10

seconds");

 Serial.println();

 setTime(8,29,40,1,1,2020); // set time to 8:29:40am Jan 1 2020

 Alarm.alarmRepeat(8,30,0, MorningAlarm); // 8:30am every day

 Alarm.alarmRepeat(17,45,0,EveningAlarm); // 5:45pm every day

 Alarm.timerRepeat(15, RepeatTask); // timer for every 15 seconds

 Alarm.timerOnce(10, OnceOnlyTask); // called once after 10

seconds

}

void MorningAlarm()

{

 Serial.println("Alarm: - turn lights off");

}

void EveningAlarm()

{

 Serial.println("Alarm: - turn lights on");

}

void RepeatTask()

{

 Serial.println("15 second timer");

}

void OnceOnlyTask()

{

 Serial.println("This timer only triggers once");

}

void loop()

{

 digitalClockDisplay();

 Alarm.delay(1000); // wait one second between clock display

}

// Pad digits with a leading 0

String padDigits(int digit)

{

 String str = String("0") + digit; // Put a zero in front of the digit

 return str.substring(str.length() - 2); // Remove all but the

 // last two characters

}

void digitalClockDisplay(){

 String timestr = String(hour()) + ":" + padDigits(minute()) +

 ":" + padDigits(second());

 Serial.println(timestr);

 String datestr = String(year()) + "-" + padDigits(month()) +

 "-" + padDigits(day());

 Serial.println(datestr);

}

Discussion
You can schedule tasks to trigger at a particular time of day (these are called
alarms) or schedule tasks to occur after an interval of time has elapsed

(called timers). Each of these tasks can be created to continuously repeat or
to occur only once.

To specify an alarm to trigger a task repeatedly at a particular time of day,
use:

Alarm.alarmRepeat(8,30,0, MorningAlarm);

This calls the function MorningAlarm at 8:30 a.m. every day.

If you want the alarm to trigger only once, you can use the alarmOnce
method:

Alarm.alarmOnce(8,30,0, MorningAlarm);

This calls the function MorningAlarm a single time only (the next time it is
8:30 a.m.) and will not trigger again.

Timers trigger tasks that occur after a specified interval of time has passed
rather than at a specific time of day. The timer interval can be specified in
any number of seconds, or in hours, minutes, and seconds:

Alarm.timerRepeat(15, Repeats); // timer task every 15 seconds

This calls the Repeats function in your sketch every 15 seconds.

If you want a timer to trigger once only, use the timerOnce method:

Alarm.timerOnce(10, OnceOnly); // called once after 10 seconds

This calls the onceOnly function in a sketch 10 seconds after the timer is
created.

NOTE
Your code needs to call Alarm.delay regularly because this function checks the state of all the
scheduled events. Failing to regularly call Alarm.delay will result in the alarms not being
triggered. You can call Alarm.delay(0) if you need to service the scheduler without a delay.
Always use Alarm.delay instead of delay when using TimeAlarms in a sketch.

The TimeAlarms library requires the Time library to be installed—see
Recipe 12.4. No internal or external hardware is required to use the
TimeAlarms library. The scheduler does not use interrupts, so the task-
handling function is the same as any other functions you create in your
sketch (code in an interrupt handler has restrictions that are discussed in
Chapter 18, but these do not apply to TimeAlarms functions).

Timer intervals can range from one second to several years. (If you need
timer intervals shorter than one second, the Tasker library may be more
suitable.

Tasks are scheduled for specific times designated by the system clock in the
Time library (see Recipe 12.4 for more details). If you change the system
time (e.g., by calling setTime), the trigger times are not adjusted. For
example, if you use setTime to move one hour ahead, all alarms and timers
will occur one hour sooner. In other words, if it’s 1:00 and a task is set to
trigger in two hours (at 3:00), and then you change the current time to 2:00,
the task will trigger in one hour. If the system time is set backward—for
example, to 12:00—the task will trigger in three hours (i.e., when the
system time indicates 3:00). If the time is reset to earlier than the time at
which a task was scheduled, the task will be triggered immediately
(actually, on the next call to Alarm.delay).

This is the expected behavior for alarms—tasks are scheduled for a specific
time of day and will trigger at that time—but the effect on timers may be
less clear. If a timer is scheduled to trigger in five minutes’ time and then
the clock is set back by one hour, that timer will not trigger until one hour
and five minutes have elapsed (even if it is a repeating timer—a repeat does
not get rescheduled until after it triggers).

https://oreil.ly/mD6BF

Up to six alarms and timers can be scheduled to run at the same time. You
can modify the library to enable more tasks to be scheduled; Recipe 16.3
shows you how to do this.

onceOnly alarms and timers are freed when they are triggered, and you can
reschedule these as often as you want so long as there are no more than six
pending at one time. The following code gives one example of how a
timerOnce task can be rescheduled:

Alarm.timerOnce(random(10), randomTimer); // trigger after random

 // number of seconds

void randomTimer(){

 int period = random(2,10); // get a new random period

 Alarm.timerOnce(period, randomTimer); // trigger for another random period

}

12.6 Using a Real-Time Clock
Problem
You want to use the time of day provided by a real-time clock (RTC) such
as the DS1307. External boards usually have battery backup, so the time
will be correct even when Arduino is reset or turned off.

Solution
The simplest way to use an RTC is with a companion library to the Time
library, named DS1307RTC.h. Install the DS1307RTC library using the
Arduino Library Manager (and install the Time library also if not already
installed). This recipe is for the widely used DS1307 and DS1337 RTC
chips:

/*

 * TimeRTC sketch

 * example code illustrating Time library with real-time clock.

 *

 */

#include <TimeLib.h>

#include <Wire.h>

#include <DS1307RTC.h> // a basic DS1307 library that returns time as a

time_t

void setup() {

 Serial.begin(9600);

 while(!Serial); // For Leonardo and 32-bit boards

 setSyncProvider(RTC.get); // the function to get the time from the RTC

 if(timeStatus()!= timeSet)

 Serial.println("Unable to sync with the RTC");

 else

 Serial.println("RTC has set the system time");

}

void loop()

{

 digitalClockDisplay();

 delay(1000);

}

// Pad digits with a leading 0

String padDigits(int digit)

{

 String str = String("0") + digit; // Put a zero in front of the digit

 return str.substring(str.length() - 2); // Remove all but the

 // last two characters

}

void digitalClockDisplay(){

 String timestr = String(hour()) + ":" + padDigits(minute()) +

 ":" + padDigits(second());

 Serial.println(timestr);

 String datestr = String(year()) + "-" + padDigits(month()) +

 "-" + padDigits(day());

 Serial.println(datestr);

}

Most RTC boards for Arduino use the I2C protocol for communicating (see
Chapter 13 for more on I2C). Connect the line marked SCL (or Clock) to
Arduino analog pin 5 and SDA (or Data) to analog pin 4, as shown in
Figure 12-3. (Analog pins 4 and 5 are used for I2C; see Chapter 13). Take
care to ensure that you connect the +5V power line and GND pins correctly.

Connecting a real-time clock

Discussion
The code is similar to other recipes using the Time library, but it gets its
value from the RTC rather than from the serial port or hardcoded value. The
only additional line needed is this:

setSyncProvider(RTC.get); // the function to get the time from the RTC

The setSyncProvider function tells the Time library how it should get
information for setting (and updating) the time. RTC.get is a method within
the RTC library that returns the current time in the format used by the Time
library (Unix time).

Each time Arduino starts, the setup function will call RTC.get to set the
time from the RTC hardware.

Before you can get the correct time from the module, you need to set its
time. Here is a sketch that enables you to set the time on the RTC hardware
—you only need to do this when you first attach the battery to the RTC,
when replacing the battery, or if the time needs to be changed:

/*

 * Set RTC time sketch

 * Set the RTC from the serial port. Simplified version of TimeSerial example

 * from the Time library.

 *

 * Set the time by sending the letter T followed by 10 digits indicating

 * number of seconds since January 1, 1970, for example T1569888000 would

 * represent 12am on October 1, 2019.

 */

#include <TimeLib.h>

#include <Wire.h>

#include <DS1307RTC.h> // a basic DS1307 library that returns time as a

time_t

void setup() {

 Serial.begin(9600);

 setSyncProvider(RTC.get); // the function to get the time from the RTC

 if(timeStatus()!= timeSet)

 Serial.println("Unable to sync with the RTC");

 else

 Serial.println("RTC has set the system time");

}

void loop()

{

 if(Serial.available())

 {

 processSyncMessage();

 }

 digitalClockDisplay();

 delay(1000);

}

// Pad digits with a leading 0

String padDigits(int digit)

{

 String str = String("0") + digit; // Put a zero in front of the digit

 return str.substring(str.length() - 2); // Remove all but the

 // last two characters

}

void digitalClockDisplay(){

 String timestr = String(hour()) + ":" + padDigits(minute()) +

 ":" + padDigits(second());

 Serial.println(timestr);

 String datestr = String(year()) + "-" + padDigits(month()) +

g g(y ()) p g (())

 "-" + padDigits(day());

 Serial.println(datestr);

}

#define TIME_HEADER 'T' // Header tag for serial time sync message

// Parse the time message

void processSyncMessage() {

 time_t pctime = 0;

 if(Serial.find(TIME_HEADER)) {

 pctime = Serial.parseInt();

 setTime(pctime); // Set clock to the time received on serial port

 RTC.set(pctime); // Set the RTC too

 }

}

This sketch is almost the same as the TimeSerial sketch in Recipe 12.4 for
setting the time from the serial port, but here the RTC.set function is also
called when a time message is received from the computer to set the RTC:

setTime(pctime); // Set clock to the time received on serial port

RTC.set(pctime); // Set the RTC too

The RTC chip uses I2C to communicate with Arduino. I2C is explained in
Chapter 13.

With the Adafruit_RTCLib library, you can set the RTC time using the
compilation time of your sketch with
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));. See thisi
Adafruit page for more information.

Some of the more recent Arduino boards have RTC capability built in,
including Zero, MKRZero, and MKR1000, and just need a battery backup
to be connected to maintain the time when the main board is not powered.

See Also
The SparkFun Real Time Clock Module (BOB-00099)

https://oreil.ly/j0yYr
https://oreil.ly/sifTk
https://oreil.ly/zo71v
https://oreil.ly/t_ckx
https://oreil.ly/Aawqq
https://oreil.ly/9vYtm

The Adafruit DS1307 Real Time Clock breakout board (product ID 3296)

https://oreil.ly/CAqr-

Communicating Using I2C and
SPI

13.0 Introduction
The I2C (Inter-Integrated Circuit) and SPI (Serial Peripheral Interface)
standards were created to provide simple ways for digital information to be
transferred between sensors and microcontrollers such as Arduino. Arduino
libraries for both I2C and SPI make it easy for you to use both of these
protocols.

The choice between I2C and SPI is usually determined by the devices (for
example, sensors, actuators, other boards) you want to connect. Some
devices provide both standards, but usually a device or chip supports one or
the other.

I2C has the advantage that it only needs two signal connections (clock and
data) to Arduino, while SPI needs four. With I2C, you also get
acknowledgment that signals have been correctly received. The
disadvantages are that the data rate is slower than SPI and data can only be
traveling in one direction at a time, lowering the data rate even more if two-
way communication is needed. It is also necessary to connect pull-up
resistors to the connections to ensure reliable transmission of signals (see
the introduction to Chapter 5 for more on pull-ups). The exact value of an
I2C pull-up resistor varies depending on a number of factors, such as the
length and type of wire you are using. Generally, you will probably find that
4.7K works best.

If you are connecting to an I2C device that’s on a breakout board or shield,
it’s possible that the manufacturer has included pull-ups. You won’t know
for sure, so you need to check the datasheet. For example, Figure 13-1
shows a detail from Adafruit’s I2C HT16K33 16 x 8 LED driver backpack
breakout board (part number 1427) with the pull-ups clearly visible.
Adafruit includes 10K pullups on all its boards, as it has found that those

values work well in practice. Now, if you connect two such breakout
boards, you will have two 10K resistors in parallel. Applying the parallel
resistance formula of (10K*10K) / (10K+10K), you get 5K, which is
closer to that 4.7K value. If you connect three devices with 10K resistors,
you’re going to get 1/(1/10K + 1/10K + 1/10K) = 3.3K, which is still
within a generally acceptable range for I2C pull-ups. For an excellent
discussion of I2C pull-up resistor values, see Nick Gammon’s article.

Detail of schematic showing I2C pull-up resistors

The advantages of SPI are that it runs at a higher data rate, and it has
separate input and output connections, so it can send and receive at the
same time. It uses one additional line per device to select the active device.
It also uses a signal connection for a clock signal, so SPI requires four
signal connections in all. This can add up to a tangle of wires if you have
many devices to connect.

Most Arduino projects use SPI devices for high data rate applications such
as Ethernet and memory cards, with just a single device attached. I2C is
more typically used with sensors that don’t need to send a lot of data.

This chapter shows how to use I2C and SPI to connect to common devices.
It also shows how to connect two or more Arduino boards together using
I2C for multi-board applications. Before we get into the recipes, let’s take a
look at some background on I2C and SPI, and examine the issues involved
with getting 3.3V devices to work with 5V boards.

I2C

https://oreil.ly/iZKPG

The two connections for the I2C bus are called SCL (clock signal) and SDA
(data transfer). These are available on the Arduino Uno, Zero, and
compatible boards using the SCL and SDA pins (shown back in Recipe
1.2). The Arduino Nano, as well as older Unos, do not have separate pin
headers for SCL and SDA pins, so you’ll use analog pin 5 for SCL and
analog pin 4 for SDA. (On the Mega, use digital pin 20 for SDA and pin 21
for SCL.) If you are using a different board form factor, such as the PJRC
Teensy or Adafruit Feather, consult the documentation and/or datasheet for
the pin numbers.

One device on the I2C bus is considered the master (or primary) device. Its
job is to coordinate the transfer of information between the other devices
(slaves, secondaries) that are attached. There must be only one master, and
in most cases that is the Arduino, controlling the other chips attached to it.
Figure 13-2 depicts an I2C master with multiple secondary I2C devices.

An I2C master that coordinates one or more I2C devices

NOTE
I2C devices need a common ground to communicate. The Arduino GND pin must be connected to
ground on each I2C device.

Slave devices are identified by their address number. Each one must have a
unique address. Some I2C devices have a fixed address (an example is the
nunchuck in Recipe 13.6), while others allow you to configure their address

by setting pins high or low (see Recipe 13.4) or by sending initialization
commands.

TIP
Arduino uses 7-bit values to specify I2C addresses. Some device datasheets use 8-bit address
values. If yours does, divide that value by 2 to get the correct 7-bit value.

I2C and SPI only define how communication takes place between devices
—the messages that need to be sent depend on each individual device and
what it does. You will need to consult the datasheet for your device to
determine what commands are required to get it to function, and what data
is required, or returned.

The Arduino Wire library hides all the low-level functionality for I2C and
enables simple commands to be used to initialize and communicate with
devices.

Migrating Legacy Wire Code to Arduino 1.0 and Later
The Arduino Wire library was changed in release 1.0, and you will need to modify sketches
written for previous releases to compile them in 1.0. The send and receive methods have been
renamed for consistency with other libraries:

Change Wire.send() to Wire.write().

Change Wire.receive() to Wire.read().

You now need to specify the variable type for literal constant arguments to write. For example:

Change Wire.write(0x10) to Wire.write((byte)0x10).

Using 3.3-Volt Devices with 5-Volt Boards
Many I2C devices are intended for 3.3-volt operation and can be damaged
when connected to a 5-volt Arduino board. To connect these devices, you
can convert the voltage levels with a bidirectional logic-level translator

such as SparkFun’s BOB-12009 breakout board or Adafruit part 757 . See
Figure 13-3. The level converter board has a low-voltage (LV) side for 3.3
volts and a high-voltage (HV) side for 5 volts.

Using a 3.3V device with a logic-level translator

For a 3.3V I2C device, connect the LV side as follows:

LV1 (A1 on the Adafruit board) pin to I2C SDA pin of the 3.3V device

LV2 (or A2) pin to I2C SCL pin of the 3.3V device

LV pin to the 3.3V device’s VCC (power in) and a 3.3-volt power source
such as the 3.3V pin on your Arduino board

GND pin to 3.3V device’s GND

Connect the HV (5V device, such as an Arduino Uno) side as follows:

HV1 (or B1) pin to I2C SDA pin of the 5V device

HV2 (or B2) pin to I2C SCL pin of the 5V device

HV pin to 5V device’s power pin, such as the 5V pin on your Arduino

GND pin GND on the 5V device

You can connect multiple I2C devices using one logic-level translator, as in
Figure 13-4.

Connecting multiple 3.3V and 5V I2C devices

For examples that would require a logic-level translator with 5V boards, see
the recipes for the MPU-9250 in Recipes 6.15, 6.16, and 6.17.

SPI
The Arduino IDE includes a library that allows communication with SPI
devices. SPI has separate input (labeled “MOSI”) and output (labeled
“MISO”) lines and a clock line. These three lines are connected to the
respective lines on one or more slaves/secondaries, which are identified by
signaling with the Slave Select (SS) line, sometimes referred to as Chip
Select (CS). Figure 13-5 shows the SPI connections.

Signal connections for SPI master and slaves

The pins to use for hardware SPI are shown in Table 13-1.

Arduino digital pins used for SPI

SPI signal Arduino Uno Arduino Mega

SCLK (clock) 13 52

MISO (data out) 12 50

MOSI (data in) 11 51

SS/CS (slave/chip select) 10 53

Some boards, such as SAMD-based boards like the Arduino Zero, Adafruit
M0 Express, and SparkFun RedBoard Turbo, only expose hardware SPI via
the ICSP header. Some 8-bit boards, such as the Leonardo, also require you
to use the ICSP header. Figure 13-6 shows the connections. On those
boards, you can use any digital pin (often pin 10) for SS/CS. But if you are
using multiple SPI devices, you’ll need to assign a different digital pin for
each device’s SS/CS signal (SPI devices can share SCL, MISO, and MOSI).

SPI connections on the ICSP header

NOTE
You may encounter some libraries that allow you to use a software SPI, which is similar in
principle to software serial (see “Emulate Serial Hardware with Digital Pins”) in that the SPI
hardware is not used, and all the SPI operations are done in software. Like software serial, this
will result in slower performance and may have some other limitations. But, if you are unable to
use the hardware SPI pins for some reason, it can be very useful to have software SPI as an
alternative. You can often tell when software SPI is available, because the library will have two
forms of the constructor: one in which you pass only the SS/CS pin number (because the other
three pins are determined by which Arduino-compatible board you use), and another in which you
pass all four pins.

In some cases, such as the ST77xx color LCD (see Recipe 11.10), there is an additional pin,
TFT_DC, to toggle between data and command mode (the ST77xx also allows you to specify a
reset pin in the constructor, but it is not part of the SPI protocol). So the hardware SPI version of
the constructor is:

Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

And the software SPI version looks like this:

Adafruit_ST7735(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK,

TFT_RST);

See Also
This applications note comparing I2C to SPI

The Arduino Wire library reference

The Arduino SPI library reference

13.1 Connecting Multiple I2C Devices
Problem
You want to connect more than one I2C device.

Solution

https://oreil.ly/PJ0kz
https://oreil.ly/eQ9UY
https://oreil.ly/aRJrd

The following sketch uses an air quality sensor to measure the total volatile
organic compound concentration (TVOC) in parts per billion and displays it
on a four-digit LED display. You must connect both the air quality sensor
and the LED display controller over I2C. Figure 13-7 shows the wiring for
those two I2C peripherals, as well as a four-digit LED segment display
that’s connected to the LED controller:

/*

 * Two I2C Device sketch

 * Reads an air quality sensor and displays the VOC

 * concentration on an LED display.

 */

#include <Adafruit_CCS811.h>

#include <Adafruit_GFX.h>

#include <Adafruit_LEDBackpack.h>

// Create objects for the sensor and display.

Adafruit_CCS811 ccs;

Adafruit_7segment matrix = Adafruit_7segment();

void setup()

{

 Serial.begin(9600);

 if(!ccs.begin())

 {

 Serial.println("Could not start sensor.");

 while(1); // halt

 }

 while(!ccs.available()); // Wait until the sensor is ready

 matrix.begin(0x70); // Start the matrix

}

void loop()

{

 if(ccs.available())

 {

 if(!ccs.readData())

 {

 int tvoc = ccs.getTVOC(); // Get the VOC concentration

 matrix.println(tvoc); // Write the value

 matrix.writeDisplay(); // Update the display

 }

 }

 delay(500);

}

Connections for air quality sensor and LED display

Discussion
The Solution uses two I2C components: the ams CCS811 air quality sensor,
and the Holtek HT16K33 LED controller driver. Both of them are available
on breakout boards from a variety of sources. Adafruit offers the air quality
sensor as part number 3566 and the LED controller as part number 1427.
SparkFun offers the air quality sensor as part number SEN-14193. The
Solution uses the Adafruit board design and the Adafruit libraries (Adafruit
CCS811 library and Adafruit LED Backpack library). You can install both
libraries with the Arduino Library Manager.

When connecting more than one I2C device, you wire all the SDA lines
together and all the SCL lines together. Each device connects to power and
should have 0.1 uF decoupling capacitors unless they are integrated into the
breakout board (check the datasheet or schematic for the breakout board),
as is the case with the sensor and LED controller driver. The GND lines

must be connected together, even if the devices use separate power supplies
(e.g., batteries).

WARNING
If the breakout boards include the required pull-up resistors on the I2C lines (SCL and SDA), you
may not need to include them in your circuit (see Recipe 13.0). The Adafruit boards do include
these, but if you are using another brand, you should check the datasheet or schematic.

The sketch initializes both devices in setup and repeatedly reads the TVOC
concentration inside the loop, displaying the value on the LED display each
time it gets a reading. Your LED display may have different pins, so be sure
to consult the datasheet and adjust the wiring accordingly.

Both boards are 5V tolerant, so you can use them with 5V boards. If you
use the CCS811 with a 3.3V board, you must power it with 3.3V instead of
5V, otherwise the voltage on its I2C pins will be too high for your board. If
you want to use the HT16K33 with a 3.3V board, it gets a little more
complicated because, according to its spec, that board needs at least 4.5V to
run. You could use a level converter with it (see “Using 3.3-Volt Devices
with 5-Volt Boards”) with your 3.3V Arduino-compatible board as the low-
voltage (LV) side, but some people have reported that it runs OK when
powered at 3.3V, so you could try that first.

The HT16K33 expects a common cathode LED. The pinouts in Figure 13-7
are for a common 4-digit 7-segment display. A0 through A15 on the
HT16K33 are used to control the seven segments as well as the decimal
point. This sketch only uses A0 through A7. If you were using an LED
matrix display, you would use more of the pins. Pins C0 through C7 select
which digit to address. The HT16K33 rapidly switches between displaying
each digit and relies on persistence of vision to make it appear that all four
digits are illuminated at once.

Some of these displays have the ability to display a colon between each pair
of digits, which is useful when you want to create a digital clock. The

Adafruit LED Backpack library assumes that this is connected to C4 (pin
4). But this sketch does not use it, so pin C4 is unused.

Under the hood, the Adafruit libraries use the Wire library to interact with
the devices. For example, you could use matrix.setBrightness(1); to
set the display to its lowest brightness (15 is the maximum). The library
would issue these commands to accomplish that (0x70 is the I2C address of
the HT16K33):

#define HT16K33_CMD_BRIGHTNESS 0xE0

Wire.beginTransmission(0x70);

Wire.write(HT16K33_CMD_BRIGHTNESS | 1);

Wire.endTransmission();

And when the sketch calls ccs.readData() followed by ccs.getTVOC(),
the driver does something like the following (0x5A is the I2C address of the
CCS811). The TVOC reading is formed by combining the third and fourth
byte (remember, C arrays start at zero) into a word value:

uint8_t buf[8];

 Wire.beginTransmission(0x5A);

 Wire.write(0x02); // Write to register 0x02

 Wire.endTransmission();

 Wire.requestFrom(0x5A, 8); // Request 8 bytes from the CCS811

 for(int i=0; i < 8; i++)

 {

 buf[i] = Wire.read();

 }

 int tvoc = word(buf[2], buf[3]);

See Also
Recipe 7.11

The datasheet for the HT16K33

The datasheet for the CCS811

https://oreil.ly/yOFJ8
https://oreil.ly/VMU-G

13.2 Connecting Multiple SPI Devices
Problem
You want to connect more than one SPI device.

Solution
This following sketch uses an SD card reader to load bitmap images off of
an SD card. Those images are displayed on a TFT display. Both of them are
SPI devices. Figure 13-8 shows the connections:

/*

 * Two SPI Device sketch

 * Loads all the bitmaps on the attached SD card

 * and displays them on a TFT screen.

 */

#include <Adafruit_GFX.h>

#include <Adafruit_ILI9341.h>

#include <SdFat.h>

#include <Adafruit_ImageReader.h>

#define SD_CS 4 // Chip select for SD reader

#define TFT_CS 10 // Chip select for TFT

#define TFT_DC 9 // Data/command pin for TFT

#define TFT_RST 8 // Reset pin for TFT

// Create the objects for each of the SPI devices

SdFat SD;

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC, TFT_RST);

SdFile root; // Root directory of SD card

Adafruit_ImageReader reader(SD); // Object to load and display images

void setup(void)

{

 Serial.begin(9600);

 if(!SD.begin(SD_CS, SD_SCK_MHZ(25))) // Start the SD card reader at 25 MHz

 {

 Serial.println("Could not initialize SD card");

 while(1); // halt

 }

 tft.begin(); // Initialize the TFT

 if (!root.open("/"))

 {

 Serial.println("Could not read SD card directory");

 while(1); // halt

 }

}

void loop()

{

 ImageReturnCode rc; // Return code from image operations

 SdFile file; // Current file

 char filename[256]; // Buffer for filename

 while (file.openNext(&root, O_RDONLY)) // Find the next file on the SD card

 {

 file.getName(filename, sizeof(filename)/ sizeof(filename[0]));

 if(isBMP(filename)) // If it's a BMP, display it on the TFT

 {

 tft.fillScreen(0);

 rc = reader.drawBMP(filename, tft, 0, 0);

 delay(2000); // Pause

 }

 file.close();

 }

 root.rewind(); // Go back to the first file in the root directory

}

// Determines whether a file is a bitmap (BMP) file

int isBMP(char fname[])

{

 String fn = String(fname);

 fn.toLowerCase();

 return fn.endsWith("bmp");

}

SPI connections for SD card reader and LCD panel

Discussion
The Solution uses an ILI9341-based TFT LCD display and an SD card
reader breakout board, both of which are SPI devices. You can find both of
these devices from a variety of vendors. In some cases, such as with
Adafruit part number 1480, a microSD card reader is included on the TFT
display breakout. In that case, you’ll have fewer connections to make
because the LCD and SD card breakout share the MISO, MOSI, SCK,
GND, and VIN pins.

The solution uses several libraries that you’ll need to install. Install the
Adafruit GFX, Adafruit ILI9341, and Adafruit ImageReader libraries
through the Arduino Library Manager. Although the Arduino IDE includes
its own SD card library, the Adafruit ImageReader library, which is
responsible for loading images from the card, uses a modified version of
Bill Greiman’s SdFat library, which you can find by searching for “SdFat -
Adafruit Fork” in the Library Manager.

NOTE
SD card readers come in a variety of forms. The simplest, such as SparkFun BOB-12941, are an
SD card connector soldered to a breakout board. That’s possible because SD cards themselves can
operate as SPI devices (you could, in a pinch, solder wires directly to the SD card). That type of
reader can only operate at 3.3V. Some SD card readers, such as Adafruit part number 254, include
a level shifter so you can power them with 5V and connect 5V logic pins to them.

With I2C, each device has a unique address. With SPI, each device has a
chip select (CS) line that the library uses to signal that it wants to talk to
that device. In the sketch, pin 4 is used as the chip select line for the SD
card, and pin 10 is used for the TFT LCD display. There’s also a
data/command pin that the Adafruit_ILI9341 library uses to talk to the
display.

The sketch sets up a number of objects: one to represent the SD card, one
for the TFT display, another to represent the root directory of the filesystem
on the card, and an object that loads and displays images. In the setup
function, the sketch initializes the SD card reader and TFT display, then
opens the root directory for reading. Within loop, the sketch calls
openNext() to get the next file, and uses the isBMP() function to decide
whether the file is a bitmap. If it is, the sketch displays the bitmap on the
screen before pausing and moving to the next.

The bitmap images must be saved as uncompressed BMP files, 24-bit color,
or the sketch will be unable to load the images.

See Also
Recipe 11.9; Recipe 11.10; Recipe 11.11

13.3 Working with an I2C Integrated Circuit
Problem
You want to use an I2C peripheral that comes in an integrated circuit
package, such as a serial EEPROM. You would use such an EEPROM

when you need more permanent data storage than Arduino has onboard, and
you want to use an external memory chip to increase the capacity.

Solution
This recipe uses the 24LC128 I2C-enabled serial EEPROM from Microchip
Technology. Figure 13-9 shows the connections. If you are using a 3.3V
board, connect Vcc to 3.3V instead of 5V to avoid damaging your board.

I2C EEPROM connections

This recipe provides functionality similar to the Arduino EEPROM library
(see Recipe 18.1), but it uses an external EEPROM connected using I2C to
provide greatly increased storage capacity:

/*

 * I2C EEPROM sketch

 * Reads data from and writes data to an 24LC128

 */

#include <Wire.h>

const byte EEPROM_ID = 0x50; // I2C address for 24LC128 EEPROM

// first human-readable ASCII character '!' is number 33:

int thisByte = 33;

void setup()

{

 Serial.begin(9600);

 while(!Serial); // Required on Leonardo and most ARM-based boards

 Wire.begin();

 Serial.println("Writing 1024 bytes to EEPROM");

 for (int i=0; i < 1024; i++)

 {

 I2CEEPROM_Write(i, thisByte);

 // go on to the next character

 thisByte++;

 if (thisByte == 126) // you could also use if (thisByte == '~')

 thisByte = 33; // start over

 }

 Serial.println("Reading 1024 bytes from EEPROM");

 int thisByte = 33;

 for (int i=0; i < 1024; i++)

 {

 char c = I2CEEPROM_Read(i);

 if(c != thisByte)

 {

 Serial.println("read error");

 break;

 }

 else

 {

 Serial.print(c);

 }

 thisByte++;

 if(thisByte == 126)

 {

 Serial.println();

 thisByte = 33; // start over on a new line

 }

 }

 Serial.println();

 Serial.println("Done.");

}

void loop()

{

{

}

// This function is similar to Arduino's EEPROM.write()

void I2CEEPROM_Write(unsigned int address, byte data)

{

 Wire.beginTransmission(EEPROM_ID);

 Wire.write((int)highByte(address));

 Wire.write((int)lowByte(address));

 Wire.write(data);

 Wire.endTransmission();

 delay(5); // wait for the I2C EEPROM to complete the write cycle

}

// This function is similar to EEPROM.read()

byte I2CEEPROM_Read(unsigned int address)

{

 byte data;

 Wire.beginTransmission(EEPROM_ID);

 Wire.write((int)highByte(address));

 Wire.write((int)lowByte(address));

 Wire.endTransmission();

 Wire.requestFrom(EEPROM_ID,(byte)1);

 while(Wire.available() == 0) // wait for data

 ;

 data = Wire.read();

 return data;

}

Discussion
This recipe shows the 24LC128, which has 128K of memory; there are
similar chips with higher and lower capacities (the Microchip link in this
recipe’s “See Also” section has a cross-reference). The chip’s address is set
using the three pins marked A0 through A2 and is in the range 0x50 to
0x57, as shown in Table 13-2.

Address values for
24LC128

A0 A1 A2 Address

A0 A1 A2 Address

GND GND GND 0x50

+5V GND GND 0x51

GND +5V GND 0x52

+5V +5V GND 0x53

GND GND +5V 0x54

+5V GND +5V 0x55

+5V +5V GND 0x56

+5V +5V +5V 0x57

Use of the Wire library in this recipe is similar to its use in other recipes in
this chapter, so read through those for an explanation of the code that
initializes and requests data from an I2C device.

The write and read operations that are specific to the EEPROM are
contained in the functions i2cEEPROM_Write and i2cEEPROM_Read. These
operations start with a Wire.beginTransmission to the device’s I2C
address. This is followed by a 2-byte value indicating the memory location
for the read or write operation. In the write function, the address is followed
by the data to be written—in this example, one byte is written to the
memory location.

The read operation sends a memory location to the EEPROM, which is
followed by Wire.requestFrom(EEPROM_ID,(byte)1);. This returns one
byte of data from the memory at the address just set.

If you need to speed up writes, you can replace the 5 ms delay with a status
check to determine if the EEPROM is ready to write a new byte. See the
“Acknowledge Polling” technique described in Section 7 of the datasheet.
You can also write data in pages of 64 bytes rather than individually; details
are in Section 6 of the datasheet.

The chip remembers the address it is given and will move to the next
sequential address each time a read or write is performed. If you are reading
more than a single byte, you can set the start address and then perform
multiple requests and receives.

TIP
The Wire library can read or write up to 32 bytes in a single request. Attempting to read or write
more than this can result in bytes being discarded.

The pin marked WP is for setting write protection. It is connected to ground
in the circuit here to enable the Arduino to write to memory. Connecting it
to 5V prevents any writes from taking place. This could be used to write
persistent data to memory and then prevent it from being overwritten
accidentally.

See Also
The 24LC128 datasheet

If you need to speed up writes, you can replace the 5 ms delay with a status
check to determine if the EEPROM is ready to write a new byte. See the
“Acknowledge Polling” technique described in Section 7 of the datasheet.

A cross-reference of similar I2C EEPROMs with a wide range of capacities

A shield is available that combines reading temperature, storing in
EEPROM, and 7-segment display.

13.4 Increase I/O with an I2C Port Expander
Problem
You want to use more input/output ports than your board provides.

Solution

https://oreil.ly/yHXAc
https://oreil.ly/3aLyo
https://oreil.ly/fteoP

You can use an external port expander, such as the PCF8574 or PCF8574A,
which have eight input/output pins that can be controlled using I2C. The
sketch creates a bar graph with eight LEDs. Figure 13-10 shows the
connections.

PCF8574/A port expander driving eight LEDs

WARNING
If you are using a 3.3V board, connect Vcc to 3.3V instead of 5V to avoid damaging your board.

The sketch has the same functionality as described in Recipe 7.6, but it uses
the I2C port expander to drive the LEDs so that only two pins are required:

/*

 * I2C bargraph sketch

 * Uses I2C port to drive a bar graph

 * Turns on a series of LEDs proportional to a value of an analog sensor.

 * see Recipe 7.6

 */

#include <Wire.h>

const int address = 0x20; // PCF8574 address; use 0x38 for PCF8574/A

const int NbrLEDs = 8;

const int analogInPin = A0; // Analog input pin connected

 // to a variable resistor

int sensorValue = 0; // value read from the sensor

int ledLevel = 0; // sensor value converted into LED 'bars'

int ledBits = 0; // bits for each LED will be set to 1 to turn on LED

void setup()

{

 Wire.begin(); // set up Arduino I2C support

}

void loop()

{

 sensorValue = analogRead(analogInPin); // read the analog value

 ledLevel = map(sensorValue, 0, 1023, 0, NbrLEDs); // map to number of LEDs

 for (int led = 0; led < NbrLEDs; led++)

 {

 Wire.beginTransmission(address);

 if (led < ledLevel)

 {

 Wire.write(~ (1 << led));

 }

 else

 {

 Wire.write(0xFF); // Turn off all LEDs

 }

 Wire.endTransmission(); // send the value to I2C

 }

}

Discussion
The resistors should be 220 ohms or more (see Chapter 7 for information on
selecting resistors).

The sketch reads a value from analogRead, then maps it to a value
(ledLevel) between zero and the number of LEDs. Then the sketch goes
into a for loop that iterates over each LED. If the LED’s number is less
than ledLevel, then the sketch illuminates that LED. The command to
activate a pin on the PCF8574/A is a bitfield: 0b00000001 (1) would take

pin 0 high, and 0b11111111 (255) would take all the pins high. However,
you don’t want to take a pin high to illuminate an LED with the
PCF8574/A!

The PCF8574/A has a lower capacity for driving LEDs than Arduino. Each
pin can only provide (source) a miniscule amount of current, far less than
would be needed to power an LED. However, each pin can receive (sink) up
to 25 mA. This means that you must use inverted logic, similar to the
INPUT_PULLUP mode (see Recipe 2.4), with the PCF8574/A. This is why
each LED is tied to +5V/+3.3V instead of to GND: when one of the pins
goes LOW, current is sourced from the positive power supply, and the pin
sinks that current. This is why the sketch uses the boolean Not operator, ~,
to invert the value (so 0b00000001, or 1 decimal, becomes 0b11111110, or
254 decimal).

Further, there is an additional limit: the PCF8574/A cannot sink more than
80 mA at one time. So if you were to turn all the LEDs on (0b00000000), it
would probably work, but you’d exceed the limits of the chip, shortening its
life. This is why the sketch only turns on one LED at a time by using
boolean shift left to calculate a bitfield where only that pin is enabled, and
then inverting it. You would turn on pin 0 with 0b11111110, and pin 3 with
0b11110111. This happens rapidly enough that, thanks to persistence of
vision, it appears that multiple lights are illuminated at once. Although it is
not strictly necessary to issue the Wire.write(0xFF); when encountering
an LED that is not illuminated, doing so ensures that the sketch always
performs the same number of commands, which keeps the LEDs at a
consistent brightness regardless of how many are illuminated.

If you want to minimize flicker while still staying within the limits of the
PCF8574/A, you can illuminate four LEDs at a time:

int bitField = 0;

 for (int led = 0; led < NbrLEDs; led++)

 {

 if (led < ledLevel)

 {

 bitField |= (1 << led);

 }

 if ((led + 1) % 4 == 0) // Send a command every four pins

 {

 Wire.beginTransmission(address);

 Wire.write(~bitField);

 Wire.endTransmission(); // send the value to I2C

 bitField = 0; // clear the bitfield

 }

 }

You can change the address by changing the connections of the pins marked
A0, A1, and A2, as shown in Table 13-3. If you are using a PCF8574/A
breakout board, it should have jumpers or solder pads for selecting the
address.

Address values for PCF8574/A

A0 A1 A2 PCF8574A address PCF8574 address

GND GND GND 0x38 0x20

+5V GND GND 0x39 0x21

GND +5V GND 0x3A 0x22

+5V +5V GND 0x3B 0x23

GND GND +5V 0x3C 0x24

+5V GND +5V 0x3D 0x25

+5V +5V GND 0x3E 0x26

+5V +5V +5V 0x3F 0x27

To use the port expander for input, read a byte from the expander as
follows:

Wire.requestFrom(address, 1);

 if(Wire.available())

 {

 data = Wire.receive();

 Serial.println(data,BIN);

 }

See Also
The PCF8574/A datasheet

If you need a solution that can handle more current, see Recipe 13.1.

13.5 Communicating Between Two or More
Arduino Boards
Problem
You want to have two or more Arduino boards working together. You may
want to increase the I/O capability or perform more processing than can be
achieved on a single board. You can use I2C to pass data between boards so
that they can share the workload.

Solution
The two sketches in this recipe show how I2C can be used as a
communications link between two or more Arduino boards. Figure 13-11
shows the connections.

Arduino as I2C master and slave/secondary

https://oreil.ly/WjEFj

The master sends characters received on the serial port to an Arduino
secondary using I2C:

/*

 * I2C Master sketch

 * Echo Serial data to an I2C secondary

 */

#include <Wire.h>

const int address = 4; // the address to be used by the communicating devices

void setup()

{

 Wire.begin();

 Serial.begin(9600);

}

void loop()

{

 char c;

 if(Serial.available() > 0)

 {

 c = Serial.read();

 // send the data

 Wire.beginTransmission(address); // transmit to device

 Wire.write(c);

 Wire.endTransmission();

 }

}

The other Arduino prints characters received over I2C to its serial port:

/*

 * I2C Secondary sketch

 * monitors I2C requests and echoes these to the serial port

 */

#include <Wire.h>

const int address = 4; // the address to be used by the communicating devices

void setup()

{

 Serial.begin(9600);

 Wire.begin(address); // join I2C bus using this address

 Wire.onReceive(receiveEvent); // register event to handle requests

}

void loop()

{

 // nothing here--all the work is done in receiveEvent

}

void receiveEvent(int howMany)

{

 while(Wire.available() > 0)

 {

 char c = Wire.read(); // receive byte as a character

 Serial.write(c); // echo

 }

}

Discussion
This chapter focused on Arduino as the I2C master accessing various I2C
secondary devices. Here a second Arduino acts as an I2C secondary that
responds to requests from another Arduino. Techniques covered in Chapter
4 for sending bytes of data can be applied here. For example, you can send
data using the print method.

The following sketch sends its output over I2C using Wire.println. Using
this with the I2C secondary sketch shown previously enables you to print
data from the master without using the serial port (the secondary’s serial
port is used to display the output):

/*

 * I2C Master w/print sketch

 * Sends sensor data to an I2C secondary using print

 */

#include <Wire.h>

const int address = 4; // the address to be used by the communicating

devices

const int sensorPin = A0; // select the analog input pin for the sensor

int val; // variable to store the sensor value

void setup()

{

 Wire.begin();

}

void loop()

{

 val = analogRead(sensorPin); // read the voltage on the pot

 // (val ranges from 0 to 1023)

 Wire.beginTransmission(address); // transmit to device

 Wire.println(val);

 Wire.endTransmission();

 delay(1000);

}

The next example handles multiple values as described in Recipe 4.5 over
I2C instead of serial.

This sketch will send the values of the first three analog pins in a text
message of the form H3, v0, v1, v2, where H is a character indicating the
start of the message followed by the number 3, which indicates that in this
example there will be three values in the message. v0, v1, v2 will be the
numeric values of the three analog inputs:

/*

 * I2C Master multiple sketch

 * Sends multiple sensor data to an I2C secondary using print

 */

#include <Wire.h>

const int address = 4; // address for the communicating devices

const int firstSensorPin = A0; // first input pin of sequence

const int nbrSensors = 3; // three sequential pins will be used

int val; // variable to store the sensor value

void setup()

{

 Wire.begin();

 Serial.begin(9600);

}

void loop()

{

 Wire.beginTransmission(address); // transmit to device

 Wire.print('H'); // header indicating start of a message

 Wire.print(nbrSensors);

 for (int i = 0; i < nbrSensors; i++) {

 val = analogRead(firstSensorPin + 1); // read the sensor

 Wire.print(','); // comma separator

 Wire.print(val);

 }

 Wire.println(); // end of message

 Wire.endTransmission();

 delay(100);

}

This sketch handles the messages sent by the previous sketch and prints the
values to the Serial Monitor:

/*

 * I2C Secondary multiple sketch

 * monitors I2C requests and echoes these to the serial port

 */

#include <Wire.h>

const int address = 4; //address used by the communicating devices

void setup()

{

 Serial.begin(9600);

 Wire.begin(address); // join I2C bus using this address

 Wire.onReceive(receiveEvent); // register event to handle requests

}

void loop()

{

 // nothing here, all the work is done in receiveEvent

}

void receiveEvent(int howMany)

{

 while(Wire.available() > 0)

 {

 char c = Wire.read(); // receive byte as a character

 if(c == 'H') {

 // here if start of message

 int nbrSensors = Wire.parseInt();

 if(nbrSensors > 0) {

 for(int i=0; i < nbrSensors; i++) {

 int val = Wire.parseInt();

 Serial.print(val); Serial.print(" ");

 }

 Serial.println();

 }

 }

 }

}

See Also
Chapter 4 has more information on using the Arduino print functionality.

13.6 Using the Wii Nunchuck Accelerometer
Problem
You want to connect a Wii nunchuck to your Arduino as a convenient and
fun way to use accelerometer input. The nunchuck is a popular low-cost
game device that can be used to indicate the orientation of the device by
measuring the effects of gravity. You can use either an original Wii
nunchuck, or find a third-party clone (which will usually be much cheaper).

Solution
The nunchuck uses a proprietary plug. If you don’t need to use your
nunchuck with your Wii again, you can cut the lead to connect it.
Alternatively, it is possible to use a small piece of matrix board to make the
connections in the plug if you are careful (the pinouts are shown in Figure
13-12) or you can buy an adapter such as the NunChucky Wii Nunchuck
I2C Breakout from Solarbotics (part number 31040).

Connecting a nunchuck to Arduino

NOTE
Adapters like the NunChucky assume you are using an Arduino board where SDA is available on
pin A4 and SCL is available on pin A5. This is true for Arduino Uno and most boards based on
the ATmega328 (and earlier chips such as the ATmega168). But it is not true for ARM-based
Arduino boards, the Leonardo, and many others. If you are using such a board, or if you are using
a board with a layout different than the Uno, you should wire the adapter’s SDA and SCL pins to
the corresponding pins on your board, and provide power and ground from the board’s 3.3V and
GND pins. If you do this, you can remove the lines of code that set gndPin LOW and vccPin HIGH.

Here’s the Arduino sketch that sends movement data to a Processing sketch:

/*

 * nunchuck_lines sketch

 * sends data to Processing to draw line that follows nunchuck movement

 */

#include <Wire.h> // initialize wire

const int vccPin = A3; // +v provided by pin 17

const int gndPin = A2; // gnd provided by pin 16

const int dataLength = 6; // number of bytes to request

static byte rawData[dataLength]; // array to store nunchuck data

enum nunchuckItems { joyX, joyY, accelX, accelY, accelZ, btnZ, btnC };

void setup() {

 pinMode(gndPin, OUTPUT); // set power pins to the correct state

 pinMode(vccPin, OUTPUT);

 digitalWrite(gndPin, LOW);

 digitalWrite(vccPin, HIGH);

 delay(100); // wait for things to stabilize

 Serial.begin(9600);

 nunchuckInit();

}

void loop(){

 nunchuckRead();

 int acceleration = getValue(accelX);

 if((acceleration >= 75) && (acceleration <= 185))

 {

 //map returns a value from 0 to 63 for values from 75 to 185

 byte x = map(acceleration, 75, 185, 0, 63);

 Serial.write(x);

 delay(20); // the time in milliseconds between redraws

 }

}

void nunchuckInit(){

 Wire.begin(); // join i2c bus as master

 Wire.beginTransmission(0x52);// transmit to device 0x52

 Wire.write((byte)0x40); // sends memory address

 Wire.write((byte)0x00); // sends a zero.

 Wire.endTransmission(); // stop transmitting

}

// Send a request for data to the nunchuck

static void nunchuckRequest(){

 Wire.beginTransmission(0x52);// transmit to device 0x52

 Wire.write((byte)0x00); // sends one byte

 Wire.endTransmission(); // stop transmitting

}

// Receive data back from the nunchuck,

// returns true if read successful, else false

// ,

bool nunchuckRead(){

 int cnt=0;

 Wire.requestFrom (0x52, dataLength); // request data from nunchuck

 while (Wire.available ()) {

 rawData[cnt] = nunchuckDecode(Wire.read());

 cnt++;

 }

 nunchuckRequest(); // send request for next data payload

 if (cnt >= dataLength)

 return true; // success if all 6 bytes received

 else

 return false; //failure

}

// Encode data to format that most wiimote drivers accept

static char nunchuckDecode (byte x) {

 return (x ^ 0x17) + 0x17;

}

int getValue(int item){

 if (item <= accelZ)

 return (int)rawData[item];

 else if (item == btnZ)

 return bitRead(rawData[5], 0) ? 0: 1;

 else if (item == btnC)

 return bitRead(rawData[5], 1) ? 0: 1;

}

Discussion
I2C is often used in commercial products such as the nunchuck for
communication between devices. There are no official datasheets for this
device, but the nunchuck signaling was analyzed (reverse engineered) to
determine the commands needed to communicate with it.

You can use the following Processing sketch to display a line that follows
the nunchuck movement, as shown in Figure 13-13 (see Chapter 4 for more
on using Processing to receive Arduino serial data, and also for advice on
setting up and using Processing with Arduino):

// Processing sketch to draw line that follows nunchuck data

import processing.serial.*;

Serial myPort; // Create object from Serial class

public static final short portIndex = 1;

void setup()

{

 size(200, 200);

 // Open whatever port is the one you're using - See Chapter 4

 myPort = new Serial(this,Serial.list()[portIndex], 9600);

}

void draw()

{

 if (myPort.available() > 0) { // If data is available,

 int y = myPort.read(); // read it and store it in val

 background(255); // Set background to white

 line(0,63-y,127,y); // draw the line

 }

}

Nunchuck movement represented by tilted line in Processing

The sketch includes the Wire library for I2C communication and defines the
pins used to power the nunchuck:

#include <Wire.h> // initialize wire

const int vccPin = A3; // +v (vcc) provided by pin 17

const int gndPin = A2; // gnd provided by pin 16

Wire.h is the I2C library that is included with the Arduino release. A3 is
analog pin 3 (digital pin 17), and A2 is analog pin 2 (digital pin 16); these
pins provide power to the nunchuck:

enum nunchuckItems { joyX, joyY, accelX, accelY, accelZ, btnZ, btnC };

enum is the construct to create an enumerated list of constants, in this case a
list of the sensor values returned from the nunchuck. These constants are
used to identify requests for one of the nunchuck sensor values.

setup initializes the pins used to power the nunchuck by setting the vccPin
HIGH and gndPin LOW. This is only needed if the nunchuck adapter is
providing the power source. Using digital pins as a power source is not
usually recommended, unless you are certain, as with the nunchuck, that the
device being powered will not exceed a pin’s maximum current capability
(40 mA; see Chapter 5).

The function nunchuckInit establishes I2C communication with the
nunchuck.

I2C communication starts with Wire.begin(). In this example, Arduino as
the master is responsible for initializing the desired slave/secondary device,
the nunchuck, on address 0x52.

The following line tells the Wire library to prepare to send a message to the
device at hexadecimal address 52 (0x52):

beginTransmission(0x52);

TIP
I2C documentation typically shows addresses with hexadecimal values, so it’s convenient to use
this notation in your sketch.

Wire.send puts the given values into a buffer within the Wire library where
data is stored until Wire.endTransmission is called to actually do the

sending.

nunchuckRequest and nunchuckRead are used to request and read data
from the nunchuck.

The Wire library requestFrom function is used to get six bytes of data from
device 0x52 (the nunchuck).

The nunchuck returns its data using six bytes as follows:

Byte number Description

Byte 1 x-axis analog joystick value

Byte 2 y-axis analog joystick value

Byte 3 x-axis acceleration value

Byte 4 y-axis acceleration value

Byte 5 z-axis acceleration value

Byte 6 Button states and least significant bits of acceleration

Wire.available works like Serial.available (see Chapter 4) to indicate
how many bytes have been received, but over the I2C interface rather than
the serial interface. If data is available, it is read using Wire.read and then
decoded using nunchuckDecode. Decoding is required to convert the values
sent into numbers that are usable by your sketch, and these are stored in a
buffer (named rawData). A request is sent for the next six bytes of data so
that it will be ready and waiting for the next call to get data:

int acceleration = getValue(accelX);

The function getValue is passed one of the constants from the enumerated
list of sensors, in this case the item accelX for acceleration in the x-axis.

You can send additional fields by separating them using commas (see
Recipe 4.4); here is the revised loop function to achieve this:

void loop(){

 nunchuckRead();

 Serial.print("H,"); // header

 for(int i=0; i < 3; i++)

 {

 Serial.print(getValue(accelX+ i), DEC);

 if(i > 2)

 Serial.write(',');

 else

 Serial.write('\n') ;

 }

 delay(20); // the time in milliseconds between redraws

}

See Also
See Recipe 16.5 for a library for interfacing with the nunchuck.

See the Discussion of Recipe 4.4 for a Processing sketch that displays a
real-time bar chart showing each of the nunchuck values.

Simple Wireless
Communication

14.0 Introduction
Arduino’s ability to interact with the world is wonderful, but sometimes you
might want to communicate with your Arduino from a distance, without
wires, and without the overhead of a full TCP/IP network connection. This
chapter covers simple wireless modules for applications where low cost is
the primary requirement as well as feature-rich options such as the versatile
XBee wireless modules and Bluetooth.

Simple packet radio modules like the RFM69HCW allow secure, reliable
communication between devices. XBee provides flexible wireless
capability to the Arduino, but that very flexibility can be confusing. This
chapter provides examples ranging from simple “wireless serial port
replacements” to mesh networks connecting multiple boards to multiple
sensors.

Bluetooth Classic and Bluetooth Low Energy are popular options for
interfacing with computers and mobile phones. Because those devices
typically have Bluetooth these days, it offers a convenient way to make a
wireless connection without needing any additional special hardware on
your phone or computer.

14.1 Sending Messages Using Low-Cost
Wireless Modules
Problem
You want to transmit data between two Arduino boards using inexpensive
hardware.

Solution
This recipe uses simple transmit and receive modules based on the
RFM69HCW module, which transmits and receives in an unlicensed
portion of RF spectrum called the ISM (Industrial, Scientific, and Medical)
band. Depending on where you plan to use the modules, you must select the
appropriate frequency. The 433 MHz modules are available on breakout
boards (SparkFun WRL-12823, Adafruit 3071), and are intended for use in
Region 1 (Europe, Africa, former Soviet Union, Mongolia, and the portion
of the Middle East that lies west of the Persian Gulf). The 915 MHz
modules (Adafruit 3070 and SparkFun WRL-12775 breakout boards) are
intended for use in Region 2 (the Americas, Greenland, and a portion of the
eastern Pacific Islands).

You can also obtain the bare modules, but the breakout boards include
circuitry to make it easier to hook up. The Adafruit boards include level
shifters so you can use them with either 3.3V or 5V logic (but if you use a
3.3V board, be sure to connect VIN to 3.3V instead of 5V. You must
configure each module to use the same frequency. Wire two breakout
boards as shown in Figure 14-1.

Wiring an RFM69HCW breakout board

The transmit sketch sends a short text message to the receive sketch, which
echoes the text to the Serial Monitor and sends a reply.

The transmit and receive sketches use the RadioHead library written by
Mike McCauley to provide a generalized interface to a variety of wireless
hardware. Although you can download the library, both Adafruit and
SparkFun have made their own customized versions available that will
support their hardware slightly better. Download the Adafruit library and
the SparkFun library (see Recipe 16.2). If you are using a generic module,

https://oreil.ly/3kZca
https://oreil.ly/cRcdE
https://oreil.ly/UmESI

or a different radio that’s supported by RadioHead, you should use Mike
McCauley’s original version unless the module vendor offers a customized
version:

/*

 * RFM69HCW transmit sketch

 * Send a message to another module and look for a reply.

 */

#include <SPI.h>

#include <RH_RF69.h>

#include <RHReliableDatagram.h>

#define MY_ADDR 2 // Address of this node

#define DEST_ADDR 1 // The other node

#define RF69_FREQ 915.0 // Set to a supported frequency

// Define the radio driver

#define RFM69_INT 3

#define RFM69_CS 4

#define RFM69_RST 2

RH_RF69 rf69(RFM69_CS, RFM69_INT);

// This object manages message delivery

RHReliableDatagram rf69_manager(rf69, MY_ADDR);

void setup()

{

 Serial.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT);

 pinMode(RFM69_RST, OUTPUT);

 digitalWrite(RFM69_RST, LOW);

 Serial.println("Resetting radio");

 digitalWrite(RFM69_RST, HIGH); delay(10);

 digitalWrite(RFM69_RST, LOW); delay(10);

 if (!rf69_manager.init())

 {

 Serial.println("Could not start the radio");

 while (1); // halt

 }

 if (!rf69.setFrequency(RF69_FREQ)) {

 Serial.println("Could not set frequency");

 while (1); // halt

 }

 // If you are using a high power version of the RF69 (RFM69HW/HCW),

 // the following is required:

 rf69.setTxPower(20, true); // Power range is from 14-20

 // Each node must use the same key.

 uint8_t key[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};

 rf69.setEncryptionKey(key);

 Serial.print("RFM69 radio running at ");

 Serial.print((int)RF69_FREQ); Serial.println(" MHz");

}

byte response[RH_RF69_MAX_MESSAGE_LEN]; // Contains message from other device

byte message[] = "Hello!";

void loop()

{

 delay(1000); // Wait 1 second

 if (rf69_manager.sendtoWait((byte *)message, strlen(message), DEST_ADDR))

 {

 byte len = sizeof(response);

 byte sender; // Sender ID

 // Wait for a reply

 if (rf69_manager.recvfromAckTimeout(response, &len, 2000, &sender))

 {

 response[len] = 0; // Add a nul (0) to end of response

 Serial.print("Got ["); Serial.print((char *) response);

 Serial.print("] from "); Serial.println(sender);

 // Blink the LED

 digitalWrite(LED_BUILTIN, HIGH); delay(250);

 digitalWrite(LED_BUILTIN, LOW); delay(250);

 }

 else

 {

 Serial.print("Received no reply from "); Serial.println(sender);

 }

 }

 else

 {

 Serial.print("Failed to send message to "); Serial.println(DEST_ADDR);

 }

}

The receive sketch is identical to the transmit sketch except for two parts.
First, you do not need to define DEST_ADDR, and you need to change the
definition of MY_ADDR to 1:

/*

 * RFM69HCW transmit sketch

 * Receive a message from another module and send a reply.

 */

#include <SPI.h>

#include <RH_RF69.h>

#include <RHReliableDatagram.h>

#define MY_ADDR 1 // Address of this node

Next, you need to replace the loop function (and the two definitions that
precede it) with this version:

byte message[RH_RF69_MAX_MESSAGE_LEN]; // Contains message from other device

byte reply[] = "Goodbye!";

void loop()

{

 if (rf69_manager.available()) // Received a message

 {

 byte len = sizeof(message);

 byte sender; // Sender ID

 if (rf69_manager.recvfromAck(message, &len, &sender)) // Wait for a

message

 {

 message[len] = 0; // Add a nul (0) to end of message

 Serial.print("Got ["); Serial.print((char *) message);

 Serial.print("] from "); Serial.println(sender);

 // Blink the LED

 digitalWrite(LED_BUILTIN, HIGH); delay(250);

 digitalWrite(LED_BUILTIN, LOW); delay(250);

 // Reply to sender

 if (!rf69_manager.sendtoWait(reply, sizeof(reply), sender))

 {

 Serial.print("Failed to send message to "); Serial.println(sender);

 }

 }

 }

}

Discussion
The RadioHead library includes a number of drivers that support a wide
variety of radios. To use the library, you need to define a radio driver (such
as RH_RF69). Then, inside the setup function, you’ll perform a series of
initialization steps. The definition and initialization varies from radio to
radio, but once the radios are up and running in your sketch, the rest of the
code is generally similar from one device to another.

The sketch begins by importing SPI and two RadioHead libraries. The first
(RF_RF69) is the driver for the RFM69 series of radios, and the second
(RHReliableDatagram) is an API that allows reliable delivery of messages
to a specific module (or node) on the network.

The sketch then defines the node address (MY_ADDR) of this module: 1 for
the transmit node and 2 for the receive node. The transmit sketch also
defines the destination address of the other node (1). After that, it defines
the frequency. Change this to a value within the frequency range of your
module, typically 915.0 or 433.0 depending on which ISM region you are
in. You should under no circumstances use a Region 1 module (433 MHz)
in a Region 2 country (such as the United States), because there, the 433
MHz frequency is reserved for licensed amateur radio transmission. Even if
a vendor is willing to sell you a radio that operates in the wrong band for
your location, it is up to you to understand and comply with local
regulations. Be sure to consult with the vendor’s documentation and your
local laws. This Wikipedia article offers some background on this.

The setup function performs a number of initialization tasks, including
configuring the pins for the built-in LED and the reset line to the radio. It
then resets the radio by pulling the reset line low, then high, then low again.
After that, it configures the radio.

https://oreil.ly/Adh7k

Within the loop, the sketch sends a message to the other node with the
sendtoWait method. It then waits for a reply from that node with the
recvfromAckTimeout function. It then prints the message it got to the
serial port, and blinks the LED.

The sketch for the receiving node is very similar, except in the loop
function, it waits until it receives a message by repeatedly checking the
available method. When it receives a message, it displays it to the serial
port, blinks the LED, and sends a response to the sender.

If you open the Serial Monitor on the transmitting node while both nodes
are up and running, you’ll see this output:

Resetting radio

RFM69 radio running at 915 MHz

Got [Goodbye!] from 1

Got [Goodbye!] from 1

Got [Goodbye!] from 1

And you will see this on the receiving node:

Resetting radio

RFM69 radio running at 915 MHz

Got [Hello!] from 2

Got [Hello!] from 2

Got [Hello!] from 2

NOTE
If you’re running either sketch on a 32-bit board, a Leonardo, or a board that doesn’t reset when
the serial port is opened, you can add while(!Serial); immediately after
Serial.begin(9600); (see “Serial Hardware Behavior”). You won’t want this line of code in a
production environment, because it means the sketch would need to wait for a serial connection
before it will continue running.

The RadioHead library handles the assembly of multiple bytes into packets,
so sending binary data consists of passing the address of the data and the
number of bytes to send.

The sketch that follows is similar to the transmit sketch in this recipe’s
Solution, but instead of sending a string, it fills the message buffer with a
struct that contains values from reading three analog input ports using
analogRead. The struct also includes a header at the beginning of it, which
you could use to indicate the type of the message. The struct uses unsigned
short int to represent the analog values just in case your transmitter and
receiver are different architectures. An int is two bytes on 8-bit boards and
four bytes on 32-bit boards, but an unsigned short int is two bytes on
both architectures (see Recipe 2.2). However, each architecture has
different ways of aligning structs. Without the otherwise unused padding
struct member, the struct would be seven bytes on 8-bit boards and eight
bytes on 32-bit boards, which means the data would appear corrupt on the
receiving end (see Recipe 4.6).

NOTE
The data structures that are transmitted over the radio are defined outside the function, which
ensures they are not defined in the function’s stack. The RadioHead library needs this in order to
be able to reliably access the memory where your data structures are located.

Here is the modified loop for the transmitter sketch:

struct sensor {

 char header = 'H';

 char padding; // ensure same alignment on 8-bit and 32-bit

 unsigned short int pin0;

 unsigned short int pin1;

 unsigned short int pin2;

} sensorStruct;

void loop()

{

 delay(1000); // Wait 1 second

 sensorStruct.pin0 = analogRead(A0);

 sensorStruct.pin1 = analogRead(A1);

 sensorStruct.pin2 = analogRead(A2);

 byte len = sizeof(sensorStruct);

 memcpy(message, &sensorStruct, len);

 if (!rf69_manager.sendtoWait((byte *)message, len, DEST_ADDR))

 {

 Serial.print("Failed to send message to "); Serial.println(DEST_ADDR);

 }

}

And here is the modified version for the receiver sketch:

struct sensor {

 char header;

 char padding; // ensure same alignment on 8-bit and 32-bit

 unsigned short int pin0;

 unsigned short int pin1;

 unsigned short int pin2;

} sensorStruct;

// define anything you send over the radio channel outside the

// loop function so it's not on the stack

byte message[sizeof(sensorStruct)];

void loop()

{

 if (rf69_manager.available()) // Received a message

 {

 byte len = sizeof(message);

 byte sender; // Sender ID

 if (rf69_manager.recvfromAck(message, &len, &sender)) // Wait for a

message

 {

 memcpy(&sensorStruct, message, len);

 Serial.print("Header: "); Serial.println(sensorStruct.header);

 Serial.print("Sensor 0: "); Serial.println(sensorStruct.pin0);

 Serial.print("Sensor 1: "); Serial.println(sensorStruct.pin1);

 Serial.print("Sensor 2: "); Serial.println(sensorStruct.pin2);

 }

 }

}

The Serial Monitor will display the analog values on the receiver:

Header: H

Sensor 0: 289

Sensor 1: 288

Sensor 2: 281

Header: H

Sensor 0: 287

Sensor 1: 286

Sensor 2: 280

Bear in mind that the maximum buffer size for the RH_RF69 is 60 bytes
long (the constant RH_RF69_MAX_MESSAGE_LEN is defined in the library
header file).

Wireless range can be up to 500 meters or so depending on supply voltage
and antenna and is reduced if there are obstacles between the transmitter
and the receiver.

See Also
LoRa is a low-power long-range networking technology that RadioHead
also supports. Under optimal operating conditions, a similar LoRa module
will have quite a bit more range than the radios covered in this Solution.
You can find LoRa radio modules based on the RFM95W module from
Adafruit (product ID 3072) and SparkFun (WRL-14916).

Download datasheets for the transmitter and receiver modules here or here.

14.2 Connecting Arduino over a ZigBee or
802.15.4 Network
Problem
You’d like your Arduino to communicate over a ZigBee or 802.15.4
network.

802.15.4 is an IEEE standard for low-power digital radios that are
implemented in products such as the inexpensive XBee modules from Digi
International. ZigBee is an alliance of companies and also the name of a
standard maintained by that alliance. ZigBee is based on IEEE 802.15.4 and
is a superset of it. ZigBee is implemented in many products, including
certain XBee modules from Digi.

https://oreil.ly/xdXXY
https://oreil.ly/888zi

TIP
Only XBee modules that are listed as ZigBee-compatible, such as the XBee 3 modules, are
guaranteed to be ZigBee-compliant. That being said, you can use a subset of the features (IEEE
802.15.4) of ZigBee even with the older XBee Series 1 modules. In fact, the bulk of the recipes
here will work with the Series 1 modules.

TROUBLESHOOTING XBEE
If you have trouble getting your XBees to talk, make sure they both have the same product
family and function set (e.g., product family: XB3-24 and function set: Digi XBee 3 Zigbee 3.0
TH as shown in Figure 14-4), and that they are both running the most current version of the
firmware (the firmware version shown in Figure 14-4). If you continue to have trouble, try
using a slightly older version of firmware on both devices.

For a comprehensive set of XBee troubleshooting tips, see Robert Faludi’s “Common XBee
Mistakes”. For extensive details on working with XBees, see his book, Building Wireless Sensor
Networks (O’Reilly).

Solution
Obtain two or more XBee modules of the same type (two Xbee 3 modules,
two Series 2, two Series 1, etc.), configure them (as described in the
Discussion) to communicate with one another (do this before you
physically wire them to the Arduino), and hook one up to an Arduino (leave
the other connected to your computer as directed in the Discussion). Figure
14-2 shows the connection between an XBee Adapter and Arduino. Notice
that the Arduino’s RX is connected to the XBee’s TX and vice versa.

If you connect the Arduino to the XBee and run this simple sketch, the
Arduino will reply to any message it receives by simply echoing what the
other XBee sends it. Use the appropriate MYSERIAL definition for whichever
board you using (see “Serial Hardware” for details):

/*

 * XBee Echo sketch

 * Reply with whatever you receive over the serial port

 */

https://oreil.ly/YSoWl
http://oreilly.com/catalog/9780596807740/

// Uncomment only one of the following

#define MYSERIAL Serial // Uno, Nano, and other AVR boards

//#define MYSERIAL Serial1 // Nano Every, Uno WiFi R2, Leonardo, and ARM

boards

void setup()

{

 MYSERIAL.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 while (MYSERIAL.available()) {

 MYSERIAL.write(MYSERIAL.read()); // reply with whatever you receive

 digitalWrite(LED_BUILTIN, HIGH); // flash LED to show activity

 delay(10);

 digitalWrite(LED_BUILTIN, LOW);

 delay(10);

 }

}

Connecting an Arduino to an XBee using an XBee Adapter

WARNING
If you are using an adapter that does not have an onboard voltage regulator, it will be sending
voltage directly into the XBee. If this is the case, you will need to use a voltage regulator that
converts 5V to 3.3V, because the Arduino’s 3.3V pin cannot supply enough power to run the XBee
(see the Discussion for more details).

With the XBees configured and connected to a computer and/or Arduino,
you can send messages back and forth.

WARNING
If you are using an Arduino Uno, or any model that shares pins 0 and 1 (RX and TX) with the
USB-to-Serial interface, you must disconnect the Arduino from the XBee before you attempt to
program the Arduino. Otherwise, the signals will get crossed if the XBee is connected to those
pins.

Discussion
To configure your XBees, plug them into an XBee adapter such as the
Parallax USB XBee Adapter (part number 32400) or the SparkFun XBee
Explorer USB (WRL-11812) and connect them to a computer running
Windows, macOS, or Linux. These boards can do double duty as a USB-to-
Serial adapter to connect the XBee to your PC and as a breakout board to
connect the XBee to a solderless breadboard (the XBee pins are not the
correct size for a breadboard). If you’ve already wired the XBee to your
Arduino, you should disconnect the four Arduino connections (5V, GND,
TX, RX) before connecting to a computer via USB (you only need to
connect the XBee to a computer for initial configuration).

You can find XBee breakout boards without USB, but you would need to
use a separate USB-to-Serial adapter to connect the breakout to your
computer. One option is to buy only one of the USB-enabled adapters and
as many (cheaper) breakout boards as needed to connect your XBees to
Arduino and other devices. The problem there is that cheaper breakout
boards without USB often do not include a voltage regulator: you can’t

power the XBee from 5V directly, and Arduino’s 3.3V supply is generally
not enough for the XBee, so you’d need a voltage regulator like the
LD1117V33. You’ll need two decoupling capacitors across the voltage
regulator: 10 uF between 5V and GND, and 1 uF between 3V and GND
(see Recipe 15.5 for an example of how to wire this).

If you are using a 5V board with XBee, you may want to add a level shifter
between the Arduino’s TX/RX pins and the XBee’s, but it is generally not
necessary. Robert Faludi, former chief innovator at Digi International
(maker of the XBee modules), says that XBees can “operate off of a 5V
signal with the Arduino,” and that while a level-shifting circuit is not
always needed, it is recommended in “commercial applications where you
will need to keep the module stable across its entire temperature range.”

TIP
Purchase at least two adapters, so you can have two XBees connected to your computer at the
same time. These same adapters can be used to connect an XBee to an Arduino.

XBee configuration
For the initial configuration, you will need to plug your XBees into a
computer. Plug only one of them into the computer now. You may need to
install a driver to use your XBee USB breakout board, so you should check
the manufacturer’s product web page and look for instructions and/or any
driver downloads. Most use the FTDI chipset (see the discussion of FTDI
drivers in Recipe 1.1).

TIP
If you have any trouble with X-CTU, see the support document.

Before you proceed, download and install the X-CTU application, which is
available for Windows, macOS, and Linux. Next, perform the following

https://oreil.ly/eqzQ7
https://oreil.ly/wrMpb
https://oreil.ly/UTYaR

steps for each XBee:

1. Run the X-CTU application, then click the XCTU menu and choose
Discover Radio Modules. X-CTU will show you a list of serial ports
on your computer. Select the one that you think your XBee is likely to
be connected to (you are probably best off clicking Select All). Click
Next.

2. You’ll be prompted to set the port parameters. This determines how
X-CTU will try to communicate with the connected devices. If you
haven’t reconfigured your XBee to use a different baud rate, data bits
number, parity, stop bits, or flow control, you can leave these at their
defaults (otherwise, choose all options that apply). Click Finish and
X-CTU will scan for attached XBees.

3. X-CTU scans the serial devices. When it’s done, it will show a list of
XBee(s) it discovered, and they will be selected by default, as shown
in Figure 14-3. Make sure you’ve selected the one(s) you want to
configure, and click Add Selected Devices.

4. If you are connecting an older (Series 1 or 2) XBee for the first time,
X-CTU will prompt you to update the firmware library (click Yes,
then install the legacy firmware package). X-CTU will read the
current settings of the module. For best results, you should do two
things now for each of the XBee modules you just connected, and do
this every time you go to reconfigure an XBee:

a. Click to select the device, then click the Update button. This will
bring up the firmware updater. Choose the newest version of the
available firmware. For XBee 3, choose the Digi XBee 3 Zigbee
3.0 TH firmware. For XBee Series 2, you will use a different
firmware for the first (ZigBee Coordinator AT) and for the
second (ZigBee Router AT). For XBee Series 1, choose XBEE
802.15.4. Click Update. If it turns out you’re already using the
latest version of the firmware, you can skip this step.

b. Click the Default button, then click Write. This will return the
device to its default settings.

Discovering XBees connected to your computer

Label the first XBee with a piece of tape or a sticker, and number it 1 (or A,
or whatever will help you remember it’s the first one you configured). Next,
connect the second XBee, and repeat the preceding steps (you can keep the
first one plugged in). Label the second XBee 2, B, or whatever you prefer to
keep track of which is which. (If you’re using a Series 2 XBee, you’ll
install the ZigBee Coordinator AT firmware on #1 and the ZigBee Router
AT firmware on #2.) Now you’re ready for the final step of the
configuration (see Figure 14-4):

1. Click the first XBee in X-CTU. For an XBee 3, configure the
following options:

a. CE Device Role: Form Network [1]

b. ID Extended Pan ID: 1234 (or any hexadecimal number you
want, as long as you use the same PAN ID for all devices on the

same network)

c. DH Destination Address High: 0

d. DL Destination Address Low: FFFF (this allows the coordinator
XBee to broadcast to the router XBee)

For an XBee Series 2, configure the following options:

a. ID Pan ID: 1234

b. DH Destination Address High: 0

c. DL Destination Address Low: FFFF

For an XBee Series 1, configure these options:

a. ID Pan ID: 1234

b. DH Destination Address High: 0

c. DL Destination Address Low: 2222

d. MY 16-Bit Source Address: 1111

The MY command sets the identifier for an XBee. DL and DH set the
low byte and the high byte of the destination XBee. ID sets the
network ID (it needs to be the same for XBee Series 1s to talk to one
another).

2. Click the Write button.

3. Click the second XBee in X-CTU. For an XBee 3, configure the
following options:

a. CE Device Role: Join Network [0]

b. ID Extended Pan ID: 1234

c. JV Coordinator Verification: Enabled. This ensures the XBee
will confirm that it’s on the right channel, which makes its
connection to the coordinator more reliable.

For an XBee 2, configure the following options:

a. ID Pan ID: 1234

b. JV Channel Verification: Enabled

For an XBee Series 1, configure the following options:

a. ID Pan ID: 1234

b. DH Destination Address High: 0

c. DL Destination Address Low: 1111

d. MY 16-Bit Source Address: 2222

4. Click the Write button.

TIP
If you have two computers available, you can connect each XBee to a separate computer.

Configuring the XBee

Next, click the Console icon in X-CTU or choose Working
Modes→Consoles Working Mode. Click each XBee in the list on the left,
and then click the Open icon in the right pane of the console window. After

you’ve connected both XBees, you can switch between them and type
directly into the Console Log. Whatever you type on one XBee will be
shown in blue text. If you click the other XBee to view its console, you’ll
see what you typed on the second XBee appear in red text.

Talking to the Arduino
Now that you’ve got your XBee modules configured, pick one of the XBees
and close the serial terminal that was connected to it, and disconnect it from
your computer. Next, program your Arduino with the code shown in this
recipe’s Solution, and connect the XBee to your Arduino as shown in
Figure 14-2. When you type characters into the X-CTU console connected
to your other XBee, you’ll see the characters echoed back (if you type a,
you’ll see aa). The built-in LED will blink as the Arduino receives
characters.

See Also
Recipe 14.3; Recipe 14.4; Recipe 14.5

14.3 Sending a Message to a Particular XBee
Problem
You want to configure which node your message goes to from your Arduino
sketch.

Solution
Send the configuration commands directly from your Arduino sketch,
prefixed with the letters AT (attention), which is a standard way of sending
control commands to devices connected via a serial port:

/*

 * XBee Message sketch

 * Send a message to an XBee using its address

 */

// Uncomment only one of the following

#define MYSERIAL Serial // Uno, Nano, and other AVR boards

//#define MYSERIAL Serial1 // Nano Every, Uno WiFi R2, Leonardo, and ARM

boards

bool configured;

bool configureRadio()

{

 // put the radio in command mode:

 MYSERIAL.flush();

 MYSERIAL.print("+++");

 delay(100);

 String ok_response = "OK\r"; // the response we expect.

 // Read the text of the response into the response variable

 String response = String("");

 while (response.length() < ok_response.length())

 {

 if (MYSERIAL.available() > 0)

 {

 response += (char) MYSERIAL.read();

 }

 }

 // If we got the right response, configure the radio and return true.

 if (response.equals(ok_response))

 {

 MYSERIAL.print("ATDH0013A200\r"); // destination high-REPLACE 0013A200

 delay(100);

 MYSERIAL.print("ATDL403B9E1E\r"); // destination low-REPLACE 403B9E1E

 delay(100);

 MYSERIAL.print("ATCN\r"); // back to data mode

 return true;

 }

 else

 {

 return false; // This indicates the response was incorrect.

 }

}

void setup ()

{

 MYSERIAL.begin(9600); // Begin serial

 delay(1000);

 configured = configureRadio();

}

void loop ()

{

 if (configured)

 {

 MYSERIAL.print("Hello!");

 delay(3000);

 }

 else

 {

 delay(30000); // Wait 30 seconds

 configured = configureRadio(); // try again

 }

}

Discussion
Although the configurations in Recipe 14.2 work for two XBees, they are
not as flexible when used with more than two.

For example, consider a three-node network of Series 2 XBees or XBee 3s,
with one XBee configured with the Coordinator AT firmware (or, in the
case of the XBee 3, configured to form a network) and the other two with
the Router AT firmware (or configured to join a network). Messages you
send from the coordinator will be broadcast to the two routers. Messages
you send from each router go to the coordinator.

The Series 1 configuration in that recipe is a bit more flexible, in that it
specifies explicit destinations: by configuring the devices with AT
commands and then writing the configuration, you effectively hardcode the
destination addresses in the firmware.

This solution instead lets the Arduino code send the AT commands to
configure the XBees on the fly. The heart of the solution is the
configureRadio() function. It sends the +++ escape sequence to put the
XBee in command mode, just as the Series 1 configuration did at the end of
Recipe 14.2. After sending this escape sequence, the Arduino sketch waits
for the OK response before sending these AT commands:

ATDH0013A200

ATDL403B9E1E

ATCN

The first two commands are similar to what is shown in the Series 1
configuration at the end of Recipe 14.2, but the numbers are longer. That’s
because the example shown in that recipe’s Solution uses Series 2–style
addresses. As you saw in Recipe 14.2, you can specify the address of a
Series 1 XBee with the ATMY command, but in a Series 2 XBee, each
module has a unique address that is embedded in each chip.

In your code, you must replace 0013A200 (DH) and 403B9E1E (DL) with
the high and low addresses of the destination radio. You can look up the
high (ATDH) and low (ATDL) portions of the serial number using X-CTU, as
shown in Figure 14-5. The numbers are also printed on the label underneath
the XBee. For a Series 1 XBee use 0 for the DH, and for the DL use the
MY address of the XBee you want to talk to.

Looking up the high and low serial numbers in X-CTU

This recipe will be most effective with a third XBee, configured as the
second XBee as described in Recipe 14.2. If you are using a Series 1 XBee,
be sure to give the device a unique MY ID, such as 3333. Leave this third
XBee connected to your computer and switch to the Console mode in X-
CTU as you did in that recipe, and click Open. When the Arduino sketch
starts, you should see the message Hello! appear on the console.

The ATCN command exits command mode; think of it as the reverse of what
the +++ sequence accomplishes.

See Also
Recipe 14.2

14.4 Sending Sensor Data Between XBees
Problem
You want to send the status of digital and analog pins or control pins based
on commands received from an XBee.

Solution
Hook one of the XBees (the transmitting XBee) up to an analog sensor and
configure it to read the sensor and transmit the value periodically. Connect
the Arduino to an XBee (the receiving XBee) configured in API mode and
read the value of the API frames that it receives from the other XBee.

Discussion
XBees have a built-in analog-to-digital converter (ADC) that can be polled
on a regular basis. The XBee can be configured to transmit the values
(between 0 and 1,023) to other XBees in the network.

Configuration

Using X-CTU, configure the devices as described in “XBee configuration”,
but with these changes:

1. For XBee 3:

a. The second (transmitting) XBee is the one you configured with a
device role (CE) of Join Network. In addition to the
configuration you did in “XBee configuration” (CE=Join
Network [0], ID=1234, JV=Enabled [1]) for the second XBee,
set the following options in X-CTU and write them to the
module: Under I/O Settings, set D0 AD0/DIO0 Commissioning
Button Configuration to ADC [2] and set IR Sampling Rate to
64 (hex for 100 ms). This is the XBee you will connect to the
sensor.

2. For XBee Series 2:

a. Instead of flashing the first XBee with the ZigBee Coordinator
AT firmware, flash it with the ZigBee Coordinator API
firmware. This will allow it to receive API frames. The rest of
the configuration is the same (ID=1234, DL=FFFF). This is the
XBee you will connect to the Arduino.

b. The second (transmitting) XBee is the one you flashed with the
ZigBee Router AT firmware (no need to flash it with the API
firmware). In addition to the configuration you did in “XBee
configuration” (ID=1234, JV=Enabled [1]) for the second XBee,
set the following options in X-CTU and write them to the
module: Under I/O Settings, set D0 AD0/DIO0 Configuration to
ADC [2] and set IR Sampling Rate to 64 (hex for 100 ms). This
is the XBee you will connect to the sensor.

3. For Series 1:

a. The second (transmitting) XBee is the one you configured with a
16-bit Source Address (MY) of 2222. In addition to the
configuration you did in “XBee configuration” (ID: 1234, DH:
0, DL: 1111, MY: 2222) for the second XBee, set the following
options in X-CTU and write them to the module: Under I/O

Settings, set D0 DIO0 Configuration to ADC [2] and set IR
Sampling Rate to 64 (hex for 100 ms). This is the XBee you will
connect to the sensor.

NOTE
For the XBee 3 and XBee Series 2, you don’t need to set the Destination Address values (DH,
DL) because the router communicates with the coordinator by default. If you configure your
network differently, you can configure the transmitting XBee with these additional settings to tell
it which XBee to send data to:

Destination Address High (DH): the high address (SH) of the other XBee, usually 13A200
Destination Address Low (DL): the low address (SL) of the other XBee

Next, wire the receiving XBee to the Arduino as shown in Recipe 14.2. You
need to also connect an LED to pin 5 and GND, and use a current-limiting
resistor as described in Recipe 7.2. If your board does not support PWM on
digital pin 5, change the wiring and sketch accordingly.

Depending on which XBee you are using, the wiring will be different. XBee
Series 2 and XBee 3 use the same wiring. XBee Series 1 uses a different
wiring method. The sketch code will also be slightly different. On XBee
Series 2, API mode is determined by which firmware you are running. On
XBee Series 1 and XBee 3, you can enter API mode with the ATAP
command.

WARNING
Check the pinout of your XBee breakout board carefully, as the pins on the breakout board don’t
always match up exactly to the pins on the XBee itself. For example, on some breakout boards,
the upper-left pin is GND, and the pin below it is 3.3V. Similarly, you might find that the VREF
pin (labeled RES on the SparkFun XBee Explorer USB) is fifth from the bottom on the right,
while it is fourth from the bottom on the XBee itself.

For Series 2 or XBee 3, wire up the transmitting XBee to the sensor, as
shown in Figure 14-6. The value of R1 should be double whatever your

potentiometer is (if you are using a 10K pot, use a 20K resistor). This is
because the Series 2 XBees’ analog-to-digital converters read a range of 0
to 1.2 volts, and R1 reduces the 3.3 volts to stay below 1.2 volts.

Connecting the transmitting Series 2 XBee or XBee 3 to an analog sensor

For a Series 1 XBee, wire up the transmitting XBee to the sensor, as shown
in Figure 14-7.

NOTE
Unlike Series 2 or XBee 3, Series 1 XBee uses an external reference connected to 3.3V. Because
the voltage on the slider of the pot can never be greater than the reference voltage, the resistor
shown in Figure 14-6 is not needed.

The transmitting Series 1 XBee connected to an analog sensor

For XBee Series 2, load the following sketch onto the Arduino, and wire the
transmitting XBee to the Arduino as shown in Recipe 14.2. If you need to
reprogram the Arduino, remember to disconnect it from the XBee first:

/*

 * XBeeAnalogReceive Series 2 sketch

 * Read an analog value from an XBee API frame and set the brightness

 * of an LED accordingly.

 */

// Uncomment only one of the following

#define MYSERIAL Serial // Uno, Nano, and other AVR boards

//#define MYSERIAL Serial1 // Nano Every, Uno WiFi R2, Leonardo, and ARM

boards

#define MIN_CHUNK 24

#define OFFSET 18

const int ledPin = A5; // Analog pin 5

void setup()

{

 MYSERIAL.begin(9600);

}

void loop()

{

 if (MYSERIAL.available() >= MIN_CHUNK) // Wait until we have a mouthful of

data

 {

 if (MYSERIAL.read() == 0x7E) // Start delimiter of a frame

 {

 // Skip over the bytes in the API frame we don't care about

 for (int i = 0; i < OFFSET; i++)

 {

 MYSERIAL.read();

 }

 // The next two bytes are the high and low bytes of the sensor reading

 int analogHigh = MYSERIAL.read();

 int analogLow = MYSERIAL.read();

 int analogValue = analogLow + (analogHigh * 256);

 // Scale the brightness to the Arduino PWM range

 int brightness = map(analogValue, 0, 1023, 0, 255);

 // Light the LED

 analogWrite(ledPin, brightness);

 }

 }

}

For XBee Series 1 or XBee 3, load the following sketch onto the Arduino.
Whenever you need to reprogram the Arduino, disconnect it from the XBee
first. If you are using an XBee Series 1, comment out the MIN_CHUNK and
OFFSET values for the XBee 3 and use the ones for XBee Series 1:

/*

 * XBeeAnalogReceive Series 1 or XBee 3 Sketch

 * Read an analog value from an XBee API frame and set the brightness

 * of an LED accordingly.

 */

// Uncomment only one of the following

#define MYSERIAL Serial // Uno, Nano, and other AVR boards

//#define MYSERIAL Serial1 // Nano Every, Uno WiFi R2, Leonardo, and ARM

boards

// Use these settings for XBee 3:

#define MIN_CHUNK 21

#define OFFSET 18

// Use these settings for XBee Series 1:

//#define MIN_CHUNK 14

//#define OFFSET 10

const int ledPin = A5;

void setup()

{

 MYSERIAL.begin(9600);

 delay(1000);

 configureRadio(); // check the return value if you need error handling

}

bool configureRadio()

{

 // put the radio in command mode:

 MYSERIAL.flush();

 MYSERIAL.print("+++");

 delay(100);

 String ok_response = "OK\r"; // the response we expect.

 // Read the text of the response into the response variable

 String response = String("");

 while (response.length() < ok_response.length())

 {

 if (MYSERIAL.available() > 0)

 {

 response += (char) MYSERIAL.read();

 }

 }

 // If we got the right response, configure the radio and return true.

 if (response.equals(ok_response))

 {

 MYSERIAL.print("ATAP1\r"); // Enter API mode

 delay(100);

 MYSERIAL.print("ATCN\r"); // back to data mode

 return true;

 }

 else

 {

 return false; // This indicates the response was incorrect.

 }

}

void loop()

{

 if (MYSERIAL.available() >= MIN_CHUNK) // Wait until we have a mouthful of

data

 {

 if (MYSERIAL.read() == 0x7E) // Start delimiter of a frame

 {

 // Skip over the bytes in the API frame we don't care about

 for (int i = 0; i < OFFSET; i++)

 {

 MYSERIAL.read();

 }

 // The next two bytes are the high and low bytes of the sensor reading

 int analogHigh = MYSERIAL.read();

 int analogLow = MYSERIAL.read();

 int analogValue = analogLow + (analogHigh * 256);

 // Scale the brightness to the Arduino PWM range

 int brightness = map(analogValue, 0, 1023, 0, 255);

 // Light the LED

 analogWrite(ledPin, brightness);

 }

 }

}

NOTE
On the Series 1 XBees and XBee 3, the Arduino code needs to configure the radio for API mode
with an AT command (ATAP1). On Series 2 XBees, this is accomplished by flashing the XBee with
a different firmware version. The reason for the return to data mode (ATCN) is because command
mode was entered earlier with +++ and a return to data mode to receive data is required.

See Also
Recipe 14.2

14.5 Activating an Actuator Connected to an
XBee
Problem
You want to tell an XBee to activate a pin, which could be used to turn on
an actuator connected to it, such as a relay or LED.

Solution
Configure the XBee connected to the actuator so that it will accept
instructions from another XBee. Connect the other XBee to an Arduino to
send the commands needed to activate the digital I/O pin that the actuator is
connected to.

Discussion
The XBee digital/analog I/O pins can be configured for digital output.
Additionally, XBees can be configured to accept instructions from other
XBees to take those pins high or low. In Series 2 XBees, you’ll be using the
Remote AT Command feature. In Series 1 XBees, you can use the direct
I/O, which creates a virtual wire between XBees.

Series 2 and Series 3 XBees
Using X-CTU (see “XBee configuration”), configure the receiving XBee
(this is the XBee you’ll connect to the LED). For XBee Series 2, flash it
with the ZigBee Router AT (not API) function set. Next, apply the
following settings:

(XBee 3 only) CE Device Role: Join Network [0]

ID Extended PAN ID: 1234 (or a number you pick, as long as you use
the same one for both XBees)

JV Channel Verification: Enabled [1]

Under I/O Settings, D1 DIO1/AD1/SPI_nATTN Configuration: Digital
Out, Low [4]

Next, configure the transmitting XBee (the one you’ll connect to Arduino).
For XBee Series 2, make sure you flash it with the ZigBee Coordinator API
(not AT) firmware. Next, set the following settings:

(XBee 3 only) CE Device Role: Form Network [1]

(XBee 3 only) AP API Enable: API Mode Without Escapes [1]

ID Extended PAN ID: 1234 (or a number you pick, as long as you use
the same one for both XBees)

DH Destination Address High: 0

DL Destination Address Low: FFFF

Wire up the receiving XBee to an LED, as shown in Figure 14-8.

Connecting an LED to an XBee’s digital I/O pin 1 (both Series 1 and Series 2)

Next, load the following sketch onto the Arduino, and wire the transmitting
XBee to the Arduino as shown in Recipe 14.2. If you need to reprogram the
Arduino, remember to disconnect it from the XBee first. This sketch sends
a Remote AT command (ATD14 or ATD15) that sets the state of pin 1 (ATD1)
alternatingly on (digital out high, 5) and off (digital out low, 4):

/*

 XBeeActuate sketch

 Send a Remote AT command to activate a digital pin on another XBee.

 */

// Uncomment only one of the following

#define MYSERIAL Serial // Uno, Nano, and other AVR boards

//#define MYSERIAL Serial1 // Nano Every, Uno WiFi R2, Leonardo, and ARM

boards

const byte frameStartByte = 0x7E;

const byte frameTypeRemoteAT = 0x17;

const byte remoteATOptionApplyChanges = 0x02;

void setup()

{

 MYSERIAL.begin(9600);

}

void loop()

{

 toggleRemotePin(1);

 delay(2000);

 toggleRemotePin(0);

 delay(2000);

}

byte sendByte(byte value)

{

 MYSERIAL.write(value);

 return value;

}

void toggleRemotePin(int value) // 0 = off, nonzero = on

{

 byte pin_state;

 if (value)

 {

 pin_state = 0x5;

 }

 else

 {

 pin_state = 0x4;

 }

 sendByte(frameStartByte); // Begin the API frame

 // High and low parts of the frame length (not counting checksum)

 sendByte(0x0);

 sendByte(0x10);

y ();

 long sum = 0; // Accumulate the checksum

 sum += sendByte(frameTypeRemoteAT); // Indicate this frame contains a

 // Remote AT command

 sum += sendByte(0x0); // frame ID set to zero for no reply

 // The following 8 bytes indicate the ID of the recipient.

 // Use 0xFFFF to broadcast to all nodes.

 sum += sendByte(0x0);

 sum += sendByte(0x0);

 sum += sendByte(0x0);

 sum += sendByte(0x0);

 sum += sendByte(0x0);

 sum += sendByte(0x0);

 sum += sendByte(0xFF);

 sum += sendByte(0xFF);

 // The following 2 bytes indicate the 16-bit address of the recipient.

 // Use 0xFFFE to broadcast to all nodes.

 sum += sendByte(0xFF);

 sum += sendByte(0xFF);

 sum += sendByte(remoteATOptionApplyChanges); // send Remote AT options

 // The text of the AT command

 sum += sendByte('D');

 sum += sendByte('1');

 // The value (0x4 for off, 0x5 for on)

 sum += sendByte(pin_state);

 // Send the checksum

 sendByte(0xFF - (sum & 0xFF));

 delay(10); // Pause to let the microcontroller settle down if needed

}

Series 1 XBees
Using X-CTU, configure the transmitting XBee (the one you’ll connect to
the Arduino) as follows:

ID Pan ID: 1234

DH Destination Address High: 0

DL Destination Address Low: 2222

MY 16-Bit Source Address: 1111

D1 DIO1 Configuration: DI[3]. This configures the XBee’s
analog/digital input 1 to be in digital input mode. The state of this pin
will be relayed from the transmitting XBee to the receiving XBee.

IC DIO Change Detect: FF. This tells the XBee to check every digital
input pin and send their values to the XBee specified by ATDL and ATDH.

Next, set the following configuration on the receiving XBee:

ID Pan ID: 1234

DH Destination Address High: 0

DL Destination Address Low: 1111

MY 16-Bit Source Address: 2222

D1 DIO1 Configuration: DO Low [4]. This configures pin 19 (analog or
digital input 1) to be in low digital output mode (off by default).

IU I/O Output Enable: Disabled [0]. This tells the XBee to not send the
frames it receives to the serial port.

IA I/O Input Address: 1111. Configures the XBee to accept commands
from the other XBee (whose MY address is 1111).

Wire up the transmitting XBee to the Arduino, as shown in Figure 14-9.

Connecting the Arduino to the Series 1 transmitting XBee’s digital I/O pin 1

Next, wire the receiving XBee to an LED, as shown in Figure 14-8. Note
that instead of sending AT commands over the serial port, we’re using an
electrical connection to take the XBee’s pin high. The two 10K resistors
form a voltage divider that drops the Arduino’s 5V logic to about 2.5 volts
(high enough for the XBee to recognize, but low enough to avoid damaging
the XBee’s 3.3V logic pins).

Next, load the following sketch onto the transmitting Arduino. This sketch
takes the XBee’s digital I/O pin 1 alternatingly on (digital out high, 5) and
off (digital out low, 4). Because the transmitting XBee is configured to relay
its pin states to the receiving XBee, when its pin 1 changes state the
receiving XBee’s pin 1 changes as well:

/*

 XBeeActuateSeries1

 Activate a digital pin on another XBee.

 */

const int xbeePin = 2;

void setup() {

 pinMode(xbeePin, OUTPUT);

}

void loop()

{

 digitalWrite(xbeePin, HIGH);

 delay(2000);

 digitalWrite(xbeePin, LOW);

 delay(2000);

}

See Also
Recipe 14.2

14.6 Communicating with Classic Bluetooth
Devices
Problem
You want to send and receive information with another device using
Bluetooth; for example, a laptop or cellphone.

Solution
Connect Arduino to a Bluetooth module such as the BlueSMiRF, Bluetooth
Mate, or Bluetooth Bee.

The following sketch is similar to the one in Recipe 4.11; it monitors
characters received on the hardware serial port and either a software serial
port or Serial1 (wired to the Bluetooth module’s TX/RX pins), so
anything received on one is sent to the other.

Connect the module as shown in Figure 14-10. If you are using a board
such as the Leonardo, or 32-bit boards, uncomment #define USESERIAL1,
and connect the Bluetooth module to the appropriate RX/TX pins (pins 0
and 1 on boards with the Uno form factor):

BlueSMiRF Bluetooth module wired for SoftwareSerial

/*

 * Classic Bluetooth sketch

 * Use SoftwareSerial or Serial1 to talk to BlueSMiRF module

 * Pairing code is usually 1234

 */

//#define USESERIAL1 // Uncomment this if you're on an ARM or Leonardo

#ifdef USESERIAL1

 #define BTSERIAL Serial1

#else

 #include <SoftwareSerial.h>

 const int rxpin = 2; // pin used to receive

 const int txpin = 3; // pin used to send to

 SoftwareSerial mySerial(rxpin, txpin); // new serial port on given pins

 #define BTSERIAL mySerial // software serial

#endif

void setup()

{

 Serial.begin(9600);

 BTSERIAL.begin(9600); // initialize the software serial port

 Serial.println("Serial ready");

 BTSERIAL.println("Bluetooth ready");

}

void loop()

{

 if (BTSERIAL.available())

 {

 char c = (char)BTSERIAL.read();

 Serial.write(c);

 }

 if (Serial.available())

 {

 char c = (char)Serial.read();

 BTSERIAL.write(c);

 }

}

Discussion
You will need Bluetooth capability on your computer to communicate with
this sketch. Both sides participating in a Bluetooth conversation need to be
paired—the ID of the module connected to Arduino needs to be known to
the other end. The default pin code for the BlueSMiRF is 1234. See the
documentation for your computer Bluetooth to set the pairing ID and accept
the connection.

After you’ve paired your computer with the Bluetooth module, you’ll find
that there are some new serial ports on your computer. In Windows, check
the Ports (COM & LPT) section of Device Manager and look for Serial
over Bluetooth Link ports (if more than one appears, try them both). On
macOS, you can open the Terminal application, and run this command to
get a list of serial ports: ls /dev/{cu,tty}.*. The port you want to use
will look something like /dev/cu.RN42-22AC-SPP.

NOTE
All the common Bluetooth modules used with Arduino implement the Bluetooth Serial Port
Profile (SPP). Once the devices are paired, the computer or phone will see the module as a serial
port. These modules are not capable of appearing as other types of Bluetooth service, such as a
Bluetooth mouse or keyboard.

To connect to the Bluetooth serial port on your computer, you can use
PuTTY on Windows, or the screen command on Linux or macOS. To
connect to a serial port at 9,600 baud with screen, open the Terminal and

https://oreil.ly/Zy-OO

type this command (replace tty.RN42-22AC-SPP with the name of the
serial port):

screen /dev/cu.RN42-22AC-SPP 9600

Bluetooth range is between five and 100 meters, depending on whether you
have class 3, 2, or 1 devices.

See Also
This SparkFun tutorial covers the installation and use of Bluetooth.

Bluetooth Bee is a Bluetooth module that plugs into an XBee socket so you
can use shields and adapters designed for XBee.

14.7 Communicating with Bluetooth Low
Energy Devices
Problem
You want to send and receive information with another device using
Bluetooth Low Energy, a more advanced, flexible, and modern alternative
to Bluetooth Classic. Bluetooth Low Energy (BLE) behaves very differently
than Bluetooth Classic and solves a different set of problems. While
Bluetooth Classic is good for sending relatively large amounts of data, BLE
is designed for devices that send less frequent, short messages (such as
sensors).

Solution
Use one of the many Arduino boards that have built-in BLE at Bluetooth
4.0 or higher: the Nano 33 BLE, Nano 33 IoT, Uno WiFi Rev 2, and MKR
WiFi 1010. Any of these will support the ArduinoBLE library, which
makes it easy to incorporate Bluetooth Low Energy in your projects.

The sketch is a simplified version of one of the examples included with the
ArduinoBLE library. Install the library using the Library Manager, and run

https://oreil.ly/jtwsm
https://oreil.ly/ulf8K
https://oreil.ly/nWQ7O

the following sketch:

/*

 * ArduinoBLE sketch

 * Allows control of the onboard LED over Bluetooth Low Energy

 */

#include <ArduinoBLE.h>

#define SERVICE_ID "19B10010-E8F2-537E-4F6C-D104768A1214"

#define CHAR_ID "19B10011-E8F2-537E-4F6C-D104768A1214"

// Create the service ID and the characteristic (read-write)

BLEService ledService(SERVICE_ID);

BLEByteCharacteristic ledCharacteristic(CHAR_ID, BLERead | BLEWrite);

BLEDescriptor ledDescriptor("2901", "LED state");

void setup()

{

 Serial.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT);

 if (!BLE.begin())

 {

 Serial.println("Failed to start BLE");

 while (1); // halt

 }

 // Set the name and add the ledService as an advertised service

 BLE.setLocalName("RemoteLED");

 BLE.setAdvertisedService(ledService);

 // Add the descriptor to the characteristic

 ledCharacteristic.addDescriptor(ledDescriptor);

 // Add the characteristic to the service

 ledService.addCharacteristic(ledCharacteristic);

 BLE.addService(ledService); // Add the service to the BLE system

 ledCharacteristic.writeValue(0); // Init to 0

 BLE.advertise();

}

void loop()

{

 BLE.poll();

 if (ledCharacteristic.written())

 {

 if (ledCharacteristic.value())

 {

 digitalWrite(LED_BUILTIN, HIGH);

 }

 else

 {

 digitalWrite(LED_BUILTIN, LOW);

 }

 }

}

Discussion
The sketch creates a service (ledService), which you can think of as
representing the Arduino itself. Next, it creates a read/write characteristic
(ledCharacteristic) to represent the onboard LED and the actions you
can take with it (turning it on and off). The long service and characteristic
IDs are taken from the ButtonLED example program, which you can find
under File→Examples (Examples from Custom
Libraries)→ArduinoBLE→Peripheral→ButtonLED. The sketch also
creates a descriptor for the characteristic, which gives it a friendly name.

Inside the setup function, the sketch opens the serial port, configures the
LED pin, and tries to start the BLE system. Next, it sets the name of the
device (RemoteLED) and configures the ledService as an advertised
service. It then adds the characteristic to the service, and registers the
service itself with the BLE system. Finally, it sets the ledCharacteristic
value to 0 and starts advertising the service.

Inside loop, the sketch repeatedly polls the BLE system. If the
characteristic has been written to remotely, it will turn the LED on or off,
depending on what its state has been changed to. To control it remotely, you
can install the LightBlue-Bluetooth Low Energy app on a mobile phone
(Android or iOS), and wait until the RemoteLED device appears in the list
as shown in Figure 14-11.

Connecting to the RemoteLED service

If you have a lot of previously paired devices, you can click the three-dot
icon in the upper right and deselect Show Paired Devices. Click
RemoteLED to connect to it, and then scroll down to Generic Attribute, and
look for the attribute label ending with a1214 that is tagged as Readable,
Writable. Click that line, then scroll down to Written Values, set the value to
1, and click Write. You should see the LED turn on. You can set it to 0 to
turn it off.

The ArduinoBLE library allows you to create devices that express many of
BLE’s capabilities: you could create a temperature sensor, heart rate
monitor, magnetometer, and more. It also offers the ability to interact with
various Bluetooth Low Energy devices, so you can connect to BLE
peripherals and exchange data with them as well.

See Also
Getting Started with Bluetooth Low Energy by Kevin Townsend, Carles
Cufí, Akiba and Robert Davidson (O’Reilly)

Make: Bluetooth by Alasdair Allan, Don Coleman, and Sandeep Mistry
(Make Community)

GATT specifications for BLE (services, characteristics, descriptors)

http://shop.oreilly.com/product/0636920033011.do
http://shop.oreilly.com/product/0636920031932.do
https://oreil.ly/Qgp7S

WiFi and Ethernet

15.0 Introduction
Want to share your sensor data? Let other people take control of your
Arduino’s actions? Your Arduino can communicate with a broader world
over Ethernet and WiFi networks. This chapter describes the many ways
you can use Arduino with the internet. It has examples that demonstrate
how to build and use web clients and servers, and it shows how to use the
most common internet communication protocols with Arduino.

The internet allows a client (e.g., a web browser) to request information
from a server (a web server or other internet service provider). This chapter
contains recipes showing how to make an internet client that retrieves
information from a web service. Other recipes in this chapter show how
Arduino can be an internet server that provides information to clients using
internet protocols and can even act as a web server that creates pages for
viewing in web browsers.

The Arduino Ethernet and WiFi libraries support a range of methods
(protocols) that enable your sketches to be an internet client or a server. The
libraries use a suite of standard internet protocols, and most of the low-level
plumbing is hidden. Getting your clients or servers up and running and
doing useful tasks will require understanding of the basics of network
addressing and protocols, and you may want to consult an online reference
or one of these introductory books:

Head First Networking by Al Anderson and Ryan Benedetti (O’Reilly)

Network Know-How: An Essential Guide for the Accidental Admin by
John Ross (No Starch Press)

Making Things Talk by Tom Igoe (Make Community)

http://oreilly.com/catalog/9780596521561
http://shop.oreilly.com/product/0636920031369.do

Here are some of the key concepts in this chapter. You may want to explore
them in more depth than is possible here:

Ethernet
This is the low-level signaling layer providing basic physical message-
passing capability. Source and destination addresses for these messages
are identified by a Media Access Control (MAC) address. Your Arduino
sketch defines a MAC address value that must be unique on your
network.

WiFi
In many respects, WiFi is a functional replacement for Ethernet. Like
Ethernet, WiFi provides also is a low-level signaling layer, and it also
uses MAC addresses to identify devices uniquely on the network. You
won’t need to hardcode a MAC address into your sketch because it is
embedded in the radio. In terms of where WiFi and Ethernet live in the
various layers that make up a networking stack, they are at the bottom,
so to all intents and purposes, they are interchangeable with each other,
at least from the Arduino programmer’s viewpoint. The setup and
initialization code is slightly different between WiFi and Ethernet, but
once the connection is up and running, the rest of the code can be
identical.

TCP and IP
Transmission Control Protocol (TCP) and Internet Protocol (IP) are core
internet protocols built above Ethernet or WiFi. They provide a
message-passing capability that operates over the global internet.
TCP/IP messages are delivered through unique IP addresses for the
sender and receiver. A server on the internet uses a numeric label
(address) that no other server will have so that it can be uniquely
identified. This address consists of four bytes, usually represented with
dots separating the bytes (e.g., 207.241.224.2 was, at the time of this
writing, an IP address used by the Internet Archive). The internet uses

the Domain Name System (DNS) service to translate the host name
(google.com) to the numeric IP address.

Local IP addresses
If you have more than one computer connected to the internet on your
home network using a broadband router or gateway, each computer
probably uses a local IP address that is provided by your router. The
local address is created using a Dynamic Host Configuration Protocol
(DHCP) service in your router, which the Arduino Ethernet and WiFi
libraries can use to obtain IP addresses from the router.

Web requests from a web browser and the resultant responses use Hypertext
Transfer Protocol (HTTP) messages. For a web client or server to respond
correctly, it must understand and respond to HTTP requests and responses.
Many of the recipes in this chapter use this protocol, and referring to one of
the references listed earlier for more details will help with understanding
how these recipes work in detail.

Web pages are usually formatted using Hypertext Markup Language
(HTML). Although it’s not essential to use HTML if you are making an
Arduino web server, as Recipe 15.11 illustrates, the web pages you serve
can use this capability.

Extracting data from a web server page intended to be viewed by people
using a web browser can be a little like finding a needle in a haystack
because of all the extraneous text, images, and formatting tags used on a
typical page. This task can be simplified by using the Stream parsing
functionality in Arduino to find particular sequences of characters and to
get strings and numeric values from a stream of data. In fact, it is unwise
and potentially dangerous to create any automated system that makes
requests to web servers that were intended to be used by humans. For
example, if you were to accidentally (or intentionally) create code that
performed a Google search every 5 seconds, your IP address may be
blocked from accessing Google services until you stop. If you are on an
office or school network where all the devices on your network are behind a
gateway, that gateway’s IP address may be blocked, which would be

extremely inconvenient for others. For this reason, it is best to use a
documented Web API, which you’ll see done throughout this chapter. An
API allows you to receive web responses in a leaner format than HTML,
such as JSON, XML, or CSV. This lets you limit the amount of data you are
requesting, and using API arguments, you can narrow those requests down
to just the data you need. Most important, using an API and abiding by its
rules allows you to work within agreed-upon parameters that the web
server’s operator has established.

15.1 Connecting to an Ethernet Network
Problem
You want to connect Arduino to an Ethernet network using an Ethernet
module such as the Arduino Ethernet shield or the Adafruit Ethernet
FeatherWing (which connects to boards in the Adafruit Feather form
factor).

Solution
This sketch uses the Ethernet library that is included with the Arduino IDE
to request some information from the Internet Archive. The library supports
a number of Ethernet modules. In order for this sketch to work correctly,
you will need to know several things about your network: the DNS server
IP address, the default gateway IP address, and one available static IP
address (an address that is outside the pool of automatically assigned
addresses). This information can be found in your network router’s
configuration utility, which is typically accessed via a web browser:

/*

 * Ethernet Web Client sketch

 * Connects to the network without DHCP, using

 * hardcoded IP addresses for device.

 */

#include <SPI.h>

#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // Must be unique

IPAddress ip(192, 168, 1, 177); // Must be a valid address for your network

char serverName[] = "archive.org";

EthernetClient client;

String request = "GET /advancedsearch.php?q=arduino&fl%5B%5D=description"

 "&rows=1&sort%5B%5D=downloads+desc&output=csv#raw HTTP/1.0";

void setup()

{

 Serial.begin(9600);

 while(!Serial); // for Leonardo and 32-bit boards

 Ethernet.begin(mac, ip);

 delay(1000); // give the Ethernet hardware a second to initialize

 Serial.println("Connecting to server...");

 int ret = client.connect(serverName, 80);

 if (ret == 1)

 {

 Serial.println("Connected");

 client.println(request);

 client.print("Host: "); client.println(serverName);

 client.println("Connection: close");

 client.println(); // Send the terminating blank line that HTTP requires

 }

 else

 {

 Serial.println("Connection failed, error was: ");

 Serial.print(ret, DEC);

 }

}

void loop()

{

 if (client.available())

 {

 char c = client.read();

 Serial.print(c); // echo all data received to the Serial Monitor

 }

 if (!client.connected())

 {

 Serial.println();

 Serial.println("Disconnecting.");

 client.stop();

 while(1); // halt

 }

}

Discussion
This sketch provides some simple code to help you confirm that your
Ethernet board is connected and configured correctly, and that it can reach
remote servers. It uses the Internet Archive API to search for Arduino by
using the parameter q=arduino in the request. That request variable
contains the request method (GET), the path of the request
(/advancedsearch.php), and the query string, which includes everything
from ? to the space before the HTTP protocol (HTTP/1.0). After the search
term, the query string specifies just one field in the response
(fl%5B%5D=description, or fl[]=description unescaped), and only one
result (rows=1). Because it sorts by number of downloads in descending
order (sort%5B%5D=downloads+desc), that one result is the #1 downloaded
Arduino resource on Archive.org. The sketch uses the HTTP 1.0 protocol
rather than the HTTP 1.1 protocol because HTTP 1.1 servers may use
features that make your sketch’s life more complicated. For example, HTTP
1.1 clients must support chunked responses, which causes the server to split
the responses into one or more chunks separated by a delimiter that
represents the length of each chunk. It’s up to the server as to whether it
sends a chunked response, but if the client specifies HTTP/1.0 in the
request, the server knows to not use HTTP/1.1 features.

NOTE
Because Arduino uses SPI to communicate with the Ethernet hardware, the line at the top of the
sketch that includes <SPI.h> is required for the Ethernet library to function properly.

There are several addresses that you may need to configure for the sketch to
successfully connect and display the results of the search on the Serial
Monitor:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

The MAC address uniquely identifies your Ethernet shield. Every
network device must have a different MAC address, and if you use
more than one Arduino shield on your network, each must use a
different address. Current Ethernet shields have a MAC address printed
on a sticker on the underside of the board. If you have a single Ethernet
shield, you don’t need to change the MAC address, unless by some
strange coincidence, you happen to have a device on your network that
uses the MAC address used in this example. You cannot make up any
MAC address you want, because most MAC addresses are assigned by
a central authority. However, there is a defined set of MAC addresses
that you can use for local addressing, and will work fine as long as you
don’t assign the same address to multiple devices.

MAC addresses consist of a series of bytes (called octets), and in the
sketch, they are expressed as a pair of nybbles (four bits, a half-byte that
can be represented by a single hexadecimal character). For the first octet
(0xDE), the high nybble is D and the low is E. If the second nybble of
the first octet is 2, 6, A, or E, you can use it as a local MAC address.
But, for example, { 0xAD, 0xDE, 0xBE, 0xEF, 0xFE, 0xED } would
not be a valid local MAC address because the second nybble of the first
octet (D) disqualifies it. So if you are putting multiple devices on the
same network and need to create MAC addresses, be sure to follow that
rule to avoid surprises.

IPAddress ip(192, 168, 1, 177);

The IP address is used to identify something that is communicating on
the internet and must also be unique on your network. The address
consists of four bytes, and the range of valid values for each byte
depends on how your network is configured. IP addresses are usually
expressed with dots separating the bytes—for example, 192.168.1.177.
In all the Arduino sketches, commas are used instead of dots because
the IPAddress class represents an IP address internally as an array of
bytes (see Recipe 2.4).

If your network is connected to the internet using a router or gateway,
you may need to provide the IP address of the gateway when you call
the Ethernet.begin function. If you don’t, the Ethernet library
replaces the last digit (177 in this example) with 1 to determine the
gateway and DNS addresses, which is a good guess most of the time.
You can find the address of the gateway and DNS server in the
configuration utility for your router, which is often web-based. Add two
lines after the IP and server addresses at the top of the sketch with the
address of your DNS server and gateway:

// add if needed by your router or gateway

IPAddress dns_server(192, 168, 1, 2); // The address of your DNS server

IPAddress gateway(192, 168, 1, 254); // your gateway address

And change the first line in setup to include the gateway address in the
startup values for Ethernet:

Ethernet.begin(mac, ip, dns_server, gateway);

The default gateway’s job is to route network packets to and from the
world outside your network, and the DNS server’s job is to convert a
server name like archive.org into an IP address like 207.241.224.2
so the Ethernet library knows the address of the server you are trying to
reach. Behind the scenes, the Ethernet library will pass that IP address
to your default gateway, which acts like the local post office: it will put

your message on the right “truck” needed to get to the next post office
between you and your destination. Each post office sends your message
along to the next until it reaches archive.org.

The client.connect function will return 1 if the hostname can be resolved
to an IP address by the DNS server and the client can connect successfully.
Here are the values that can be returned from client.connect:

1 = success

0 = connection failed

-1 = no DNS server given

-2 = No DNS records found

-3 = timeout

If the error is –1, you will need to manually configure the DNS server as
described earlier in this recipe.

Most Ethernet add-on modules will work without additional configuration.
However, in some cases, you need to specify the chip select pin to get the
Ethernet module to work correctly. Here is an excerpt from an Ethernet
library example sketch that shows some of the possibilities:

//Ethernet.init(10); // Most Arduino shields

 //Ethernet.init(5); // MKR ETH shield

 //Ethernet.init(0); // Teensy 2.0

 //Ethernet.init(20); // Teensy++ 2.0

 //Ethernet.init(15); // ESP8266 with Adafruit Featherwing Ethernet

 //Ethernet.init(33); // ESP32 with Adafruit Featherwing

If you need to use one of these, you can uncomment it and add it to your
sketch. You need to call Ethernet.init before Ethernet.begin. See the
documentation for your Ethernet module for more details. When the sketch
is running correctly, you’ll see the following output, which displays the
HTTP headers followed by a blank line, which is followed by the body of
the response. You’ll also see some diagnostic info indicating when the
connection is initiated and when the client disconnects from the server:

Connecting to server...

Connected

HTTP/1.1 200 OK

Server: nginx/1.14.0 (Ubuntu)

Date: Sun, 24 Nov 2019 03:36:50 GMT

Content-Type: text/csv;charset=UTF-8

Connection: close

Content-disposition: attachment; filename=search.csv

Strict-Transport-Security: max-age=15724800

"description"

"Arduino The Documentary 2010"

Disconnecting.

See Also
The web reference for the Arduino Ethernet library

15.2 Obtaining Your IP Address
Automatically
Problem
The IP address you use for the Ethernet shield must be unique on your
network and you would like this to be allocated automatically. You want the
Ethernet shield to obtain an IP address from a DHCP server.

Solution
This sketch uses a similar configuration process to the one from Recipe
15.1 but it does not pass an IP address to the Ethernet.begin method:

/*

 * DHCP sketch

 * Obtain an IP address from the DHCP server and display it

 */

#include <SPI.h>

#include <Ethernet.h>

https://oreil.ly/JPlKM

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // Must be unique

EthernetClient client;

void setup()

{

 Serial.begin(9600);

 while(!Serial); // for Leonardo and 32-bit boards

 if (Ethernet.begin(mac) == 0)

 {

 Serial.println("Failed to configure Ethernet using DHCP");

 while(1); // halt

 }

 delay(1000); // give the Ethernet hardware a second to initialize

}

#define MAINTAIN_DELAY 750 // Maintain DHCP lease every .75 seconds

void loop()

{

 static unsigned long nextMaintain = millis() + MAINTAIN_DELAY;

 if (millis() > nextMaintain)

 {

 nextMaintain = millis() + MAINTAIN_DELAY;

 int ret = Ethernet.maintain();

 if (ret == 1 || ret == 3)

 {

 Serial.print("Failed to maintain DHCP lease. Error: ");

 Serial.println(ret);

 }

 Serial.print("Current IP address: ");

 IPAddress myIPAddress = Ethernet.localIP();

 Serial.println(myIPAddress);

 }

}

Discussion

The major difference from the sketch in Recipe 15.1 is that there is no IP
(or gateway or DNS server) address variable. These values are acquired
from your DHCP server when the sketch starts. Also, there is a check to
confirm that the Ethernet.begin statement was successful. This is needed
to ensure that a valid IP address has been provided by the DHCP server
(network access is not possible without a valid IP address).

When a DHCP server assigns an IP address, your Arduino is given a lease.
When the lease expires, the DHCP server may give you the same IP address
or it may give you a new one. You must periodically call
Ethernet.maintain() to let the DHCP server know you’re still active. If
you don’t call it at least once per second, you could lose out on the renewal
when the time comes. DHCP lease behavior (length of lease, what the
DHCP server does when the lease is renewed) depends on the configuration
of your network router. Each time through, this code prints the IP address to
the Serial Monitor.

WARNING
Using DHCP features will increase your sketch size by a couple of kilobytes of program storage
space. If you are low on storage space, you can use a fixed IP address (see Recipe 15.1).

15.3 Sending and Receiving Simple
Messages (UDP)
Problem
You want to send and receive simple messages over the internet.

Solution
This sketch uses the Arduino UDP (User Datagram Protocol) library to send
and receive strings. UDP is a simpler, but slightly messier, message
protocol compared to TCP. While sending a TCP message will result in an
error if a message can’t reach its destination intact, UDP messages may

arrive out of order, or not at all, and your sketch won’t receive an error
when something goes wrong with delivery. But UDP has less overhead than
TCP, and is a good choice when you need to trade speed for reliability. In
this simple example, Arduino prints the received string to the Serial
Monitor and a string is sent back to the sender saying “acknowledged”:

/*

 * UDPSendReceiveStrings

 * This sketch receives UDP message strings, prints them to the serial port

 * and sends an "acknowledge" string back to the sender

 */

#include <SPI.h>

#include <Ethernet.h>

#include <EthernetUdp.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC address to use

unsigned int localPort = 8888; // local port to listen on

// buffers for receiving and sending data

char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; // buffer to hold incoming packet,

char replyBuffer[] = "acknowledged"; // a string to send back

// A UDP instance to let us send and receive packets over UDP

EthernetUDP Udp;

void setup()

{

 Serial.begin(9600);

 // start Ethernet and UDP

 Ethernet.begin(mac);

 Udp.begin(localPort);

}

void loop()

{

 // if there's data available, read a packet

 int packetSize = Udp.parsePacket();

 if(packetSize)

 {

 Serial.print("Received packet of size ");

 Serial.println(packetSize);

 // read packet into packetBuffer and get sender's IP addr and port number

 Udp.read(packetBuffer,UDP_TX_PACKET_MAX_SIZE);

 Serial.println("Contents:");

 Serial.println(packetBuffer);

 // send a string back to the sender

 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());

 Udp.write(replyBuffer);

 Udp.endPacket();

 }

 maintainLease(); // Keep our DHCP connection

 delay(10);

}

#define MAINTAIN_DELAY 750 // Maintain DHCP lease every .75 seconds

void maintainLease()

{

 static unsigned long nextMaintain = millis() + MAINTAIN_DELAY;

 if (millis() > nextMaintain)

 {

 nextMaintain = millis() + MAINTAIN_DELAY;

 int ret = Ethernet.maintain();

 if (ret == 1 || ret == 3)

 {

 Serial.print("Failed to maintain DHCP lease. Error: ");

 Serial.println(ret);

 }

 Serial.print("Current IP address: ");

 IPAddress myIPAddress = Ethernet.localIP();

 Serial.println(myIPAddress);

 }

}

You can test this by running the following Processing sketch on your
computer (see “The Processing Development Environment”). The
Processing sketch uses the UDP library that you need to install by clicking
Sketch→Import Library→ Add Library and then find and select the UDP
library by Stephane Cousot. When you run the Arduino sketch, it will
display its current IP address. You will need to change the IP address in the
Processing sketch on the line String ip = "192.168.1.177"; to match
the Arduino’s IP address:

// Processing UDP example to send and receive string data from Arduino

// press any key to send the "Hello Arduino" message

import hypermedia.net.*; // the Processing UDP library by Stephane Cousot

UDP udp; // define the UDP object

void setup() {

 udp = new UDP(this, 6000); // create datagram connection on port 6000

 //udp.log(true); // <-- print out the connection activity

 udp.listen(true); // and wait for incoming message

}

void draw()

{

}

void keyPressed() {

 String ip = "192.168.1.177"; // the remote IP address

 int port = 8888; // the destination port

 udp.send("Hello World", ip, port); // the message to send

}

void receive(byte[] data)

{

 for(int i=0; i < data.length; i++)

 print(char(data[i]));

 println();

}

Discussion
Plug the Ethernet shield into Arduino and connect the Ethernet cable to
your computer. Upload the Arduino sketch and run the Processing sketch on
your computer. Hit any key to send the “hello Arduino” message. Arduino
sends back “acknowledged,” which is displayed in the Processing text
window. String length is limited by a constant set in the EthernetUdp.h
library file; the default value is 24 bytes, but you can increase this by
editing the following line in Udp.h if you want to send longer strings:

#define UDP_TX_PACKET_MAX_SIZE 24

UDP is a simple and fast way to send and receive messages over Ethernet.
But it does have limitations—the messages are not guaranteed to be
delivered, and on a very busy network some messages could get lost or get
delivered in a different order than that in which they were sent. But UDP
works well for things such as displaying the status of Arduino sensors—
each message contains the current sensor value to display, and any lost
messages get replaced by messages that follow.

This sketch demonstrates sending and receiving sensor messages. It
receives messages containing values to be written to the analog output ports
and replies back to the sender with the values on the analog input pins:

/*

 * UDPSendReceive sketch:

 */

#include <SPI.h>

#include <Ethernet.h>

#include <EthernetUDP.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC address to use

unsigned int localPort = 8888; // local port to listen on

char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; // buffer to hold incoming packet,

int packetSize; // holds received packet size

const int analogOutPins[] = { 3,5,6,9 };

// A UDP instance to let us send and receive packets over UDP

EthernetUDP Udp;

void setup() {

 Ethernet.begin(mac,ip);

 Udp.begin(localPort);

 Serial.begin(9600);

 Serial.println("Ready");

}

void loop() {

 // if there's data available, read a packet

 packetSize = Udp.parsePacket();

 if(packetSize > 0)

 {

 Serial.print("Received packet of size ");

 Serial.print(packetSize);

 Serial.println(" with contents:");

 // read packet into packetBuffer and get sender's IP addr and port number

 packetSize = min(packetSize,UDP_TX_PACKET_MAX_SIZE);

 Udp.read(packetBuffer,UDP_TX_PACKET_MAX_SIZE);

 for(int i=0; i < packetSize; i++)

 {

 byte value = packetBuffer[i];

 if(i < 4)

 {

 // only write to the first four analog out pins

 analogWrite(analogOutPins[i], value);

 }

 Serial.println(value, DEC);

 }

 Serial.println();

 // tell the sender the values of our analog ports

 sendAnalogValues(Udp.remoteIP(), Udp.remotePort());

 }

 //wait a bit

 delay(10);

}

void sendAnalogValues(IPAddress targetIp, unsigned int targetPort)

{

 int index = 0;

 for(int i=0; i < 6; i++)

 {

 int value = analogRead(i);

 packetBuffer[index++] = lowByte(value); // the low byte);

 packetBuffer[index++] = highByte(value); // the high byte); }

 }

 //send a packet back to the sender

 Udp.beginPacket(targetIp, targetPort);

 Udp.write(packetBuffer);

 Udp.endPacket();

}

The sketch sends and receives the values on analog ports 0 through 5 using
binary data. If you are not familiar with messages containing binary data,
see the introduction to Chapter 4, as well as Recipes 4.6 and 4.7, for a
detailed discussion on how this is done on Arduino.

The difference here is that the data is sent using Udp.write instead of
Serial.write.

Here is a Processing sketch you can use with the preceding sketch. It has six
scroll bars that can be dragged with a mouse to set the six analogWrite
levels; it prints the received sensor data to the Processing text window.
After you set a slider, press any key to send the values to the Arduino:

// Processing UDPTest

// Demo sketch sends & receives data to Arduino using UDP

import hypermedia.net.*;

UDP udp; // define the UDP object

HScrollbar[] scroll = new HScrollbar[6]; //see: topics/gui/scrollbar

void setup() {

 size(256, 200);

 noStroke();

 for (int i=0; i < 6; i++) // create the scroll bars

 scroll[i] = new HScrollbar(0, 10 + (height / 6) * i, width, 10, 3*5+1);

 udp = new UDP(this, 6000); // create datagram connection on port 6000

 udp.listen(true); // and wait for incoming message

}

void draw()

{

 background(255);

 fill(255);

 for (int i=0; i < 6; i++) {

 scroll[i].update();

 scroll[i].display();

 }

}

void keyPressed()

{

 String ip = "192.168.137.64"; // the remote IP address (CHANGE THIS!)

 int port = 8888; // the destination port

 byte[] message = new byte[6] ;

 for (int i=0; i < 6; i++) {

 message[i] = byte(scroll[i].getPos());

 println(int(message[i]));

 }

 println();

 udp.send(message, ip, port);

}

void receive(byte[] data)

{

 println("incoming data is:");

 for (int i=0; i < min(6, data.length); i++)

 {

 scroll[i].setPos(data[i]);

 print(i);

 print(":");

 println((int)data[i]);

 }

}

class HScrollbar

{

 int swidth, sheight; // width and height of bar

 int xpos, ypos; // x and y position of bar

 float spos, newspos; // x position of slider

 int sposMin, sposMax; // max and min values of slider

 int loose; // how loose/heavy

 Boolean over; // is the mouse over the slider?

 Boolean locked;

 float ratio;

 HScrollbar (int xp, int yp, int sw, int sh, int l)

 {

 swidth = sw;

 sheight = sh;

 int widthtoheight = sw - sh;

 ratio = (float)sw / (float) widthtoheight;

 xpos = xp;

 ypos = yp-sheight/2;

 spos = xpos + swidth/2 - sheight/2;

 newspos = spos;

 sposMin = xpos;

 sposMax = xpos + swidth - sheight;

 loose = l;

 }

 void update()

 {

 if (over())

 {

 over = true;

 }

 else

 {

 over = false;

 }

 if (mousePressed && over)

 {

 locked = true;

 }

 if (!mousePressed)

 {

 locked = false;

 }

 if (locked)

 {

 newspos = constrain(mouseX-sheight/2, sposMin, sposMax);

 }

 if (abs(newspos - spos) > 1)

 {

 spos = spos + (newspos-spos)/loose;

 }

 }

 int constrain(int val, int minv, int maxv)

 {

 return min(max(val, minv), maxv);

 }

 Boolean over()

 {

 if (mouseX > xpos && mouseX < xpos+swidth &&

 mouseY > ypos && mouseY < ypos+sheight)

 mouseY > ypos && mouseY < ypos+sheight)

 mouseY > ypos && mouseY < ypos+sheight)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 void display()

 {

 fill(255);

 rect(xpos, ypos, swidth, sheight);

 if (over || locked)

 {

 fill(153, 102, 0);

 }

 else

 {

 fill(102, 102, 102);

 }

 rect(spos, ypos, sheight, sheight);

 }

 float getPos()

 {

 return spos * ratio;

 }

 void setPos(int value)

 {

 spos = value / ratio;

 }

}

15.4 Use an Arduino with Built-in WiFi
Problem
You want to build wireless networking projects with an Arduino board that
has a built-in WiFi coprocessor.

Solution
A select number of Arduino boards combine an ARM or AVR processor
with a WiFi coprocessor in a small form factor. The most current boards are
based on the NINA-W102 modules from u-blox, which are powered by an
Espressif ESP32 module.

This sketch uses the WiFiNINA library that is available from the Library
Manager. It supports the WiFi module that’s built into the Arduino Uno
WiFi Rev 2, Nano 33 IoT, MKR 1010, and MKR VIDOR 4000. The
Adafruit Airlift modules, such as the breakout board (4201) and shield
(4285), are compatible with this recipe, but Adafruit recommends that you
use their customized WiFiNINA library.

To connect to your WiFi network, add YOUR_SSID and password to the
sketch where indicated:

/*

 * WiFiNINA Web Client sketch

 * Requests some data from the Internet Archive

 */

#include <SPI.h>

#include <WiFiNINA.h>

const char ssid[] = "YOUR_SSID";

const char password[] = "YOUR_PASSWORD";

WiFiClient client; // WiFi client

https://oreil.ly/OSay1

char serverName[] = "archive.org";

String request = "GET /advancedsearch.php?q=arduino&fl%5B%5D=description"

 "&rows=1&sort%5B%5D=downloads+desc&output=csv#raw HTTP/1.0";

bool configureNetwork()

{

 int status = WL_IDLE_STATUS; // WiFistatus

 if (WiFi.status() == WL_NO_MODULE)

 {

 Serial.println("Couldn't find WiFi hardware.");

 return false;

 }

 String fv = WiFi.firmwareVersion();

 if (fv < WIFI_FIRMWARE_LATEST_VERSION)

 {

 Serial.println("Please upgrade the WiFi firmware");

 }

 while (status != WL_CONNECTED)

 {

 Serial.print("Attempting WiFi connection to "); Serial.println(ssid);

 status = WiFi.begin(ssid, password); // Attempt connection until

successful

 delay(1000); // Wait 1 second

 }

 return true;

}

void setup()

{

 Serial.begin(9600);

 if (!configureNetwork())

 {

 Serial.println("Stopping.");

 while(1); // halt

 }

 Serial.println("Connecting to server...");

 int ret = client.connect(serverName, 80);

 if (ret == 1)

 {

 Serial.println("Connected");

 client.println(request);

 client.print("Host: "); client.println(serverName);

 client.println("Connection: close");

 client.println();

 }

 else

 {

 Serial.println("Connection failed, error was: ");

 Serial.print(ret, DEC);

 }

}

void loop()

{

 if (client.available())

 {

 char c = client.read();

 Serial.print(c); // echo all data received to the Serial Monitor

 }

 if (!client.connected())

 {

 Serial.println();

 Serial.println("Disconnecting.");

 client.stop();

 while(1); // halt

 }

}

TIP
If you need to connect to an SSL server, use WiFiSSLClient instead of WiFiClient, and connect
to the server’s SSL port (usually 443) instead of port 80 when you call client.connect.

Discussion
This sketch is very similar to the sketch from Recipe 15.1, with a few
notable changes. See that recipe’s Discussion for details on the structure of
the request and HTTP protocol. Most important and obvious is that it uses
WiFi instead of Ethernet to connect. Because the code for the configuration
of the WiFi module is a little more complex than Ethernet, it’s in a separate
function called configureNetwork. Aside from that, the rest of the code in
loop and setup are the same as the Ethernet sketch.

This sketch doesn’t use a hardcoded IP address, but instead gets its address
from DHCP. With the Ethernet shield, using DHCP increases the size of
your sketch significantly. This is not the case with the WiFiNINA library
because so much of the work is handled by the WiFi coprocessor module. If
you did want to use a fixed IP address with the WiFiNINA library, you
could declare an IP address (for example, IPAddress ip(192, 168, 0,
177);), and then call WiFi.config(ip); before your call to
WiFi.begin(). All of the WiFi-enabled Arduino boards have MAC
addresses defined in the WiFi module, so you do not need to define a MAC
address in your sketch.

To run this sketch, you need to make sure that you’ve installed the correct
board support in the Arduino IDE, and you’ll need to install the WiFiNINA
library as well. Select Tools→Board→Boards Manager. For the Uno WiFi
Rev 2, install support for Arduino megaAVR Boards. For the Nano 33 IoT,
MKR WiFi 1010, or MKR Vidor 4000, install support for Arduino SAMD
Boards. For all boards, use the Library Manager to install the WiFiNINA
library. After you’ve installed the support for your board and the
WiFiNINA library, you can connect your board and choose your board and
the port with Tools→Board and Tools→Port, then upload the sketch.

Open the Serial Monitor, and if all goes well, you’ll make a connection to
the WiFi network and you’ll see the response from the Internet Archive
appear:

Please upgrade the WiFi firmware

Attempting WiFi connection to YOUR_SSID

Connecting to server...

Connected

HTTP/1.1 200 OK

Server: nginx/1.14.0 (Ubuntu)

Date: Sun, 24 Nov 2019 02:46:19 GMT

Content-Type: text/csv;charset=UTF-8

Connection: close

Content-disposition: attachment; filename=search.csv

Strict-Transport-Security: max-age=15724800

"description"

"Arduino The Documentary 2010"

Disconnecting.

If you see the message shown at the top of the preceding output (Please
upgrade the WiFi firmware) it means that the WiFi module’s firmware
may be out of date. To update it, open Tools→WiFi101/WiFiNINA
Firmware Updater. Using the dialog that appears, first select your board,
then open the updater sketch and flash it to your board. After it’s flashed,
select the latest firmware for your board, then click Update Firmware.

15.5 Connect to WiFi with Low-Cost Modules
Problem
You want to build low-cost embedded WiFi-enabled projects using the
Arduino environment.

Solution

The Arduino environment supports network-enabled projects such as web
servers and web clients. With a WiFi-enabled board, you can build wireless
networking projects. There are many Arduino and Arduino-compatible
boards that support WiFi, but there is only one such board that you can
purchase for under US$2 (in quantity): the ESP-01, which is powered by
the ESP8266 from Espressif Systems. Unlike most other boards, the
ESP8266 does not have built-in USB. You can either use a USB-to-Serial
adapter (see “Serial Hardware”) or use an Arduino board as a USB-to-Serial
adapter, as shown here. Upload an empty sketch
(File→Examples→01.Basics→Bare Minimum), then hook up the ESP8266
and the Arduino as shown in Figure 15-1. The ESP8266 will need a 3.3V
voltage regulator such as an LD1117V33 because the Arduino does not
supply enough power on the 3.3V pin to drive the ESP8266.

NOTE
You can also use a board that has built-in USB support, such as the Adafruit Feather HUZZAH
with ESP8266 (2821) or the SparkFun ESP8266 Thing Dev Board (WRL-13711). You will still
need to install the ESP8266 board support package, but you won’t need to wire up the module as
shown here, nor will you need to use an Arduino as a USB host. These boards aren’t as
inexpensive as the bare modules, but they are incredibly convenient. You will not need to wire or
press the PROG or RESET button as you do with the ESP-01 modules because the bootloader on
these boards handles the reset sequence for you.

Before you can program the ESP8266, you’ll need to install ESP8266
support in the Arduino IDE. Open the Preferences dialog
(File→Preferences) and click the icon to the right of the “Additional Boards
Manager URLs” field. Add
http://arduino.esp8266.com/stable/package_esp8266com_index.js

on on a line by itself and click OK, then click OK to dismiss the preferences
dialog. Next, open the Boards Manager (Tools→Board→Boards Manager),
and search for ESP8266. Install the “esp8266 by ESP8266 Community”
board package.

Use Tools→Board→Generic ESP8266 Module to select the ESP8266
board, and then use the Tools→Port menu to specify the port of the Arduino
that’s connected to the ESP8266 module. Select Tools→Builtin Led and set
it to 2, because the external LED is connected to GPIO 2 (there is an
onboard LED, but using it can interfere with Serial output). Next, edit the
sketch and set ssid to the name of a 2.4 GHz WiFi network, and password
to the password.

Hold down the PROG button, and upload the sketch. If you see the word
“Connecting” appear in the IDE output for more than a few seconds, press
and release the RESET button (keep holding the PROG button) and wait a
couple seconds. You may need to do this more than once, and it may take a
few tries to get it right. When you see a message like Writing at
0x00000000... (7 %), you’re on your way. The rest of the output may not
autoscroll, but keep holding the PROG button until you see Done
uploading. Next, press the RESET button to reboot the module. Open the
Serial Monitor, and then use a web browser to visit the URL displayed in
the Serial Monitor. Each time you click the button, the LED will blink.
After you have programmed the ESP-01, you can disconnect it from the
Arduino or USB-to-Serial adapter and power it from a 3V source, and it
will continue to run as long as it has power:

/*

 * ESP-01 sketch

 * Control an LED from a web page

 */

#include <ESP8266WiFi.h>

#include <ESP8266WebServer.h>

const char* ssid = "YOUR_SSID";

const char* password = "YOUR_PASSWORD";

ESP8266WebServer server(80);

const int led = LED_BUILTIN;

int ledState = LOW;

// An HTML form with a button

static const char formText[] PROGMEM =

 "<form action=\"/\">\n"

 "<input type=\"hidden\" name=\"toggle\"/>\n"

 "<button type=\"submit\">Toggle LED</button>\n"

 "</form>\n";

// Handle requests for the root document (/)

void handleRoot()

{

 // If the server got the "toggle" argument, toggle the LED.

 if (server.hasArg("toggle"))

 {

 ledState = !ledState;

 digitalWrite(led, !ledState);

 }

 // Display the form

 server.send(200, "text/html", FPSTR(formText));

}

// Error message for unrecognized file requests

void handleNotFound() {

 server.send(404, "text/plain", "File not found\n\n");

}

void setup()

{

 Serial.begin(9600);

 pinMode(led, OUTPUT);

 digitalWrite(led, !ledState);

 // Initialize WiFi

 WiFi.mode(WIFI_STA);

 WiFi.begin(ssid, password);

 // Wait for connection

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println();

 // Set up handlers for the root page (/) and everything else

 server.on("/", handleRoot);

 server.onNotFound(handleNotFound);

 server.begin(); // Start the server

}

#define MSG_DELAY 10000

void loop()

{

 static unsigned long nextMsgTime = 0;

 server.handleClient(); // Process requests from HTTP clients

 if (millis() > nextMsgTime)

 {

 // Show the URL in the serial port

 Serial.print("Visit me at http://");

 Serial.println(WiFi.localIP());

 nextMsgTime = millis() + MSG_DELAY;

 }

}

Using an Arduino as a USB-to-Serial adapter for the ESP8266

Discussion
This sketch includes the ESP8266 headers needed to connect to WiFi and
construct a web server. It defines variables for your WiFi network’s SSID
and password (which you will need to set before uploading the sketch) as
well as an object for the web server. It also creates variables for the LED
(LED_BUILTIN) that you’ll blink, the LED state, and a variable (formText)
that holds an HTML fragment that displays a button. That variable is stored
in flash memory rather than dynamic memory (see Recipe 17.3). With the
ESP-01 board, connecting GPIO2 to GND at boot time prevents the board
from booting properly, so we’re using inverted logic. Because the LED is
tied to 3.3V, driving GPIO2 LOW will turn on the LED.

The example shown in the Solution is a bit more involved than the
examples you saw for Ethernet or boards with built-in WiFi. That’s because
the ESP8266WebServer is a bit more capable than the built-in Server class.
In particular, it includes a number of features to make it easier to serve up
web documents. Other boards can accomplish the same tasks, but they are
much easier to develop thanks to the libraries that are included with the
ESP8266 board package.

The following two functions are handlers. A handler’s job is to handle
requests for a resource such as a web page. Every web server has a root
document. When you go to http://oreilly.com, with or without a trailing /,
you are making a request for the root (/) of the website. The root handler,
handleRoot, first checks for the presence of a parameter named toggle in
the request. If so, it toggles the state of the LED (HIGH to LOW or vice versa).
Then, it displays the HTML fragment contained within formText.

The HTML fragment includes a form, which has an associated action (/,
the web server root). When the form is submitted, it transmits any input
elements as arguments to the handler. There is a hidden element named
toggle, and a button that’s designed as the submission trigger
(type="submit"). When you click the Submit button, it sends along
toggle as an argument, which causes the LED to switch on or off.

The next handler’s job is to send a 404 error code for any other resource
that you request from the server. After that comes setup, which initializes
Serial, configures the LED, initializes WiFi, and connects to your network.
After that, it configures the two handlers, and starts the server.

Inside the loop, the sketch calls server.handleClient() to process any
requests. If more than 10 seconds (MSG_DELAY) has passed, it prints the
URL to the serial port. That way, you can open the Serial Monitor at any
time to be reminded of the URL. Open this from a browser that’s on the
same network as the ESP-01, and you can try out the button.

At the time of writing, there are over 16 different kinds of ESP8266
modules from the manufacturer of the chip, Espressif Systems. These vary
by memory capacity, number of pins, and module size. A good overview of
the modules can be found on the ESP8266 community wiki.

To enable these modules to be easily used in IoT projects, a number of
suppliers to the maker community have created boards that add USB
connectivity and other features that provide battery charging and simple
programming when connected to the Arduino IDE. The easiest way to get
started is to pick one with USB, such as Adafruit’s Feather HUZZAH (part

http://oreilly.com/
https://espressif.com/
https://oreil.ly/bK8-w

number 2821) or the SparkFun ESP8266 Thing (WRL-13231). Both are
relatively inexpensive, but not as cheap as a bare ESP8266 board like the
ESP-01. The See Also section has links to step-by-step tutorials for getting
started with both of these boards.

All of these have more than enough memory and computing power to
support most projects. The ESP8266 has a 32-bit microprocessor core that
runs at 80 MHz by default. It has 80K of RAM, and depending on which
board you get, anywhere between 512K and 16 MB of flash storage.

See Also
Sparkfun esp8266-thing tutorial

Adafruit Feather Huzzah esp8266 tutorial

Make Magazine article on connecting the ESP8266

The ESP32 is a substantial upgrade to the ESP8266. It has more memory,
runs faster, and can also support Bluetooth Low Energy. You can use it as a
standalone microcontroller board, but you will also find it as a WiFi
coprocessor in boards like the Arduino MKR WiFi 1010 and Arduino Uno
WiFi Rev2 (Recipe 15.4).

15.6 Extracting Data from a Web Response
Problem
You want Arduino to get data from a web server. For example, you want to
parse string, floating-point, or integer data from a web server’s response.

Solution
This sketch uses the Open Notify web service to determine the position of
the International Space Station. It parses out the time of the response as
well as the ISS’s position in latitude and longitude, and prints the result to
the Serial Monitor. This sketch has been designed to work with either the
Ethernet library, the WiFiNINA library, or an ESP8266 board. You will

https://oreil.ly/IAzBN
https://oreil.ly/woknW
https://oreil.ly/ZgaaE
http://open-notify.org/Open-Notify-API

need to uncomment the appropriate #include at the top of the sketch. This
sketch consists of four files in all. The main sketch is shown first, followed
by three header files. You’ll need to install the Time library before you
compile this sketch (see Recipe 12.4):

/*

 * Client-agnostic web data extraction sketch

 * A sketch that can work with ESP8266, WiFiNINA, and Ethernet boards

 */

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

#include <TimeLib.h>

char server[] = "api.open-notify.org";

void setup()

{

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 {

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 }

 int ret = client.connect(server, 80);

 if (ret == 1)

 {

 Serial.println("Connected");

 client.println("GET /iss-now.json HTTP/1.0"); // the HTTP request

 client.print("Host: "); client.println(server);

 client.println("Connection: close");

 client.println();

 }

 else

 {

 Serial.println("Connection failed, error was: ");

 Serial.print(ret, DEC);

 while(1)

 {

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 }

}

char timestampMarker[] = "\"timestamp\":";

char posMarker[] = "\"iss_position\":";

void loop()

{

 if (client.available()) {

 if (client.find('"')) // Start of a string identifier

 {

 String id = client.readStringUntil('"');

 if (id.equals("timestamp")) // Start of timestamp

 {

 if (client.find(':')) // A ":" follows each identifier

 {

 unsigned long timestamp = client.parseInt();

 setTime(timestamp); // Set clock to the time of the response

 digitalClockDisplay();

 }

 else

 {

 Serial.println("Failed to parse timestamp.");

 }

 }

 if (id.equals("iss_position")) // Start of position data

 {

 if (client.find(':')) // A ":" follows each identifier

 {

 // Labels start with a " and position data ends with a }

 while (client.peek() != '}' && client.find('"'))

 {

 String id = client.readStringUntil('"'); // Read the label

 float val = client.parseFloat(); // Read the value

 client.find('"'); // Consume the trailing " after the float

 Serial.print(id + ": "); Serial.println(val, 4);

 }

 }

 else

 {

 Serial.println("Failed to parse position data.");

 }

 }

 }

 }

 if (!client.connected())

 {

 Serial.println();

 Serial.println("disconnecting.");

 client.stop();

 while(1)

 {

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 }

}

String padDigits(int digit)

{

 String str = String("0") + digit; // Put a zero in front of the digit

 return str.substring(str.length() - 2); // Remove all but last two

characters

}

void digitalClockDisplay()

{

 String datestr = String(year()) + "-" + padDigits(month()) +

 "-" + padDigits(day());

 String timestr = String(hour()) + ":" + padDigits(minute()) +

 ":" + padDigits(second());

 Serial.println(datestr + " " + timestr);

}

Following is the source code for the ESP8266 header file. While it doesn’t
matter what you name the main sketch, you must create this by clicking the
down-pointing arrow icon at the right of the Arduino IDE (just below the
Serial Monitor icon), and by choosing New Tab. When Arduino prompts
you for the new filename, you must name this USE_ESP8266.h. If you use
this header, be sure to replace YOUR_SSID and YOUR_PASSWORD:

#include <SPI.h>

#include <ESP8266WiFi.h>

const char ssid[] = "YOUR_SSID";

const char password[] = "YOUR_PASSWORD";

WiFiClient client;

bool configureNetwork()

{

 WiFi.mode(WIFI_STA);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) // Wait for connection

 {

 delay(1000);

 Serial.print("Waiting for connection to "); Serial.println(ssid);

 }

 return true;

}

Here is the source code for the Ethernet header file. You must create this the
same way you created the ESP8266 header file, but name this one
USE_Ethernet.h. If you would prefer to use a hardcoded IP address, see
Recipe 15.1 and modify this code accordingly:

#include <SPI.h>

#include <Ethernet.h>

byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

EthernetClient client;

bool configureNetwork()

{

 if (Ethernet.begin(mac))

 {

 delay(1000); // give the Ethernet module a second to initialize

 return true;

 }

 else

 {

 return false;

 }

}

NOTE
Unlike Recipe 15.2, this recipe doesn’t call Ethernet.maintain() to maintain the DHCP lease.
Neither the WiFiNINA nor the ESP8266 require you to call maintain() periodically, but if you
plan to create an Ethernet project that runs for a long time, you will need it. For an example of
how you could add maintain() to a sketch, see Recipe 15.8.

Here is the source code for the WiFiNINA header file. You must create this
the same way you created the ESP8266 header file, but name this one
USE_NINA.h. If you use this header, be sure to replace YOUR_SSID and
YOUR_PASSWORD:

#include <SPI.h>

#include <WiFiNINA.h>

const char ssid[] = "YOUR_SSID";

const char password[] = "YOUR_PASSWORD";

WiFiClient client;

bool configureNetwork()

{

 int status = WL_IDLE_STATUS; // WiFistatus

 if (WiFi.status() == WL_NO_MODULE)

 {

 Serial.println("Couldn't find WiFi hardware.");

 return false;

 }

 String fv = WiFi.firmwareVersion();

 if (fv < WIFI_FIRMWARE_LATEST_VERSION)

 {

 Serial.println("Please upgrade the WiFi firmware");

 }

 while (status != WL_CONNECTED)

 {

 Serial.print("Attempting WiFi connection to "); Serial.println(ssid);

 status = WiFi.begin(ssid, password); // Attempt connection until

successful

 delay(1000); // Wait 1 second

 }

 return true;

}

Discussion
The ISS web service API from Open Notify returns results in the JSON
(JavaScript Object Notation) format, which consists of attribute/value pairs
of the form "attribute": value. The sketch makes a request to the web
server using the same technique shown in Recipes 15.1 and 15.4.

The sketch searches the JSON response for values by using the Stream
parsing functionality described in Recipe 4.5. In the loop, it looks for a
double-quote character ("), which signifies the start of a label such as
“timestamp.” After the sketch finds the timestamp attribute label, it
retrieves the first integer that follows, which is a number of seconds since
the beginning of the Unix epoch. Conveniently, these are compatible with
the functions from the Time library you saw in Recipe 12.4, so the sketch
can use those functions to set the current time. It then prints the time using a
digitalClockDisplay function similar to the one from that recipe.

If the sketch finds the "iss_position" identifier, it then looks for two more
labels, which will be latitude and longitude, parses the float values
associated with them, and displays each. When it either can’t find any more
(there should only be those two), or it runs into a } character (the end of the
"iss_position" identifier), it will finish. Here is sample output from the
web service, with attribute values highlighted in bold:

{"message": "success", "timestamp": 1574635904, "iss_position":

{"latitude": "-37.7549", "longitude": "95.5304"}}

And here is the output that the sketch will display to the Serial Monitor:

Connected

2019-11-24 22:51:44

latitude: -37.7549

longitude: 95.5304

disconnecting.

See Also
Open Notify API documentation

A list of publicly accessible Web APIs

15.7 Requesting Data from a Web Server
Using XML
Problem
You want to retrieve data from a site that publishes information in XML
format. For example, you want to use values from specific fields in weather
providers offering XML API services.

Solution
This sketch retrieves the weather in London from the Open Weather service.
You must set up the three header files as described in Recipe 15.6 and
uncomment one of the #include lines to choose which kind of network
connection to use. If you use WiFiNINA or ESP8266, you’ll need to change
your SSID and password in the corresponding header file:

https://oreil.ly/OaTHs
https://oreil.ly/_3OTa

/*

 * Simple Weather Client

 * gets xml data from http://openweathermap.org/

 * reads temperature from field: <temperature value="44.89"

 * writes temperature to analog output port.

*/

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

char serverName[] = "api.openweathermap.org";

String request =

 "GET /data/2.5/weather?q=London,UK&units=imperial&mode=xml&APPID=";

String APIkey = "YOUR_KEY_HERE"; // see text

void setup()

{

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

}

void loop()

{

 if (client.connect(serverName, 80) > 0)

 {

 Serial.println("Connected");

 // get weather

 client.println(request + APIkey + " HTTP/1.0");

 client.print("Host: "); client.println(serverName);

 client.println("Connection: close");

 client.println();

 }

 else

 {

 Serial.println(" connection failed");

 }

 if (client.connected())

 {

 if (client.find("<temperature value="))

 {

 int temperature = client.parseInt();

 Serial.print("Temperature: "); Serial.println(temperature);

 }

 else

 Serial.print("Could not find temperature field");

 if (client.find("<humidity value="))

 {

 int humidity = client.parseInt();

 Serial.print("Humidity: "); Serial.println(humidity);

 }

 else

 Serial.print("Could not find humidity field");

 }

 else

 {

 Serial.println("Disconnected");

 }

 client.stop();

 client.flush();

 delay(60000); // wait a minute before next update

}

Discussion
Open Weather provides weather data for over 200,000 cities worldwide. It
is a free service for casual use but you will need to register to get an API
key. Read here for information on how to get a key and the terms of use.

The sketch connects to api.openweathermap.org and then sends the
following request to the web service at
http://api.openweathermap.org/data/2.5/weather:

?q=London,UK&units=imperial&mode=xml&APPID=YOUR_KEY_HERE

The string following q= specifies the city and country (see this complete list
of cities). units=imperial will return temperature in Fahrenheit, and
mode=xml causes the API to return results in XML format. You will need to
change this line of code to put your Open Weather Map API key in: String
APIkey = "YOUR_KEY_HERE";.

The XML data returned looks like this:

<current>

 <city id="2643743" name="London">

 <coord lon="-0.13" lat="51.51"/>

 <country>GB</country>

 <timezone>0</timezone>

 <sun rise="2019-11-25T07:34:34" set="2019-11-25T16:00:36"/>

 </city>

 <temperature value="48" min="45" max="51.01" unit="fahrenheit"/>

 <humidity value="93" unit="%"/>

 <pressure value="1004" unit="hPa"/>

 <wind>

 <speed value="6.93" unit="mph" name="Light breeze"/>

 <gusts/>

 <direction value="100" code="E" name="East"/>

 </wind>

 <clouds value="75" name="broken clouds"/>

 <visibility value="10000"/>

 <precipitation mode="no"/>

https://oreil.ly/dLliX
https://oreil.ly/p-IRB
https://oreil.ly/oXLrI

 <weather number="803" value="broken clouds" icon="04n"/>

 <lastupdate value="2019-11-25T02:02:46"/>

</current>

The sketch parses the data by using client.find() to locate the
temperature and humidity tags, and then uses client.parseInt() to
retrieve the values for each of those. The sketch will retrieve the weather
data every 60 seconds. This is a relatively small XML message. If you are
processing a very large XML message, you could end up using too much of
Arduino’s resources (CPU and RAM). JSON can often be a more compact
notation (see Recipe 15.6).

15.8 Setting Up an Arduino to Be a Web
Server
Problem
You want Arduino to serve web pages. For example, you want to use your
web browser to view the values of sensors connected to Arduino analog
pins.

Solution
This is based on the standard Arduino Web Server Ethernet example sketch
distributed with Arduino that shows the value of the analog input pins. It
has been modified to be adaptable to boards with WiFiNINA modules
(Recipe 15.4) as well as the ESP8266 (Recipe 15.5). You will need to
uncomment the appropriate #include at the top of the sketch. This sketch
consists of four files in all. The main sketch is shown first, followed by
three header files:

/*

 * Web Server sketch

 */

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

void setup() {

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 server.begin();

}

#define MSG_DELAY 10000

void loop() {

 static unsigned long nextMsgTime = 0;

 if (millis() > nextMsgTime)

 {

 Serial.print("Visit me at http://");

 Serial.println(getIP());

 nextMsgTime = millis() + MSG_DELAY;

 }

 maintain(); // Maintain the DHCP lease manually if needed

 client = server.available(); // Listen for connections

 if (client) {

 Serial.println("New client connection");

 // an http request ends with a blank line

 boolean currentLineIsBlank = true;

 while (client.connected())

 {

 if (client.available())

 {

 char c = client.read();

 Serial.write(c);

 // If you've reached the end of a blank line and found another \n,

 // then you've reached the end of the headers.

 if (c == '\n' && currentLineIsBlank)

 {

 // Send a standard http response header

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println("Connection: close"); // Close connection after

response

 client.println("Refresh: 5"); // Refresh every 5 sec

 client.println(); // End of headers

 client.println("<!DOCTYPE HTML>");

 client.println("<HTML>");

 // Display the value of each analog input pin

 for (int analogChannel = 0; analogChannel < 6; analogChannel++)

 {

 int sensorReading = analogRead(analogChannel);

 client.print("A"); client.print(analogChannel);

 client.print(" = "); client.print(sensorReading);

 client.println("
");

 }

 client.println("</HTML>");

 break; // Break out of the while loop

 }

 if (c == '\n')

 {

 // you're starting a new line

 currentLineIsBlank = true;

 }

 else if (c != '\r')

 {

 // you've gotten a character on the current line

 currentLineIsBlank = false;

 }

 }

 }

 // Give the web browser time to receive the data

 delay(100);

 // close the connection:

 client.stop();

 Serial.println("Client disonnected");

 }

}

Here is the source code for the Ethernet header file. You must create this the
same way you created the ESP8266 header file, but name this one
USE_Ethernet.h. Because this sketch is a long-running server, the
maintain() function is included, which is called from within the sketch’s
loop function. This will keep the DHCP lease active (see Recipe 15.2). If
you would prefer to use a hardcoded IP address, see Recipe 15.1 and
modify this code accordingly:

#include <SPI.h>

#include <Ethernet.h>

byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

EthernetClient client;

EthernetServer server(80);

bool configureNetwork()

{

 if (Ethernet.begin(mac))

 {

 delay(1000); // give the Ethernet module a second to initialize

 return true;

 }

 else

 {

 return false;

 }

}

IPAddress getIP()

{

 return Ethernet.localIP();

}

#define MAINTAIN_DELAY 750 // Maintain DHCP lease every .75 seconds

void maintain()

{

 static unsigned long nextMaintain = millis() + MAINTAIN_DELAY;

 if (millis() > nextMaintain)

 {

 nextMaintain = millis() + MAINTAIN_DELAY;

 int ret = Ethernet.maintain();

 if (ret == 1 || ret == 3)

 {

 Serial.print("Failed to maintain DHCP lease. Error: ");

 Serial.println(ret);

 }

 }

}

Here is the source code for the ESP8266 header file. While it doesn’t matter
what you name the main sketch, you must create this by clicking the down-
pointing arrow icon at the right of the Arduino IDE (just below the Serial
Monitor icon), and choose New Tab. When Arduino prompts you for the
new filename, you must name this USE_ESP8266.h. If you use this header,
be sure to replace YOUR_SSID and YOUR_PASSWORD. The maintain function
is empty because you do not need to manually keep the lease active with the
ESP8266 (or WiFiNINA):

#include <SPI.h>

#include <ESP8266WiFi.h>

const char ssid[] = "YOUR_SSID";

const char password[] = "YOUR_PASSWORD";

WiFiClient client;

WiFiServer server(80);

bool configureNetwork()

{

 WiFi.mode(WIFI_STA);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) // Wait for connection

 {

 delay(1000);

 Serial.print("Waiting for connection to "); Serial.println(ssid);

 }

 return true;

}

IPAddress getIP()

{

 return WiFi.localIP();

}

void maintain()

{

 // Do nothing

}

Here is the source code for the WiFiNINA header file. You must create this
the same way you created the ESP8266 header file, but name this one
USE_NINA.h. If you use this header, be sure to replace YOUR_SSID and
YOUR_PASSWORD:

#include <SPI.h>

#include <WiFiNINA.h>

const char ssid[] = "YOUR_SSID";

const char password[] = "YOUR_PASSWORD";

WiFiClient client;

WiFiServer server(80);

bool configureNetwork()

{

 int status = WL_IDLE_STATUS; // WiFistatus

 if (WiFi.status() == WL_NO_MODULE)

 {

 Serial.println("Couldn't find WiFi hardware.");

 return false;

 }

 String fv = WiFi.firmwareVersion();

 if (fv < WIFI_FIRMWARE_LATEST_VERSION)

 {

 Serial.println("Please upgrade the WiFi firmware");

 }

 while (status != WL_CONNECTED)

 {

 Serial.print("Attempting WiFi connection to "); Serial.println(ssid);

 status = WiFi.begin(ssid, password); // Attempt connection until

successful

 delay(1000); // Wait 1 second

 }

 return true;

}

IPAddress getIP()

{

 return WiFi.localIP();

}

void maintain()

{

 // Do nothing

}

Discussion
Similar to Recipe 15.6, this sketch uses one of three header files to
determine how to connect to the network: if you include the
USE_Ethernet.h header, this sketch will connect to Ethernet using DHCP.
Because DHCP with Ethernet requires you to manually maintain the DHCP
lease, there’s a maintain function that you must call from within loop.
This code wasn’t included in Recipe 15.6 because that sketch would run
once and stop. If you use an ESP8266 board, you’ll need to include the
USE_ESP8266.h header file, and if you use a WiFiNINA board, you’ll need
to include USE_NINA.h. Each header file also defines a client and server
variable, and exposes methods to configure the network
(configureNetwork) and to get the assigned IP address (getIP).

The sketch begins by starting the serial port, and then it configures the
network using the hardware-specific function, and starts the server. Within
the loop, it displays a message every 10 seconds showing the URL you
need to connect to the server. When you open this URL in a web browser,

you should see a page showing the values on analog input pins 0 through 6
(see Chapter 5 for more on the analog ports).

The two lines in setup initialize the Ethernet library and configure your
web server to the IP address you provide. The loop waits for and then
processes each request received by the web server:

client = server.available();

The client object here represents the client connected to the web server.
Depending on which header you included, this will either be an
EthernetClient or WiFiClient object.

if (client) tests that the client has been successfully connected.

while (client.connected()) tests if the web server is connected to a
client making a request.

client.available() and client.read() check if data is available from
the client, and read a byte if it is. This is similar to Serial.available(),
discussed in Chapter 4, except the data is coming from the internet rather
than the serial port. The code reads data until it finds the first line with no
data, signifying the end of a request. An HTTP header is sent using the
client.println commands followed by the printing of the values of the
analog ports.

TIP
The ESP8266 board package includes a rich set of libraries for creating web servers. Unless you
are writing code that should support a variety of networking hardware, you may want to use those
features. See Recipe 15.5 for more details.

15.9 Handling Incoming Web Requests
Problem

You want to control digital and analog outputs with Arduino acting as a web
server. For example, you want to control the values of specific pins through
parameters sent from your web browser.

Solution
This sketch reads requests sent from a browser and changes the values of
digital and analog output ports as requested. You will need to open the
Serial Monitor to see what URL to use to connect to the sketch.

The URL (text received from a browser request) contains one or more fields
starting with the word pin followed by a D for digital or A for analog and
the pin number. The value for the pin follows an equals sign.

For example, sending http://IP_ADDRESS/?pinD2=1 from your browser’s
address bar turns digital pin 2 on; http://IP_ADDRESS/?pinD2=0 turns pin
2 off. (See Chapter 7 if you need information on connecting LEDs to
Arduino pins.) You would need to replace IP_ADDRESS with the IP
address shown in the Serial Monitor.

NOTE
You must set up the three header files as described in Recipe 15.8 and uncomment one of the
#include lines to choose which kind of network connection to use. If you use WiFiNINA or
ESP8266, you’ll need to change your SSID and password in the corresponding header file. The
ESP8266 has a limited number of pins available for output, so you will need to consult the
documentation for your ESP8266 board to find a pin that can be used. Writing to some pins may
cause the board to behave erratically.

Figure 15-2 shows what you will see on your web browser when connected
to the web server code that follows.

Browser page displaying output created by this recipe’s Solution

/*

 * Incoming request sketch

 * Respond to requests in the URL to change digital and analog output ports

 * show the number of ports changed and the value of the analog input pins.

 * for example:

 * sending http://IP_ADDRESS/?pinD2=1 turns digital pin 2 on

 * sending http://IP_ADDRESS/?pinD2=0 turns pin 2 off.

 * This sketch demonstrates text parsing using Arduino Stream class.

 */

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

void setup() {

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 server.begin();

}

#define MSG_DELAY 10000

void loop() {

 static unsigned long nextMsgTime = 0;

 if (millis() > nextMsgTime)

 {

 Serial.print("Try http://");

 Serial.print(getIP()); Serial.println("?pinD2=1");

 nextMsgTime = millis() + MSG_DELAY;

 }

 maintain(); // Maintain the DHCP lease manually if needed

 client = server.available();

 if (client)

 {

 while (client.connected())

 {

 if (client.available())

 {

 // counters to show the number of pin change requests

 int digitalRequests = 0;

 int analogRequests = 0;

 if(client.find("GET /")) // search for 'GET'

 {

 // find tokens starting with "pin" and stop at the end of the line

 while(client.findUntil("pin", "\r\n"))

 {

 char type = client.read(); // D or A

 // the next ascii integer value in the stream is the pin

 int pin = client.parseInt();

 int val = client.parseInt(); // the integer after that is the

value

 if(type == 'D')

 {

 Serial.print("Digital pin ");

 pinMode(pin, OUTPUT);

 digitalWrite(pin, val);

 digitalRequests++;

 }

 else if(type == 'A')

 {

 Serial.print("Analog pin ");

 analogWrite(pin, val);

 analogRequests++;

 }

 else

 {

 Serial.print("Unexpected type ");

 Serial.print(type);

 }

 Serial.print(pin);

 Serial.print("=");

 Serial.println(val);

 }

 }

 Serial.println();

 // the findUntil has detected the blank line (a lf followed by cr)

 // so the http request has ended and we can send a reply

 // send a standard http response header

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println();

 // output the number of pins handled by the request

 client.print(digitalRequests);

 client.print(" digital pin(s) written");

 client.println("
");

 client.print(analogRequests);

 client.print(" analog pin(s) written");

 client.println("
");

 client.println("
");

 // output the value of each analog input pin

 for (int i = 0; i < 6; i++) {

 client.print("analog input ");

 client.print(i);

 client.print(" is ");

 client.print(analogRead(i));

 client.println("
");

 }

 break; // Exit the while() loop

 }

 }

 // give the web browser time to receive the data

 delay(100);

 client.stop();

 }

}

Discussion
If you were to send the command (replacing IP_ADDRESS with the IP
address displayed in the Serial Monitor) http://IP_ADDRESS/?pinD2=1,
the sketch would take pin 2 high. Here is how the instructions in the URL
are broken down: Everything before the question mark is treated as the
address of the web server (for example, 192.168.1.177). The remaining data
is a list of fields, each beginning with the word pin followed by a D
indicating a digital pin or A indicating an analog pin. The numeric value
following the D or A is the pin number. This is followed by an equals sign
and finally the value you want to set the pin to. pinD2=1 sets digital pin 2
HIGH. There is one field per pin, and subsequent fields are separated by an
ampersand. You can have as many fields as there are Arduino pins you want
to change.

The request can be extended to handle multiple parameters by using
ampersands to separate multiple fields. For example:

http://IP_ADDRESS/?pinD2=1&pinD3=0&pinA9=128&pinA11=255

Each field within the ampersand is handled as described earlier. You can
have as many fields as there are Arduino pins you want to change.

15.10 Handling Incoming Requests for
Specific Pages
Problem
You want to have more than one page on your web server; for example, to
show the status of different sensors on different pages.

Solution
This sketch looks for requests for pages named “analog” or “digital” and
displays the pin values accordingly:

TIP
You must set up the three header files as described in Recipe 15.8 and uncomment one of the
#include lines to choose which kind of network connection to use. If you use WiFiNINA or
ESP8266, you’ll need to change your SSID and password in the corresponding header file.

/*

 * WebServerMultiPage sketch

 * Respond to requests in the URL to view digital and analog output ports

 * http://IP_ADDRESS/analog/ displays analog pin data

 * http://IP_ADDRESS/digital/ displays digital pin data

 */

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

const int MAX_PAGE_NAME_LEN = 8; // max characters in a page name

char buffer[MAX_PAGE_NAME_LEN+1]; // page name + terminating null

void setup() {

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 server.begin();

}

#define MSG_DELAY 10000

void loop() {

 static unsigned long nextMsgTime = 0;

 if (millis() > nextMsgTime)

 {

 Serial.print("Try http://");

 Serial.print(getIP()); Serial.println("/analog/");

 nextMsgTime = millis() + MSG_DELAY;

 }

 maintain(); // Maintain the DHCP lease manually if needed

 client = server.available();

 if (client)

 {

 while (client.connected())

 {

 if (client.available())

 {

 if(client.find("GET "))

 {

 // look for the page name

 memset(buffer,0, sizeof(buffer)); // clear the buffer

 if(client.find("/"))

 if(client.readBytesUntil('/', buffer, MAX_PAGE_NAME_LEN))

 {

 if(strcmp(buffer, "analog") == 0)

 showAnalog();

 else if(strcmp(buffer, "digital") == 0)

 showDigital();

 else

 unknownPage(buffer);

 }

 }

 Serial.println();

 break; // Exit the while() loop

 }

 }

 // give the web browser time to receive the data

 delay(100);

 client.stop();

 }

}

void showAnalog()

{

 Serial.println("analog");

 sendHeader();

 client.println("<h1>Analog Pins</h1>");

 // output the value of each analog input pin

 for (int i = 0; i < 6; i++)

 {

 client.print("analog pin ");

 client.print(i);

 client.print(" = ");

 client.print(analogRead(i));

 client.println("
");

 }

}

void showDigital()

{

 Serial.println("digital");

 sendHeader();

 client.println("<h1>Digital Pins</h1>");

 // show the value of each digital pin

 for (int i = 2; i < 8; i++)

 {

 pinMode(i, INPUT_PULLUP);

 client.print("digital pin ");

 client.print(i);

 client.print(" is ");

 if(digitalRead(i) == LOW)

 client.print("HIGH");

 else

 client.print("LOW");

 client.println("
");

 }

 client.println("</body></html>");

}

void unknownPage(char *page)

{

 sendHeader();

 client.println("<h1>Unknown Page</h1>");

 client.print(page);

 client.println("
");

 client.println("Recognized pages are:
");

 client.println("/analog/
");

 client.println("/digital/
");

 client.println("</body></html>");

}

void sendHeader()

{

 // send a standard http response header

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println();

 client.println("<html><head><title>Web server multi-page Example</title>");

 client.println("<body>");

}

Discussion
You can test this from your web browser by typing
http://IP_ADDRESS/analog/ or http://IP_ADDRESS/digital/ (replace
IP_ADDRESS with the IP address displayed in the Serial Monitor).

Figure 15-3 shows the expected output. To test it, you could wire one or
more buttons to the digital pins and one or more potentiometers to the

analog pins. Because the sketch uses the built-in pull-up resistors (see
Recipe 2.4), the logic is inverted (LOW means a button is pressed and HIGH
means it is not). See Recipe 5.6 for instructions on working with
potentiometers.

Browser output showing analog pin values

The sketch looks for the / character to determine the end of the page name.
The server will report an unknown page if the / character does not
terminate the page name.

You can easily enhance this with some code from Recipe 15.9 to allow
control of Arduino pins from another page named update. Here is the
section of loop that you need to change (added lines shown in bold):

 if(client.readBytesUntil('/', buffer, MAX_PAGE_NAME_LEN))

 {

 if(strcmp(buffer, "analog") == 0)

 showAnalog();

 else if(strcmp(buffer, "digital") == 0)

 showDigital();

 // add this code for new page named: update

 else if(strcmp(buffer, "update") == 0)

 doUpdate();

 else

 unknownPage(buffer);

 }

Here is the doUpdate function. The ESP8266 has a limited number of pins
available for output, so you will need to consult the documentation for your
ESP8266 board to find a pin that can be used. Writing to some pins may
cause the board to behave erratically:

void doUpdate()

{

 Serial.println("update");

 sendHeader();

 // find tokens starting with "pin" and stop on the first blank line

 while (client.findUntil("pin", "\n\r"))

 {

 char type = client.read(); // D or A

 int pin = client.parseInt();

 int val = client.parseInt();

 if (type == 'D')

 {

 client.print("Digital pin ");

 pinMode(pin, OUTPUT);

 digitalWrite(pin, val);

 }

 else if (type == 'A')

 {

 client.print("Analog pin ");

 analogWrite(pin, val);

 }

 else

 {

 client.print("Unexpected type ");

 Serial.print(type);

 }

 client.print(pin);

 client.print("=");

 client.println(val);

 }

 client.println("</body></html>");

}

Sending http://IP_ADDRESS/update/?pinA5=128 from your browser’s
address bar writes the value 128 to analog output pin 5.

NOTE
The ESP8266 board package includes a rich set of libraries for creating web servers. Unless you
are writing code that should support a variety of networking hardware, you may want to use those
features. See Recipe 15.5 for more details.

15.11 Using HTML to Format Web Server
Responses
Problem
You want to use HTML elements such as tables and images to improve the
look of web pages served by Arduino. For example, you want the output
from Recipe 15.10 to be rendered in an HTML table.

Solution
Figure 15-4 shows how the web server in this recipe’s Solution formats the
browser page to display pin values. (You can compare this to the
unformatted values shown in Figure 15-3.)

Browser pages using HTML formatting

This sketch shows the functionality from Recipe 15.10 with output
formatted using HTML:

NOTE
You must set up the three header files as described in Recipe 15.8 and uncomment one of the
#include lines to choose which kind of network connection to use. If you use WiFiNINA or
ESP8266, you’ll need to change your SSID and password in the corresponding header file. The
ESP8266 has a limited number of pins available for output, so you will need to consult the
documentation for your ESP8266 board to find a pin that can be used. Writing to some pins may
cause the board to behave erratically.

/*

 * WebServerMultiPageHTML sketch

 * Display analog and digital pin values using HTML formatting

 */

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

const int MAX_PAGE_NAME_LEN = 8; // max characters in a page name

char buffer[MAX_PAGE_NAME_LEN+1]; // page name + terminating null

void setup() {

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 server.begin();

 pinMode(LED_BUILTIN, OUTPUT);

 for(int i=0; i < 3; i++)

 {

 digitalWrite(LED_BUILTIN, HIGH);

 delay(500);

 digitalWrite(LED_BUILTIN, LOW);

 delay(500);

 }

}

#define MSG_DELAY 10000

void loop() {

 static unsigned long nextMsgTime = 0;

 if (millis() > nextMsgTime)

 {

 Serial.print("Try http://");

 Serial.print(getIP()); Serial.println("/analog/");

 nextMsgTime = millis() + MSG_DELAY;

 }

 maintain(); // Maintain the DHCP lease manually if needed

 client = server.available();

 if (client)

 {

 while (client.connected())

 {

 if (client.available())

 {

 if(client.find("GET "))

 {

 // look for the page name

 memset(buffer,0, sizeof(buffer)); // clear the buffer

 if(client.find("/"))

 if(client.readBytesUntil('/', buffer, MAX_PAGE_NAME_LEN))

 {

 if(strcasecmp(buffer, "analog") == 0)

 showAnalog();

 else if(strcasecmp(buffer, "digital") == 0)

 showDigital();

 else

 unknownPage(buffer);

 }

 }

 break;

 }

 }

 // give the web browser time to receive the data

 delay(100);

 client.stop();

 }

}

void showAnalog()

{

 sendHeader("Multi-page: Analog");

 client.println("<h2>Analog Pins</h2>");

 client.println("<table border='1' >");

 for (int i = 0; i < 6; i++)

 {

 // output the value of each analog input pin

 client.print("<tr><td>analog pin ");

 client.print(i);

 client.print(" </td><td>");

 client.print(analogRead(i));

 client.println("</td></tr>");

 }

 client.println("</table>");

 client.println("</body></html>");

}

void showDigital()

{

 sendHeader("Multi-page: Digital");

 client.println("<h2>Digital Pins</h2>");

 client.println("<table border='1'>");

 for (int i = 2; i < 8; i++)

 {

 // show the value of digital pins

 pinMode(i, INPUT_PULLUP);

 digitalWrite(i, HIGH); // turn on pull-ups

 client.print("<tr><td>digital pin ");

 client.print(i);

 client.print(" </td><td>");

 if(digitalRead(i) == LOW)

 client.print("High");

 else

 client.print("Low");

 client.println("</td></tr>");

 }

 client.println("</table>");

 client.println("</body></html>");

}

void unknownPage(char *page)

{

 sendHeader("Unknown Page");

 client.println("<h1>Unknown Page</h1>");

 client.print(page);

 client.println("
");

 client.println("Recognized pages are:
");

 client.println("/analog/
");

 client.println("/digital/
");

 client.println("</body></html>");

}

void sendHeader(char *title)

{

 // send a standard http response header

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println();

 client.print("<html><head><title>");

 client.println(title);

 client.println("</title><body>");

}

Discussion
The same information is provided as in Recipe 15.10, but here the data is
formatted using an HTML table. The following code indicates that the web
browser should create a table with a border width of 1:

client.println("<table border='1' >");

The for loop defines the table data cells with the <td> tag and the row
entries with the <tr> tag. The following code places the string "analog
pin" in a cell starting on a new row:

client.print("<tr><td>analog pin ");

This is followed by the value of the variable i:

client.print(i);

The next line contains the tag that closes the cell and begins a new cell:

client.print(" </td><td>");

This writes the value returned from analogRead into the cell:

client.print(analogRead(i));

The tags to end the cell and end the row are written as follows:

client.println("</td></tr>");

The for loop repeats this until all six analog values are written.

See Also

Learning Web Design by Jennifer Robbins (O’Reilly)

Web Design in a Nutshell by Jennifer Niederst Robbins (O’Reilly)

HTML & XHTML: The Definitive Guide by Chuck Musciano and Bill
Kennedy (O’Reilly)

15.12 Requesting Web Data Using Forms
(POST)
Problem
You want to create web pages with forms that allow users to select an action
to be performed by Arduino. Figure 15-5 shows the web page created by
this recipe’s Solution.

http://shop.oreilly.com/product/0636920023494.do
http://shop.oreilly.com/product/9780596009878.do
http://shop.oreilly.com/product/9780596527327.do

Web form with buttons

Solution
This sketch creates a web page that has a form with buttons. Users
navigating to this page will see the buttons in the web browser and the
Arduino web server will respond to the button clicks. In this example, the
sketch turns a pin on and off depending on which button is pressed:

/*

 * WebServerPost sketch

 * Turns a pin on and off using HTML form

 */

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

const int MAX_PAGE_NAME_LEN = 8; // max characters in a page name

char buffer[MAX_PAGE_NAME_LEN+1]; // page name + terminating null

void setup()

{

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 server.begin();

}

#define MSG_DELAY 10000

void loop() {

 static unsigned long nextMsgTime = 0;

 if (millis() > nextMsgTime)

 {

 Serial.print("Try http://");

 Serial.println(getIP());

 nextMsgTime = millis() + MSG_DELAY;

 }

 maintain(); // Maintain the DHCP lease manually if needed

 client = server.available();

 if (client)

 {

 int type = 0;

 while (client.connected())

 {

 if (client.available())

 {

 // GET, POST, or HEAD

 memset(buffer,0, sizeof(buffer)); // clear the buffer

 if(client.readBytesUntil('/', buffer,sizeof(buffer)))

 {

 Serial.println(buffer);

 if(strcmp(buffer,"POST ") == 0)

 {

 client.find("\r\n\r\n"); // skip to the body

 // find string starting with "pin", stop on first end of line

 // the POST parameters expected in the form pinDx=Y

 // where x is the pin number and Y is 0 for LOW and 1 for HIGH

 while(client.findUntil("pinD", "\r\n"))

 {

 int pin = client.parseInt(); // the pin number

 int val = client.parseInt(); // 0 or 1

 pinMode(pin, OUTPUT);

 digitalWrite(pin, val);

 }

 }

 else // probably a GET

 {

 if (client.find("favicon.ico")) // Send 404 for favicons

 sendHeader("404 Not Found", "Not found");

 }

 sendHeader("200 OK", "Post example");

 //create HTML button to turn off pin 8

 client.println("<h2>Click buttons to turn pin 8 on or off</h2>");

 client.print(

 "<form action='/' method='POST'><p><input type='hidden'

name='pinD8'");

 client.println(" value='0'><input type='submit' value='Off'/>

</form>");

 //create HTML button to turn on pin 8

 client.print(

 "<form action='/' method='POST'><p><input type='hidden'

name='pinD8'");

 client.print(" value='1'><input type='submit' value='On'/></form>");

 client.println("</body></html>");

 client.stop();

 }

 break; // exit the while loop

 }

 }

 // give the web browser time to receive the data

 delay(100);

 client.stop();

 }

}

void sendHeader(char *code, char *title)

{

 // send a standard http response header

 client.print("HTTP/1.1 "); client.println(code);

 client.println("Content-Type: text/html");

 client.println();

 client.print("<html><head><title>");

 client.print(title);

 client.println("</title><body>");

}

Discussion
A web page with a user interface form consists of HTML tags that identify
the controls (buttons, checkboxes, labels, etc.) that comprise the user
interface. This recipe uses buttons for user interaction.

These lines create a form with a button named pinD8 that is labeled “OFF,”
which will send back a value of 0 (zero) when clicked:

client.print(

 "<form action='/' method='POST'><p><input type='hidden' name='pinD8'");

client.println(" value='0'><input type='submit' value='Off'/></form>");

When the server receives a request from a browser, it looks for the "POST "
string to identify the start of the posted form:

if (strcmp(buffer,"POST ") == 0) // find the start of the posted form

 client.find("\r\n\r\n"); // skip to the body

 // find parameters starting with "pin" and stop on the first blank line

 // the POST parameters expected in the form pinDx=Y

 // where x is the pin number and Y is 0 for LOW and 1 for HIGH

If the OFF button was pressed, the received page will contain the string
pinD8=0, or pinD8=1 for the ON button.

The sketch searches until it finds the button name (pinD):

while(client.findUntil("pinD", "\r\n"))

The findUntil method in the preceding code will search for “pinD” and
stop searching at the end of a line (\r\n is the newline carriage return sent
by the web browser at the end of a form).

The number following the name pinD is the pin number:

int pin = client.parseInt(); // the pin number

And the value following the pin number will be 0 if button OFF was
pressed or 1 if button ON was pressed:

int val = client.parseInt(); // 0 or 1

The value received is written to the pin after setting the pin mode to output:

pinMode(pin, OUTPUT);

digitalWrite(pin, val);

More buttons can be added by inserting tags for the additional controls. The
following lines add another button to turn on digital pin 9:

//create HTML button to turn on pin 9

client.print(

 "<form action='/' method='POST'><p><input type='hidden' name='pinD9'");

client.print(" value='1'><input type='submit' value='On'/></form>");

15.13 Serving Web Pages Containing Large
Amounts of Data
Problem
Your web pages require more memory than you have available, so you want
to use program memory (also known as progmem or flash memory) to store
data (see Recipe 17.4).

Solution
The following sketch combines the POST code from Recipe 15.12 with the
HTML code from Recipe 15.11 and adds new code to access text stored in
progmem. As in Recipe 15.11, the server can display analog and digital pin
status and turn digital pins on and off (see Figure 15-6).

You must set up the three header files as described in Recipe 15.8 and
uncomment one of the #include lines to choose which kind of network
connection to use. If you use WiFiNINA or ESP8266, you’ll need to change
your SSID and password in the corresponding header file. The ESP8266
has a limited number of pins available for output, so you will need to
consult the documentation for your ESP8266 board to find a pin that can be
used. Writing to some pins may cause the board to behave erratically.

Web page with LED images

/*

 * WebServerMultiPageHTMLProgmem sketch

 *

 * Respond to requests in the URL to change digital and analog output ports

 * show the number of ports changed and the value of the analog input pins.

 *

 * http://192.168.1.177/analog/ displays analog pin data

 * http://192.168.1.177/digital/ displays digital pin data

 * http://192.168.1.177/change/ allows changing digital pin data

 *

 */

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

#include <avr/pgmspace.h> // for progmem

#define P(name) static const char name[] PROGMEM // declare a static string

const int MAX_PAGENAME_LEN = 8; // max characters in page name

char buffer[MAX_PAGENAME_LEN+1]; // additional character for terminating null

void setup()

{

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 server.begin();

 Serial.println(F("Ready"));

}

#define MSG_DELAY 10000

void loop() {

 static unsigned long nextMsgTime = 0;

 if (millis() > nextMsgTime)

 {

 Serial.print("Try http://");

 Serial.print(getIP()); Serial.println("/change/");

 nextMsgTime = millis() + MSG_DELAY;

 }

 maintain(); // Maintain the DHCP lease manually if needed

 client = server.available();

 if (client)

 {

 int type = 0;

 while (client.connected())

 {

 if (client.available())

 {

 // GET, POST, or HEAD

 memset(buffer,0, sizeof(buffer)); // clear the buffer

 if(client.readBytesUntil('/', buffer,MAX_PAGENAME_LEN))

 {

 if(strcmp(buffer, "GET ") == 0)

 type = 1;

 else if(strcmp(buffer,"POST ") == 0)

 type = 2;

 // look for the page name

 memset(buffer,0, sizeof(buffer)); // clear the buffer

 if(client.readBytesUntil('/', buffer,MAX_PAGENAME_LEN))

 {

 if(strcasecmp(buffer, "analog") == 0)

 showAnalog();

 else if(strcasecmp(buffer, "digital") == 0)

 showDigital();

 else if(strcmp(buffer, "change")== 0)

 showChange(type == 2);

 else

 unknownPage(buffer);

 }

 }

 break;

 }

 }

 // give the web browser time to receive the data

 delay(100);

 client.stop();

 }

}

void showAnalog()

{

 Serial.println(F("analog"));

 sendHeader("Multi-page example-Analog");

 client.println("<h1>Analog Pins</h1>");

 // output the value of each analog input pin

 client.println(F("<table border='1' >"));

 for (int i = 0; i < 6; i++)

 {

 client.print(F("<tr><td>analog pin "));

 client.print(i);

 client.print(F(" </td><td>"));

 client.print(analogRead(i));

 client.println(F("</td></tr>"));

 }

 client.println(F("</table>"));

 client.println(F("</body></html>"));

}

// mime encoded data for the led on and off images:

// see: http://www.motobit.com/util/base64-decoder-encoder.asp

P(led_on) = "<img src=\"data:image/jpg;base64,"

"/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/b"

"AIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBA"

"QEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUw"

"MDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAGwAZAwEiAAIRAQMRAf/EAIIAAAICAwAAAAAAAAAAAAAA"

"AAUGAAcCAwQBAAMBAAAAAAAAAAAAAAAAAAACBAUQAAECBAQBCgcAAAAAAAAAAAECAwARMRIhQQQF"

"UWFxkaHRMoITUwYiQnKSIxQ1EQAAAwYEBwAAAAAAAAAAAAAAARECEgMTBBQhQWEiMVGBMkJiJP/a"

"AAwDAQACEQMRAD8AcNz3BGibKie0nhC0v3A+teKJt8JmZEdHuZalOitgUoHnEpQEWtSyLqgACWFI"

"nixWiaQhsUFFBiQSbiMvvrmeCBp27eLnG7lFTDxs+Kra8oOyium3ltJUAcDIy4EUMN/7Dnq9cPMO"

"W90E9kxeyF2d3HFOQ175olKudUm7TqlfKqDQEDOFR1sNqtC7k5ERYjndNPFSArtvnI/nV+ed9coI"

"ktd2BgozrSZO3J5jVEXRcwD2bbXNdq0zT+BohTyjgPp5SYdPJZ9NP2jsiIz7vhjLohtjnqJ/ouPK"

"co//2Q=="

"\"/>";

P(led_off) = "<img src=\"data:image/jpg;base64,"

"/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/b"

"AIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBA"

"QEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUw"

"MDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAHAAZAwEiAAIRAQMRAf/EAHgAAQEAAwAAAAAAAAAAAAAA"

"AAYFAgQHAQEBAQAAAAAAAAAAAAAAAAACAQQQAAECBQAHBQkAAAAAAAAAAAECAwAREhMEITFhoSIF"

"FUFR0UIGgZHBMlIjM1MWEQABAwQDAQEAAAAAAAAAAAABABECIWESA1ETIyIE/9oADAMBAAIRAxEA"

"PwBvl5SWEkkylpJMGsj1XjXSE1kCQuJ8Iy9W5DoxradFa6VDf8IJZAQ6loNtBooTJaqp3DP5oBlV"

"nWrTpEouQS/Cf4PO0uKbqWHGXTSlztSvuVFiZjmfLH3GUuMkzSoTMu8aiNsXet5/17hFyo6PR64V"

"ZnuqfqDDDySFpNpYH3E6aFjzGBr2DkMuFBSFDsWkilUdLftW13pWpcdWqnbBzI/l6hVXKZlROUSe"

"L1KX5zvAPXESjdHsTFWpxLKOJ54hIA1DZCj+Vx/3r96fCNrkvRaT0+V3zV/llplr9sVeHZui/ONk"

"H3dzt6cL/9k="

"\"/>";

void showDigital()

{

 Serial.println(F("digital"));

 sendHeader("Multi-page example-Digital");

 client.println(F("<h2>Digital Pins</h2>"));

 // show the value of digital pins

 client.println(F("<table border='1'>"));

 for (int i = 2; i < 8; i++)

 {

 pinMode(i, INPUT_PULLUP);

 client.print(F("<tr><td>digital pin "));

 client.print(i);

 client.print(F(" </td><td>"));

 if(digitalRead(i) == HIGH)

 printP(led_off);

 else

 printP(led_on);

 client.println(F("</td></tr>"));

 }

 client.println(F("</table>"));

 client.println(F("</body></html>"));

}

void showChange(bool isPost)

{

 Serial.println(F("change"));

 if(isPost)

 {

 Serial.println("isPost");

 client.find("\r\n\r\n"); // skip to the body

 // find parameters starting with "pin" and stop on the first blank line

 Serial.println(F("searching for parms"));

 while(client.findUntil("pinD", "\r\n"))

 {

 int pin = client.parseInt(); // the pin number

 int val = client.parseInt(); // 0 or 1

 Serial.print(pin);

 Serial.print("=");

 Serial.println(val);

 pinMode(pin, OUTPUT);

 digitalWrite(pin, val);

 }

 }

 sendHeader("Multi-page example-change");

 // table with buttons from 2 through 9

 // 2 to 5 are inputs, the other buttons are outputs

 client.println(F("<table border='1'>"));

 // show the input pins

 for (int i = 2; i < 6; i++) // pins 2-5 are inputs

 {

 pinMode(i, INPUT_PULLUP);

 client.print(F("<tr><td>digital input "));

 client.print(i);

 client.print(F(" </td><td>"));

 client.print(F(" </td><td>"));

 client.print(F(" </td><td>"));

 client.print(F(" </td><td>"));

 if(digitalRead(i) == HIGH)

 printP(led_off);

 else

 printP(led_on);

 client.println("</td></tr>");

 }

 // show output pins 6-9

 // note pins 10-13 are used by the ethernet shield

 for (int i = 6; i < 10; i++)

 {

 client.print(F("<tr><td>digital output "));

 client.print(i);

 client.print(F(" </td><td>"));

 htmlButton("On", "pinD", i, "1");

 client.print(F(" </td><td>"));

 client.print(F(" </td><td>"));

 htmlButton("Off", "pinD", i, "0");

 client.print(F(" </td><td>"));

 if(digitalRead(i) == LOW)

 printP(led_off);

 else

 printP(led_on);

 client.println(F("</td></tr>"));

 }

 client.println(F("</table>"));

}

// create an HTML button

void htmlButton(char * label, char *name, int nameId, char *value)

{

 client.print(F(

 "<form action='/change/' method='POST'><p><input type='hidden' name='"));

 client.print(name);

 client.print(nameId);

 client.print(F("' value='"));

 client.print(value);

 client.print(F("'><input type='submit' value='"));

 client.print(label);

 client.print(F("'/></form>"));

}

void unknownPage(char *page)

{

 Serial.print(F("Unknown : "));

 Serial.println(F("page"));

 sendHeader("Unknown Page");

 client.println(F("<h1>Unknown Page</h1>"));

 client.println(page);

 client.println(F("</body></html>"));

}

void sendHeader(char *title)

{

 // send a standard http response header

 client.println(F("HTTP/1.1 200 OK"));

 client.println(F("Content-Type: text/html"));

 client.println();

 client.print(F("<html><head><title>"));

 client.println(title);

 client.println(F("</title><body>"));

}

void printP(const char *str)

{

 // copy data out of program memory into local storage, write out in

 // chunks of 32 bytes to avoid extra short TCP/IP packets

 // from webduino library Copyright 2009 Ben Combee, Ran Talbott

 uint8_t buffer[32];

 size_t bufferEnd = 0;

 while (buffer[bufferEnd++] = pgm_read_byte(str++))

 {

 if (bufferEnd == 32)

 {

 client.write(buffer, 32);

 bufferEnd = 0;

 }

 }

 // write out everything left but trailing NUL

 if (bufferEnd > 1)

 client.write(buffer, bufferEnd - 1);

}

Discussion
The logic used to create the web page is similar to that used in the previous
recipes. The form here is based on Recipe 15.12, but it has more elements
in the table and uses embedded graphical objects to represent the state of
the pins. If you have ever created a web page, you may be familiar with the
use of JPEG images within the page. The Arduino Ethernet libraries do not
have the capability to handle images in .jpg format.

Images need to be encoded using one of the internet standards such as
Multipurpose Internet Mail Extensions (MIME). This provides a way to
represent graphical (or other) media using text. The sketch in this recipe’s
Solution shows what the LED images look like when they are MIME-
encoded. Many web-based services will MIME-encode your images; the
ones in this recipe were created using the this service.

Even the small LED images used in this example are too large to fit into
AVR RAM. Program memory (flash) is used; see Recipe 17.3 for an
explanation of the P(name) expression. The sketch only employes this
feature if running under an AVR. 32-bit Arduino boards are able to store
more, and the compiler is smarter about storage of static strings in general.

The images representing the LED on and off states are stored in a sequence
of characters; the LED on array begins like this:

https://oreil.ly/7YWLw

P(led_on) = "<img src=\"data:image/jpg;base64,"

P(led_on) = defines led_on as the name of this array. The characters are
the HTML tags identifying an image followed by the MIME-encoded data
comprising the image.

This example is based on code produced for the Webduino web server.
Although it is not actively maintained at the time of this writing, you may
find Webduino helpful in building web pages if your application is more
complicated than the examples shown in this chapter.

See Also
See Recipe 17.4 for more on using the F("text") construct for storing text
in flash memory.

The Webduino web page

15.14 Sending Twitter Messages
Problem
You want Arduino to send messages to Twitter; for example, when a sensor
detects some activity that you want to monitor via Twitter.

Solution
This sketch sends a Twitter message when a switch is closed. It uses a
proxy service from ThingSpeak to provide authorization so you will need to
register on that site to get a (free) API key. Click the Sign Up button on the
home page and fill in the form. By creating an account, you get a
ThingSpeak API key. To use the ThingSpeak service, you’ll need to
authorize your Twitter account to allow ThingTweet to post messages to
your account (start at the ThingTweets page). After that is set up, replace
"YourThingTweetAPIKey" with the key string you are given and upload
and run the following sketch:

https://oreil.ly/LJodK
http://www.thingspeak.com/
https://oreil.ly/5UZrP

NOTE
You must set up the three header files as described in Recipe 15.6 and uncomment one of the
#include lines to choose which kind of network connection to use. If you use WiFiNINA or
ESP8266, you’ll need to change your SSID and password in the corresponding header file.

/*

 * ThingTweet Sketch: post tweet when switch on pin 2 is pressed

*/

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

char *thingtweetAPIKey = "YourThingTweetAPIKey"; // your ThingTweet API key

char serverName[] = "api.thingspeak.com";

bool MsgSent = false;

const int btnPin = 2;

void setup()

{

 Serial.begin(9600);

 while (!Serial);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while (1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 pinMode(btnPin, INPUT_PULLUP);

 delay(1000);

 Serial.println("Ready");

}

void loop()

{

 if (digitalRead(btnPin) == LOW) // here if button is pressed

 {

 if (MsgSent == false) // check if message already sent

 {

 MsgSent = sendMessage("I pressed a button on something #thingspeak");

 if (MsgSent)

 Serial.println("Tweeted successfully");

 else

 Serial.println("Unable to Tweet");

 }

 }

 else

 {

 MsgSent = false; // Button is not pressed

 }

 delay(100);

}

bool sendMessage(char *message)

{

 bool result = false;

 const int tagLen = 16; // the number of tag character used to frame the

message

 int msgLen = strlen(message) + tagLen + strlen(thingtweetAPIKey);

 Serial.println("Connecting ...");

 if (client.connect(serverName, 80))

 {

 Serial.println("Making POST request...");

 client.println("POST /apps/thingtweet/1/statuses/update HTTP/1.1");

 client.print("Host: "); client.println(serverName);

 client.println("Connection: close");

 client.println("Content-Type: application/x-www-form-urlencoded");

 client.print("Content-Length: "); client.println(msgLen);

 client.println();

 client.print("api_key="); // msg tag

 client.print(thingtweetAPIKey); // api key

 client.print("&status="); // msg tag

 client.print(message); // the message

 client.println();

 }

 else

 {

 Serial.println("Connection failed");

 }

 // response string

 if (client.connected())

 {

 Serial.println("Connected");

 if (client.find("HTTP/1.1") && client.find("200 OK")) {

 result = true;

 }

 else

 Serial.println("Dropping connection - no 200 OK");

 }

 else

 {

 Serial.println("Disconnected");

 }

 client.stop();

 client.flush();

 return result;

}

Discussion
The sketch waits for a pin to go LOW and then posts your message to Twitter
via the ThingTweet API.

The web interface is handled by the sendMessage(); function, which will
tweet the given message string. In this sketch it attempts to send the
message string “Mail has been delivered” to Twitter and returns true if it is
able to connect.

See the documentation on the ThingTweet site for more details.

See Also
This ThingSpeak Arduino tutorial

This information on an Arduino Twitter library that communicates directly
with Twitter

15.15 Exchanging Data for the Internet of
Things
Problem
You want to exchange data between devices connected via the internet.

https://oreil.ly/QNT5h
https://oreil.ly/ev78V
https://oreil.ly/dNHMr

Solution
Use the Message Queue Telemetry Transport (MQTT) protocol on an
internet connected Arduino to send or receive data. MQTT is a fast and
lightweight protocol for sending (publishing) and receiving (subscribing to)
data. It runs well on Arduino and is easy to use, which makes it suitable for
Internet of Things projects.

MQTT relies on an internet-connected server (called a broker) to relay
published data to clients. Data producers send (publish) messages on a topic
to a broker. Consumers connect to the broker and subscribe to one or more
topics. Brokers match received messages published on a topic and deliver
these to all subscribers to that topic.

Although boards with limited memory like the Uno can publish and
subscribe, these boards do not have enough horsepower to run a broker. You
can run your own broker on a computer running Windows, Linux, or
macOS, or you can use one of the cloud-based public brokers that are free
to use such as mqtt.eclipse.org and test.mosquitto.org. More are listed here.

The recipes that follow show how to connect to the Eclipse IoT broker. You
will find information on connecting to other public brokers on their
respective sites.

If you want to install a broker on your computer, a popular broker is the
open source Mosquitto project.

Discussion
Arduino communicates with MQTT brokers using a library. Two popular
solutions that can be installed using the Library Manager are:

PubSubClientby Nick O’Leary

Adafruit MQTT library

The following two recipes show how to publish and subscribe using the
PubSubClient MQTT library.

https://oreil.ly/vnniF
https://mosquitto.org/
https://oreil.ly/_lW-B
https://oreil.ly/Z3GKn

See Also
You can read more about MQTT at the site.

15.16 Publishing Data to an MQTT Broker
Problem
You want to publish data to an MQTT broker.

Solution
This sketch uses the PubSubClient library by Nick O’Leary to publish the
value of analog pin 0 to a topic named “esp/alog”. You can install this
library using the Arduino Library Manager. You must set up the three
header files as described in Recipe 15.6 and uncomment one of the
#include lines to choose which kind of network connection to use. If you
use WiFiNINA or ESP8266, you’ll need to change your SSID and password
in the corresponding header file:

/*

 * Basic MQTT publish sketch

 */

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

#include <PubSubClient.h>

const char* broker = "mqtt.eclipse.org"; // the address of the MQTT broker

const int interval = 5000; // milliseconds between events

unsigned int timePublished; // millis time of most recent publish

PubSubClient psclient(client);

http://mqtt.org/

void setup()

{

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 psclient.setServer(broker, 1883);

}

void loop(void)

{

 if (millis() - timePublished > interval)

 {

 if (!psclient.connected())

 psclient.connect("arduinoCookbook3Pub");

 if (psclient.connected())

 {

 int val = analogRead(A0);

 psclient.publish("arck3/alog", String(val).c_str());

 timePublished = millis();

 Serial.print("Published "); Serial.println(val);

 }

 }

 if (psclient.connected())

 psclient.loop();

}

Discussion
The variable named broker is set to the address of the MQTT broker you
want to connect to. This example connects to the public mqtt.eclipse.org
broker. This code sets the broker address and the port to use (port 1883 is
the default port for MQTT connections see the documentation for your
broker to check if a different port is required):

const char* broker = "mqtt.eclipse.org"; // the address of the MQTT broker

psclient.setServer(broker, 1883);

The loop code checks if enough time has elapsed for another sample to be
published and if so, the variable val is set to the value of analog pin 0. The
library function to publish data is called with the topic string and string
value:

psclient.publish("arck3/alog", String(val).c_str());

Because the publish method expects a C string (a null-terminated
sequence of characters), the expression String(val).c_str()) converts
the integer value from analog read to an Arduino String and returns the
value as a C string.

To see the published data, you need an MQTT client that is subscribed to
the esp/alog topic. A suitable client is described in the next recipe.

See Also
See Recipe 2.5 for more on Arduino Strings.

15.17 Subscribing to Data on an MQTT
Broker
Problem
You want to subscribe to data that has been published on an MQTT broker.

Solution
This sketch uses the PubSubCLient library mentioned in the previous recipe
to subscribe to the data published in that recipe. You must set up the three
header files as described in Recipe 15.6 and uncomment one of the
#include lines to choose which kind of network connection to use. If you

use WiFiNINA or ESP8266, you’ll need to change your SSID and password
in the corresponding header file:

/*

 * Basic MQTT subscribe sketch

 */

// Uncomment only one of the following

//#include "USE_NINA.h" // WiFiNINA boards

//#include "USE_Ethernet.h" // Ethernet

//#include "USE_ESP8266.h" // ESP8266 boards

#include <PubSubClient.h>

const char* broker = "mqtt.eclipse.org"; // the address of the MQTT broker

const int interval = 5000; // milliseconds between events

unsigned int timePublished; // time of most recent publish

PubSubClient psclient(client);

void callback(char* topic, byte* payload, unsigned int length)

{

 Serial.print("Message on topic [");

 Serial.print(topic);

 Serial.print("] ");

 for (int i=0; i < length; i++)

 {

 Serial.write(payload[i]);

 }

 Serial.println();

}

void setup()

{

 Serial.begin(9600);

 if (!configureNetwork()) // Start the network

 {

 Serial.println("Failed to configure the network");

 while(1)

 delay(0); // halt; ESP8266 does not like ∞ loop without a delay

 }

 psclient.setServer(broker, 1883);

 psclient.setCallback(callback);

}

void loop(void)

{

 if (!psclient.connected())

 {

 if (psclient.connect("arduinoCookbook3Sub"))

 {

 Serial.println("Subscribing to arck3/alog");

 psclient.subscribe("arck3/alog");

 }

 }

 if (psclient.connected())

 psclient.loop();

}

The connection to the broker is similar to the previous sketch. The main
differences are:

A callback function is defined that will be called when an event for a
subscribed topic has been published.
The sketch sends a different identifier (arduinoCookbook3Sub) when
calling connect so that it can be uniquely identified.
The loop function subscribes to a topic. In the previous recipe the loop
published data to a topic.

Discussion
A callback function is a function passed to a second function that is
executed when determined by the second function. In this case, the second

function is the MQTT library that will execute the callback when something
is published for a subscribed topic.

The callback function receives the topic and payload. The topic is a null-
terminated string; however, the payload data could include binary
information with null values so the length of the data is provided to define
the end of the message.

15.18 Getting the Time from an Internet Time
Server
Problem
You want to get the current time from an internet time server; for example,
to synchronize clock software running on Arduino.

Solution
This sketch gets the time from a Network Time Protocol (NTP) server and
prints the results as seconds since January 1, 1900 (NTP time) and seconds
since January 1, 1970:

/*

 * UdpNtp sketch

 * Get the time from an NTP time server

 * Demonstrates use of UDP sendPacket and ReceivePacket

 */

#include <SPI.h>

#include <Ethernet.h>

#include <EthernetUDP.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC address to use

unsigned int localPort = 8888; // local port to listen for UDP packets

IPAddress timeServer(192, 43, 244, 18); // time.nist.gov NTP server

const int NTP_PACKET_SIZE= 48; // NTP time stamp is in the first 48

 // bytes of the message

byte packetBuffer[NTP_PACKET_SIZE]; // buffer to hold incoming/outgoing

packets

// A UDP instance to let us send and receive packets over UDP

EthernetUDP Udp;

void setup()

{

 Serial.begin(9600);

 // start Ethernet and UDP

 if (Ethernet.begin(mac) == 0) {

 Serial.println("Failed to configure Ethernet using DHCP");

 while(1); // halt

 }

 Udp.begin(localPort);

}

void loop()

{

 sendNTPpacket(timeServer); // send an NTP packet to a time server

 // wait to see if a reply is available

 delay(1000);

 if (Udp.parsePacket())

 {

 Udp.read(packetBuffer,NTP_PACKET_SIZE); // read packet into buffer

 //the timestamp starts at byte 40, convert four bytes into a long integer

 unsigned long hi = word(packetBuffer[40], packetBuffer[41]);

 unsigned long low = word(packetBuffer[42], packetBuffer[43]);

 unsigned long secsSince1900 = hi << 16 | low; // this is NTP time

 unsigned long secsSince1900 = hi << 16 | low; // this is NTP time

 unsigned long secsSince1900 = hi << 16 | low; // this is NTP time

 // (seconds since Jan 1

1900)

 Serial.print("Seconds since Jan 1 1900 = ");

 Serial.println(secsSince1900);

 Serial.print("Unix time = ");

 // Unix time starts on Jan 1 1970

 const unsigned long seventyYears = 2208988800UL;

 unsigned long epoch = secsSince1900 - seventyYears; // subtract 70 years

 Serial.println(epoch); // print Unix time

 // print the hour, minute and second:

 // UTC is the time at Greenwich Meridian (GMT)

 Serial.print("The UTC time is ");

 // print the hour (86400 equals secs per day)

 Serial.print((epoch % 86400L) / 3600);

 Serial.print(':');

 if (((epoch % 3600) / 60) < 10)

 {

 // Add leading zero for the first 10 minutes of each hour

 Serial.print('0');

 }

 // print the minute (3600 equals secs per minute)

 Serial.print((epoch % 3600) / 60);

 Serial.print(':');

 if ((epoch % 60) < 10)

 {

 // Add leading zero for the first 10 seconds of each minute

 Serial.print('0');

 }

 Serial.println(epoch %60); // print the second

 }

 // wait ten seconds before asking for the time again

 delay(10000);

}

// send an NTP request to the time server at the given address

unsigned long sendNTPpacket(IPAddress& address)

{

 memset(packetBuffer, 0, NTP_PACKET_SIZE); // set all bytes in the buffer to

0

 // Initialize values needed to form NTP request

 packetBuffer[0] = B11100011; // LI, Version, Mode

 packetBuffer[1] = 0; // Stratum

 packetBuffer[2] = 6; // Max Interval between messages in seconds

 packetBuffer[3] = 0xEC; // Clock Precision

 // bytes 4 - 11 are for Root Delay and Dispersion and were set to 0 by

memset

 packetBuffer[12] = 49; // four byte reference ID identifying

 packetBuffer[13] = 0x4E;

 packetBuffer[14] = 49;

 packetBuffer[15] = 52;

 // all NTP fields have been given values, now

 // you can send a packet requesting a timestamp:

 Udp.beginPacket(address, 123); //NTP requests are to port 123

 Udp.write(packetBuffer,NTP_PACKET_SIZE);

 Udp.endPacket();

}

Discussion
NTP is a protocol used to synchronize time through internet messages. NTP
servers provide time as a value of the number of seconds that have elapsed
since January 1, 1900. NTP time is UTC (Coordinated Universal Time,
similar to Greenwich Mean Time) and does not take time zones or daylight
saving time into account.

NTP servers use UDP messages; see Recipe 15.3 for an introduction to
UDP. An NTP message is constructed in the function named
sendNTPpacket and you are unlikely to need to change the code in that
function. The function takes the address of an NTP server; you can use the
IP address in the preceding example or find a list of many more by using
“NTP address” as a search term in Google. If you want more information
about the purpose of the NTP fields, see the documentation.

The reply from NTP is a message with a fixed format; the time information
consists of four bytes starting at byte 40. These four bytes are a 32-bit value
(an unsigned long integer), which is the number of seconds since January 1,
1900. This value (and the time converted into Unix time) is printed. If you
want to convert the time from an NTP server to the friendlier format using
hours, minutes, and seconds and days, months, and years, you can use the

http://www.ntp.org/

Arduino Time library (see Chapter 12). Here is a variation on the preceding
code that prints the time as 14:32:56 Monday 18 Jan 2010:

/*

 * Time_NTP sketch

 * Example showing time sync to NTP time source

 * This sketch uses the Time library

 * and the Arduino Ethernet library

 */

#include <TimeLib.h> // see text

#include <SPI.h>

#include <Ethernet.h>

#include <EthernetUDP.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

byte ip[] = { 192, 168, 1, 44 }; // set this to a valid IP address (or use

DHCP)

unsigned int localPort = 8888; // local port to listen for UDP packets

IPAddress timeServer(192, 43, 244, 18); // time.nist.gov NTP server

const int NTP_PACKET_SIZE= 48; // NTP time stamp is in first 48 bytes of

message

byte packetBuffer[NTP_PACKET_SIZE]; // buffer to hold incoming/outgoing

packets

time_t prevDisplay = 0; // when the digital clock was displayed

// A UDP instance to let us send and receive packets over UDP

EthernetUDP Udp;

void setup()

{

 Serial.begin(9600);

 Ethernet.begin(mac,ip);

 Udp.begin(localPort);

 Serial.println("waiting for sync");

 setSyncProvider(getNtpTime);

 while(timeStatus()== timeNotSet)

 ; // wait until the time is set by the sync provider

}

void loop()

{

 if(now() != prevDisplay) //update the display only if the time has

changed

 {

 prevDisplay = now();

 digitalClockDisplay();

 }

}

void digitalClockDisplay(){

 // digital clock display of the time

 Serial.print(hour());

 printDigits(minute());

 printDigits(second());

 Serial.print(" ");

 Serial.print(dayStr(weekday()));

 Serial.print(" ");

 Serial.print(day());

 Serial.print(" ");

 Serial.print(monthShortStr(month()));

 Serial.print(" ");

 Serial.print(year());

 Serial.println();

}

void printDigits(int digits){

 // utility function for digital clock display: prints preceding

 // colon and leading 0

 Serial.print(":");

 if(digits < 10)

 Serial.print('0');

 Serial.print(digits);

}

/*-------- NTP code ----------*/

unsigned long getNtpTime()

{

 sendNTPpacket(timeServer); // send an NTP packet to a time server

 delay(1000);

 if (Udp.parsePacket()) {

 Udp.read(packetBuffer,NTP_PACKET_SIZE); // read packet into buffer

 //the timestamp starts at byte 40, convert four bytes into a long integer

 unsigned long hi = word(packetBuffer[40], packetBuffer[41]);

 unsigned long low = word(packetBuffer[42], packetBuffer[43]);

 // this is NTP time (seconds since Jan 1 1900

 unsigned long secsSince1900 = hi << 16 | low;

 // Unix time starts on Jan 1 1970

 const unsigned long seventyYears = 2208988800UL;

 unsigned long epoch = secsSince1900 - seventyYears; // subtract 70 years

 return epoch;

 }

 return 0; // return 0 if unable to get the time

}

// send an NTP request to the time server at the given address

unsigned long sendNTPpacket(IPAddress address)

{

 memset(packetBuffer, 0, NTP_PACKET_SIZE); // set all bytes in the buffer to

0

 // Initialize values needed to form NTP request

 packetBuffer[0] = B11100011; // LI, Version, Mode

 packetBuffer[1] = 0; // Stratum

 packetBuffer[2] = 6; // Max Interval between messages in seconds

 packetBuffer[3] = 0xEC; // Clock Precision

 // bytes 4 - 11 are for Root Delay and Dispersion and were set to 0 by

memset

 packetBuffer[12] = 49; // four-byte reference ID identifying

 packetBuffer[13] = 0x4E;

 packetBuffer[14] = 49;

 packetBuffer[15] = 52;

 // send the packet requesting a timestamp:

 Udp.beginPacket(address, 123); //NTP requests are to port 123

 Udp.write(packetBuffer,NTP_PACKET_SIZE);

 Udp.endPacket();

}

Error Message That “Something” Was Not Declared in
This Scope
The Arduino IDE is telling you that it does not recognize something. If the missing item is a
library function, such as setSyncProvider, you have not included or not installed the library. If
you see this message, see Chapter 12 for information on installing the Time library.

See Also
Chapter 12 provides more information on using the Arduino Time library.

Details on NTP

The NTP code by Jesse Jaggars that inspired the sketch used in this recipe

If you are running an Arduino release prior to 1.0, you can download this
UDP library.

http://www.ntp.org/
https://oreil.ly/nlcFP
https://oreil.ly/UWXRC

Using, Modifying, and Creating
Libraries

16.0 Introduction
Libraries add functionality to the Arduino environment. They extend the
commands available to provide capabilities not available in the core
Arduino language. Libraries provide a way to add features that can be
accessed from any of your sketches once you have installed the library.

The Arduino software distribution includes built-in libraries that cover
common tasks. These libraries are discussed in Recipe 16.1.

Libraries are also a good way for people to share code that may be useful to
others. Many third-party libraries provide specialized capabilities; these can
be downloaded from the Arduino Library Manager but also from GitHub.
Libraries are often written to simplify the use of a particular piece of
hardware. Many of the devices covered in earlier chapters use libraries to
make it easier to connect to the devices.

Libraries can also provide a friendly wrapper around complex code to make
it easier to use. An example is the Wire library distributed with Arduino,
which hides much of the complexity of low-level hardware communications
(see Chapter 13).

This chapter explains how to use and modify libraries. It also gives
examples of how to create your own libraries.

16.1 Using the Built-in Libraries
Problem
You want to use the libraries provided with the Arduino distribution in your
sketch.

Solution
This recipe shows you how to use Arduino library functionality in your
sketch.

To see the list of available libraries from the IDE menu, click
Sketch→Include Library. A list will drop down showing all the available
libraries. The first dozen or so are the libraries distributed with Arduino. A
horizontal line separates that list from the libraries that you download and
install yourself.

Clicking a library will add that library to the current sketch, by adding the
following line to the top of the sketch:

#include <nameOfTheLibrarySelected.h>

This results in the functions within the library becoming available to use in
your sketch.

NOTE
The Arduino IDE updates its list of available libraries only when the IDE is first started on your
computer. If you manually install a library after the IDE is running, you need to close the IDE and
restart for that new library to be recognized. If you install a library through the Library Manager,
you won’t need to restart the IDE.

The Arduino libraries are documented in the Arduino Reference and each
library includes example sketches demonstrating their use. Chapter 1 has
details on how to navigate to the examples in the IDE.

The libraries that are included with Arduino as of version 1.8.10 are:

Adafruit Circuit Playground
Supports Adafruit’s Circuit Playground board, which includes many
sensors and outputs for quick and easy prototyping.

Bridge

https://oreil.ly/ZlfnW

This is used by the now-discontinued Arduino Yun, Yun Shield, and
TRE. It allows communication between the Linux system and
microcontroller on those boards.

Esplora
This is used by the now-discontinued Arduino Esplora board, an all-in-
one board that includes sensors, joystick, LEDs, buzzers, and other
inputs and outputs.

EEPROM
Used to store and read information in memory that is preserved when
power is removed; see Chapter 18.

Ethernet
Used to communicate with the Arduino Ethernet shield, compatible
modules such as the Adafruit Ethernet FeatherWing, or for use with the
Arduino Ethernet board; see Chapter 15.

Firmata
A protocol used to simplify serial communication and control of the
board.

GSM
Supports the now-discontinued Arduino GSM shield, which connects
Arduino to cellular data networks.

HID
Allows certain boards, such as the Arduino Leonardo and SAMD-based
boards, to function as a mouse or keyboard. You won’t use this library
directly, but the Keyboard and Mouse libraries depend on it.

Keyboard
Allows certain boards, such as the Arduino Leonardo and SAMD-based
boards, to function as a USB keyboard.

LiquidCrystal

For controlling compatible LCD displays; see Chapter 11.

Mouse
Allows certain boards, such as the Arduino Leonardo and SAMD-based
boards, to function as a USB mouse.

Robot Control
Supports operation of the now-discontinued Arduino Robot’s control
board.

Robot IR Remote
Supports operation of the now-discontinued Arduino Robot’s infrared
remote.

Robot Motor
Supports operation of the now-discontinued Arduino Robot’s motor
board.

SD
Supports reading and writing files to an SD card using external
hardware.

Servo
Used to control servo motors; see Chapter 8.

SoftwareSerial
Enables additional serial ports.

SpacebrewYun
This is used by the now-discontinued Arduino Yun to enable
WebSocket-based communications.

SPI
Used for Ethernet and SPI hardware; see Chapter 13.

Stepper

For working with stepper motors; see Chapter 8.

Temboo
Connects Arduino to Temboo, a platform for connecting to APIs,
databases, and code utilities.

TFT
A library to support the now-discontinued Arduino LCD screen. Third-
party boards and modules are available along with custom libraries.

WiFi
Supports the now-discontinued Arduino WiFi shield, which has been
replaced by Arduino boards with built-in WiFi as well as third-party
boards and modules.

Wire
Works with I2C devices attached to the Arduino; see Chapter 13.

The following two libraries can be found in releases prior to Arduino 1.0
but are no longer included with the Arduino distribution:

Matrix
Helps manage a matrix of LEDs; see Chapter 7.

Sprite
Enables the use of sprites with an LED matrix.

Discussion
Libraries that work with specific hardware within the Arduino controller
chip only work on predefined pins. The Wire and SPI libraries are examples
of this kind of library. Libraries that allow user selection of pins usually
have this specified in setup; Servo, LiquidCrystal, and Stepper are
examples of that kind of library. See the library documentation for specific
information on how to configure the library.

https://temboo.com/

Including a library adds the library code to your sketch behind the scenes.
This means the size of your sketch, as reported at the end of the compilation
process, will increase, but the Arduino build process is smart enough to
only include the code your sketch is actually using from the library, so you
don’t have to worry about the memory overhead for methods that are not
being used. Therefore, you also don’t have to worry about unused functions
reducing the amount of code you can put into your sketch.

Libraries included with Arduino (and many contributed libraries) include
example sketches that show how to use the library. They are accessed from
the File→Examples menu.

See Also
The Arduino reference for libraries

16.2 Installing Third-Party Libraries
Problem
You want to use a library created for use with Arduino but not in the
standard distribution.

Solution
First, check the Library Manager to see if the library is available. Select
Tools →Manage Libraries and search for the library you are looking for (or
for the name of a component; you can often find libraries that are designed
for specific components). Hover over its entry in the list of results, and click
Install (see Figure 16-1). It will be ready to use right away.

https://oreil.ly/1qFrt

Installing a library with the Library Manager

If the library is not available in the Library Manager, you will need to
download the library. If the library is available on GitHub, check the
README carefully. In most cases, you should be able to download it from
the Releases tab just above the list of files or click the Clone or Download
button and choose Download Zip. If the library is made available some
other way, it will often be a .zip file. Unzip it and you will have a folder that
has the same title as the name of the library. This folder needs to be put
inside a folder called libraries inside your Arduino document folder. To find
the Arduino document folder, open Preferences (Arduino→Preferences on
macOS; File→Preferences on Windows or Linux) and note the sketchbook
location. Navigate to that directory in a filesystem browser (such as
Windows Explorer or macOS Finder) or at the terminal. If no libraries
folder exists, create one and put the folder you unzipped inside it.

If the Arduino IDE is still running, quit and restart it. The IDE scans this
folder to find libraries only when it is launched. If you now go to the menu
Sketch→Import Library, at the bottom, below the gray line and the word
Contributed, you should see the library you have added.

If the libraries provide example sketches, you can view these from the IDE
menu; click File→Examples, and the libraries examples will be under the
libraries name in a section between the general examples and the Arduino
distributed library example listing.

Discussion
A large number of libraries are provided by third parties. Many are very
high quality, are actively maintained, and provide good documentation and
example sketches. Arduino Libraries has a great, regularly updated list of
available libraries. The Arduino Playground, although no longer accepting
updates, is also a good place to look for libraries.

Look for libraries that have clear documentation and examples. Check out
the Arduino forums to see if there are any threads (discussion topics) that
discuss the library. Libraries that were designed to be used with early
Arduino releases may have problems when used with the latest Arduino
version, so you may need to read through a lot of material (some threads for
popular libraries contain hundreds of posts) to find information on using an
older library with the latest Arduino release.

If the library examples do not appear in the Examples menu or you get a
message saying “Library not found” when you try to use the library, check
that the libraries folder is in the correct place with the name spelled
correctly. A library folder named <LibraryName> (where <LibraryName>
is the name for the library) must contain a file named <LibraryName>.h
with the same spelling and capitalization. Check that additional files needed
by the library are in the folder.

16.3 Modifying a Library
Problem
You want to change the behavior of an existing library, perhaps to extend its
capability. For example, the TimeAlarms library in Chapter 12 only
supports six alarms and you need more (see Recipe 12.5).

https://www.arduinolibraries.info/
https://oreil.ly/kgfit

Solution
The Time and TimeAlarms libraries are described in Chapter 12, so refer to
Recipe 12.5 to familiarize yourself with the standard functionality. The
libraries can be installed using the Library Manager. If you have trouble
finding the Time library, try searching the Library Manager for
“timekeeping.”

Once you have the Time and TimeAlarms libraries installed, compile and
upload the following sketch on an AVR-based board, which will attempt to
create seven alarms—one more than the libraries support (on AVR that is;
ARM and ESP8266 boards support more). Each Alarm task simply prints
its task number:

/*

 * multiple_alarms sketch

 * Has more timer repeats than the library supports out of the box -

 * you will need to edit the header file to enable more than 6 alarms

 */

#include <TimeLib.h>

#include <TimeAlarms.h>

int currentSeconds = 0;

void setup()

{

 Serial.begin(9600);

 // create 7 alarm tasks

 Alarm.timerRepeat(1, repeatTask1);

 Alarm.timerRepeat(2, repeatTask2);

 Alarm.timerRepeat(3, repeatTask3);

 Alarm.timerRepeat(4, repeatTask4);

 Alarm.timerRepeat(5, repeatTask5);

 Alarm.timerRepeat(6, repeatTask6);

 Alarm.timerRepeat(7, repeatTask7); // 7th timer repeat

}

void repeatTask1()

{

 Serial.print("task 1 ");

}

void repeatTask2()

{

 Serial.print("task 2 ");

}

void repeatTask3()

{

 Serial.print("task 3 ");

}

void repeatTask4()

{

 Serial.print("task 4 ");

}

void repeatTask5()

{

 Serial.print("task 5 ");

}

void repeatTask6()

{

 Serial.print("task 6 ");

}

void repeatTask7()

{

 Serial.print("task 7 ");

}

void loop()

{

 if(second() != currentSeconds)

 {

 // print the time for each new second

 // the task numbers will be printed when the alarm for that task is

triggered

 Serial.println();

 Serial.print(second());

 Serial.print("->");

 currentSeconds = second();

 Alarm.delay(1); // Alarm.delay must be called to service the alarms

 }

}

Open the Serial Monitor and watch the output being printed. After nine
seconds of output, you should see this:

1->task 1

2->task 1 task 2

3->task 1 task 3

4->task 1 task 2 task 4

5->task 1 task 5

6->task 1 task 2 task 3 task 6

7->task 1

8->task 1 task 2 task 4

9->task 1 task 3

The task scheduled for seven seconds did not trigger because the library
only provides six timer “objects” that you can use.

You can increase this by modifying the library. Go to the libraries folder in
your Arduino Documents folder.

NOTE
You can locate the directory containing the sketchbook folder by clicking the menu item
File→Preferences (on Windows or Linux) or Arduino→Preferences (on macOS) in the IDE. A
dialog box will open, showing the sketchbook location.

If you have installed the Time and TimeAlarms libraries (both libraries are
in the file you downloaded), navigate to the Libraries\TimeAlarms folder.
Open the TimeAlarms.h header file (for more details about header files, see
Recipe 16.4). You can edit the file with any text editor; for example,
Notepad on Windows or TextEdit on a Mac.

You should see the following at the top of the TimeAlarms.h file:

#ifndef TimeAlarms_h

#define TimeAlarms_h

#include <Arduino.h>

#include "TimeLib.h"

#if defined(__AVR__)

#define dtNBR_ALARMS 6 // max is 255

#else

#define dtNBR_ALARMS 12 // assume non-AVR has more memory

#endif

The maximum number of alarms is specified by the value defined for
dtNbr_ALARMS.

Change:

#define dtNBR_ALARMS 6

to:

#define dtNBR_ALARMS 7

and save the file.

Upload the sketch to your Arduino again, and this time the serial output
should read:

1->task 1

2->task 1 task 2

3->task 1 task 3

4->task 1 task 2 task 4

5->task 1 task 5

6->task 1 task 2 task 3 task 6

7->task 1 task 7

8->task 1 task 2 task 4

9->task 1 task 3

You can see that task 7 now activates after seven seconds.

Discussion
Capabilities offered by a library are a trade-off between the resources used
by the library and the resources available to the rest of your sketch, and it is
often possible to change these capabilities if required. For example, you
may need to decrease the amount of memory used for a serial library so that
other code in the sketch has more RAM. Or you may need to increase the
memory usage by a library for your application. The library writer generally
creates the library to meet typical scenarios, but if your application needs
capabilities not catered to by the library writer, you may be able to modify
the library to accommodate them.

In this example, the TimeAlarms library allocates room (in RAM) for six
alarms. Each of these consumes around a dozen bytes and the space is
reserved even if only a few are used. The number of alarms is set in the
library header file (the header is a file named TimeAlarms.h in the
TimeAlarms folder).

In the TimeAlarms library, the maximum number of alarms is set using a
#define statement. Because you changed it and saved the header file when
you recompiled the sketch to upload it, it uses the new upper limit.

Sometimes define statements (or constants) are used to define
characteristics such as the clock speed of the board, and when used with a
board that runs at a different speed, you will get unexpected results. Editing
this value in the header file to the correct one for the board you are using
will fix this problem.

If you edit the header file and the library stops working, you can always
download the library again and replace the whole library to return to the
original state.

See Also
Recipe 16.4 has more details on how you can add functionality to libraries.

16.4 Creating Your Own Library
Problem
You want to create your own library. Libraries are a convenient way to
reuse code across multiple sketches and are a good way to share with other
users.

Solution
A library is a collection of methods and variables that are combined in a
format that enables users to access functions and variables in a standardized
way.

Most Arduino libraries are written as a class. If you are familiar with C++
or Java, you will be familiar with classes. However, you can create a library
without using a class, and this recipe shows you how.

This recipe explains how you can transform the sketch from Recipe 7.1 to
move the BlinkLED function into a library.

See Recipe 7.1 for the wiring diagram and an explanation of the circuit. The
library will contain the blinkLED function from that recipe. Here is the
sketch that will be used to test the library:

/*

 * blinkLibTest

 */

#include "blinkLED.h"

const int firstLedPin = 3; // choose the pin for each of the LEDs

const int secondLedPin = 5;

const int thirdLedPin = 6;

void setup()

{

 pinMode(firstLedPin, OUTPUT); // declare LED pins as output

 pinMode(secondLedPin, OUTPUT); // declare LED pins as output

 pinMode(thirdLedPin, OUTPUT); // declare LED pins as output

}

void loop()

{

 // flash each of the LEDs for 1,000 ms (1 second)

 blinkLED(firstLedPin, 1000);

 blinkLED(secondLedPin, 1000);

 blinkLED(thirdLedPin, 1000);

}

The blinkLED function from Recipe 7.1 should be removed from the sketch
and moved into a separate file named blinkLED.cpp (see the Discussion for
more details about .cpp files):

/* blinkLED.cpp

 * simple library to light an LED for a duration given in milliseconds

 */

#include "Arduino.h" // use: Wprogram.h for Arduino versions prior to 1.0

#include "blinkLED.h"

// blink the LED on the given pin for the duration in milliseconds

void blinkLED(int pin, int duration)

{

 digitalWrite(pin, HIGH); // turn LED on

 delay(duration);

 digitalWrite(pin, LOW); // turn LED off

 delay(duration);

}

TIP
Most library authors are programmers who use their favorite programming editor, but you can use
any plain-text editor to create these files.

Create the blinkLED.h header file as follows:

/*

 * blinkLED.h

 * Library header file for BlinkLED library

 */

#include "Arduino.h"

void blinkLED(int pin, int duration); // function prototype

Discussion
The library will be named “blinkLED” and will be located in the libraries
folder (see Recipe 16.2); create a subdirectory named blinkLED in the
libraries folder and move blinkLED.h and blinkLED.cpp into it. Next,
create a subdirectory of that folder called examples and a subdirectory
under that folder called blinkLibTest. Next, put the contents of the sketch
shown earlier into a file named examples/blinkLibTest/blinkLibTest.ino.

The blinkLED function from Recipe 7.1 is moved out of the sketch and into
a library file named blinkLED.cpp (the .cpp extension stands for “C plus
plus” and contains the executable code).

NOTE
The terms functions and methods are used in Arduino library documentation to refer to blocks of
code such as blinkLED. The term method was introduced to refer to the functional blocks in a
class. Both terms refer to the named functional blocks that are made accessible by a library.

The blinkLED.cpp file contains a blinkLED function that is identical to the
code from Recipe 7.1 with the following two lines added at the top:

#include "Arduino.h" // Arduino include

#include "blinkLED.h"

The #include "Arduino.h" line is needed by a library that uses any
Arduino functions or constants. Without this, the compiler will report errors
for all the Arduino functions used in your sketch.

NOTE
Arduino.h was added in Release 1.0 and replaces WProgram.h. If you are compiling sketches
using earlier releases, you can use the following conditional include to bring in the correct
version:

#if ARDUINO >= 100

#include "Arduino.h // for 1.0 and later

#else

#include "WProgram.h" // for earlier releases

#endif

The next line, #include "blinkLED.h", contains the function definitions
(also known as prototypes) for your library. The Arduino build process
creates prototypes for all the functions within a sketch automatically when a
sketch is compiled—but it does not create any prototypes for library code,
so if you make a library, you must create a header with these prototypes. It

is this header file that is added to a sketch when you import a library from
the IDE (see Recipe 16.1).

NOTE
Every library must have a file that declares the names of the functions to be exposed. This file is
called a header file (also known as an include file) and has the form <LibraryName>.h (where
<LibraryName> is the name for your library). In this example, the header file is named
blinkLED.h and is in the same folder as blinkLED.cpp.

The header file for this library is simple. It declares the one function:

void blinkLED(int pin, int duration); // function prototype

This looks similar to the function definition in the blinkLED.cpp file:

void blinkLED(int pin, int duration)

The difference is subtle but vital. The header file prototype contains a
trailing semicolon. This tells the compiler that this is just a declaration of
the form for the function but not the code. The source file, blinkLED.cpp,
does not contain the trailing semicolon and this informs the compiler that
this is the actual source code for the function.

TIP
Libraries can have more than one header file and more than one implementation file. But there
must be at least one header and that must match the library name. It is this file that is included at
the top of the sketch when you import a library.

A good book on C++ can provide more details on using header and .cpp
files to create code modules. This recipe’s See Also section lists some
popular choices.

With the blinkLED.cpp, blinkLED.h, and blinkLibTest.ino files in the correct
place within the libraries folder, close the IDE and reopen it. The directory
structure should look like this:

libraries/

└── blinkLED/
 ├── blinkLED.cpp
 ├── blinkLED.h
 └── examples/
 └── blinkLibTest/
 └── blinkLibTest.ino

NOTE
The Arduino IDE updates its list of available libraries only when the IDE is first started on your
computer. If you create a library after the IDE is running, you need to close the IDE and restart for
that library to be recognized. Although you need to close and restart the IDE when you first add
the library to the libraries folder, you do not need to do so after subsequent changes to the library.

Click File→Examples (Examples from Custom
Libraries)→blinkLED→blinkLibTest to open the example sketch. Upload
the blinkLibTest sketch and you should see the three LEDs blinking.

It’s easy to add additional functionality to the library. For example, you can
add some constant values for common delays so that users of your libraries
can use the descriptive constants instead of millisecond values.

Add the three lines with constant values, traditionally put just before the
function prototype, to your header file as follows:

// constants for duration

const int BLINK_SHORT = 250;

const int BLINK_MEDIUM = 500;

const int BLINK_LONG = 1000;

void blinkLED(int pin, int duration); // function prototype

Change the code in loop as follows and upload the sketch to see the
different blink rates:

void loop()

{

 blinkLED(firstLedPin, BLINK_SHORT);

 blinkLED(secondLedPin, BLINK_MEDIUM);

 blinkLED(thirdLedPin, BLINK_LONG);

}

New functions can be easily added. This example adds a function that
continues blinking for the number of times given by the sketch. Here is the
loop code:

void loop()

{

 blinkLED(firstLedPin, BLINK_SHORT, 5); // blink 5 times

 blinkLED(secondLedPin, BLINK_MEDIUM, 3); // blink 3 times

 blinkLED(thirdLedPin, BLINK_LONG); // blink once

}

To add this functionality to the library, add the prototype to blinkLED.h as
follows:

/*

 * blinkLED.h

 * Header file for BlinkLED library

 */

#include "Arduino.h"

// constants for duration

const int BLINK_SHORT = 250;

const int BLINK_MEDIUM = 500;

const int BLINK_LONG = 1000;

void blinkLED(int pin, int duration);

// new function for repeat count

void blinkLED(int pin, int duration, int repeats);

Add the function into blinkLED.cpp:

/*

 * blinkLED.cpp

 * simple library to light an LED for a duration given in milliseconds

 */

#include "Arduino.h"

#include "blinkLED.h"

// blink the LED on the given pin for the duration in milliseconds

void blinkLED(int pin, int duration)

{

 digitalWrite(pin, HIGH); // turn LED on

 delay(duration);

 digitalWrite(pin, LOW); // turn LED off

 delay(duration);

}

/* function to repeat blinking */

void blinkLED(int pin, int duration, int repeats)

{

 while(repeats)

 {

 blinkLED(pin, duration);

 repeats = repeats -1;

 }

}

You can create a keywords.txt file if you want to add syntax highlighting
(coloring the keywords used in your library when viewing a sketch in the
IDE). This is a text file that contains the name of the keyword and the
keyword type—each type uses a different color. The keyword and type must
be separated by a tab (not a space). For example, save the following file as
keywords.txt in the blinkLED folder (you’ll need to quit and restart the IDE
when you add or modify a keywords.txt file):

#######################################

Methods and Functions (KEYWORD2)

#######################################

blinkLED KEYWORD2

#######################################

Constants (LITERAL1)

#######################################

BLINK_SHORT LITERAL1

BLINK_MEDIUM LITERAL1

BLINK_LONG LITERAL1

See Also

See Recipe 16.5 for more examples of writing a library.

This “Writing a Library for Arduino” reference document

Also see the following books on C++:

Practical C++ Programming by Steve Oualline (O’Reilly)

C++ Primer Plus by Stephen Prata (Sams)

C++ Primer by Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo
(Addison-Wesley Professional)

16.5 Creating a Library That Uses Other
Libraries
Problem
You want to create a library that uses functionality from one or more
existing libraries. For example, to use the Wire library to get data from a
Wii nunchuck game controller.

Solution
This recipe uses the functions described in Recipe 13.6 to communicate
with a Wii nunchuck using the Wire library.

Create a folder named Nunchuck in the libraries directory (see Recipe 16.4
for details on the file structure for a library). Create a file named
Nunchuck.h with the following code:

/*

 * Nunchuck.h

 * Arduino library to interface with wii Nunchuck

 */

#ifndef Nunchuck_included

#define Nunchuck_included

// identities for each field provided by the wii nunchuck

enum nunchuckItems { wii_joyX, wii_joyY, wii_accelX, wii_accelY, wii_accelZ,

 wii_btnC, wii_btnZ, wii_ItemCount };

https://oreil.ly/vLNvx
http://oreilly.com/catalog/9780596004194/

// uses pins adjacent to I2C pins as power & ground for Nunchuck

void nunchuckSetPowerpins();

// initialize the I2C interface for the nunchuck

void nunchuckInit();

// Request data from the nunchuck

void nunchuckRequest();

// Receive data back from the nunchuck,

// returns true if read successful, else false

bool nunchuckRead();

// Encode data to format that most wiimote drivers accept

char nunchuckDecode (uint8_t x);

// return the value for the given item

int nunchuckGetValue(int item);

#endif

Create a file named Nunchuck.cpp in the Nunchuck folder as follows:

/*

 * Nunchuck.cpp

 * Arduino library to interface with wii Nunchuck

 */

#include "Arduino.h" // Arduino defines

#include "Wire.h" // Wire (I2C) defines

#include "Nunchuck.h" // Defines for this library

// Constants for Uno board (use 19 and 18 for mega)

const int vccPin = A3; // +v and gnd provided through these pins

const int gndPin = A2;

const int dataLength = 6; // number of bytes to request

static byte rawData[dataLength]; // array to store nunchuck data

// uses pins adjacent to I2C pins as power & ground for Nunchuck

void nunchuckSetPowerpins()

{

 pinMode(gndPin, OUTPUT); // set power pins to the correct state

 pinMode(vccPin, OUTPUT);

 digitalWrite(gndPin, LOW);

 digitalWrite(vccPin, HIGH);

 delay(100); // wait for power to stabilize

}

// initialize the I2C interface for the nunchuck

void nunchuckInit()

{

 Wire.begin(); // join i2c bus as master

 Wire.beginTransmission(0x52);// transmit to device 0x52

 Wire.write((byte)0x40); // sends memory address

 Wire.write((byte)0x00); // sends sent a zero.

 Wire.endTransmission(); // stop transmitting

}

// Request data from the nunchuck

void nunchuckRequest()

{

 Wire.beginTransmission(0x52);// transmit to device 0x52

 Wire.write((byte)0x00);// sends one byte

 Wire.endTransmission();// stop transmitting

}

// Receive data back from the nunchuck,

// returns true if read successful, else false

bool nunchuckRead()

{

 byte cnt=0;

 Wire.requestFrom (0x52, dataLength);// request data from nunchuck

 while (Wire.available ())

 {

 byte x = Wire.read();

 rawData[cnt] = nunchuckDecode(x);

 cnt++;

 }

 nunchuckRequest(); // send request for next data payload

 if (cnt >= dataLength)

 return true; // success if all 6 bytes received

 else

 return false; // failure

}

// Encode data to format that most wiimote drivers accept

char nunchuckDecode (byte x)

{

 return (x ^ 0x17) + 0x17;

}

// return the value for the given item

int nunchuckGetValue(int item)

{

 if(item <= wii_accelZ)

 return (int)rawData[item];

 else if(item == wii_btnZ)

 return bitRead(rawData[5], 0) ? 0: 1;

 else if(item == wii_btnC)

 return bitRead(rawData[5], 1) ? 0: 1;

}

Connect the nunchuck as shown in Recipe 13.6 but use the following sketch
to test the library (if Arduino was running while you created the previous
two files, quit and restart it so it will see the new library). If you’d like, you
can create this as the file WiichuckSerial.ino in the folder
examples/WiichuckSerial underneath the Nunchuck library folder to make it
available as an example program:

/*

 * WiichuckSerial

 *

 * Uses Nunchuck library to send sensor values to serial port

 */

#include <Wire.h>

#include "Nunchuck.h"

void setup()

{

 Serial.begin(9600);

 nunchuckSetPowerpins();

 nunchuckInit(); // send the initialization handshake

 nunchuckRead(); // ignore the first time

 delay(50);

}

void loop()

{

 nunchuckRead();

 Serial.print("H,"); // header

 for(int i=0; i < 5; i++) // print values of accelerometers and buttons

 {

 Serial.print(nunchuckGetValue(wii_accelX+ i), DEC);

 Serial.write(',');

 }

 Serial.println();

 delay(20); // the time in milliseconds between sends

}

Discussion
To include another library, use its include statement in your code as you
would in a sketch. It is sensible to include information about any additional
libraries that your library needs in documentation if you make it available
for others to use, especially if it requires a library that is not distributed with
Arduino.

The major difference between the library code and the sketch from Recipe
13.6 is the addition of the Nunchuck.h header file that contains the function
prototypes (Arduino sketch code silently creates prototypes for you, unlike
Arduino libraries, which require explicit prototypes).

Here is another example of creating a library; this one uses a C++ class to
encapsulate the library functions. A class is a programming technique for
grouping functions and variables together and is commonly used for most
Arduino libraries.

This library can be used as a debugging aid by sending print output to a
second Arduino board using the Wire library. This is particularly useful
when the hardware serial port is not available and software serial solutions
are not appropriate due to the timing delays they introduce. Here the core
Arduino print functionality is used to create a new library that sends printed
output to I2C. The connections and code are covered in Recipe 13.5. The
following description shows how that code can be converted into a library.

Create a folder named i2cDebug in the libraries directory (see Recipe 16.4
for details on the file structure for a library). Create a file named
i2cDebug.h with the following code:

/*

 * i2cDebug.h

 */

#ifndef i2cDebug_included

#define i2cDebug_included

#include <Arduino.h>

#include <Print.h> // the Arduino print class

class i2cDebugClass : public Print

{

 private:

 int i2cAddress;

 byte count;

 size_t write(byte c);

 public:

 i2cDebugClass();

 bool begin(int id);

};

extern i2cDebugClass i2cDebug; // the i2c debug object

#endif

Create a file named i2cDebug.cpp in the i2cDebug folder as follows:

/*

 * i2cDebug.cpp

 */

#include <i2cDebug.h>

#include <Wire.h> // the Arduino I2C library

i2cDebugClass::i2cDebugClass()

{

}

bool i2cDebugClass::begin(int id)

{

 i2cAddress = id; // save the slave's address

 Wire.begin(); // join I2C bus (address optional for master)

 return true;

}

size_t i2cDebugClass::write(byte c)

{

 if(count == 0)

 {

 // here if the first char in the transmission

 Wire.beginTransmission(i2cAddress); // transmit to device

 }

 Wire.write(c);

 // if the I2C buffer is full or an end of line is reached, send the data

 // BUFFER_LENGTH is defined in the Wire library

 if(++count >= BUFFER_LENGTH || c == '\n')

 {

 // send data if buffer full or newline character

 Wire.endTransmission();

 count = 0;

 }

 return 1; // one character written

}

i2cDebugClass i2cDebug; // Create an I2C debug object

NOTE
The write method returns size_t, a value that enables the print function to return the number of
characters printed. This is new in Arduino 1.0—earlier versions did not return a value from write
or print. If you have a library that is based on Stream or Print, then you will need to change the
return type to size_t.

Load this example sketch into the IDE:

/*

 * i2cDebug

 * example sketch for i2cDebug library

 */

#include <Wire.h> // the Arduino I2C library

#include <i2cDebug.h>

const int address = 4; // the address to be used by the communicating

devices

const int sensorPin = 0; // select the analog input pin for the sensor

int val; // variable to store the sensor value

void setup()

{

 Serial.begin(9600);

 i2cDebug.begin(address);

}

void loop()

{

 // read the voltage on the pot(val ranges from 0 to 1023)

 val = analogRead(sensorPin);

 Serial.println(val);

 i2cDebug.println(val);

}

Remember that you need to restart the IDE after creating the library folder.
See Recipe 16.4 for more details on creating a library.

Upload the slave I2C sketch onto another Arduino board and wire up the
boards as described in Recipe 13.5, and you should see the output from the
Arduino board running your library displayed on the second board.

The following references provide an introduction to classes if C++ classes
are new to you:

Programming Interactivity by Joshua Noble (O’Reilly)

C++ Primer by Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo
(Addison-Wesley Professional)

16.6 Updating Third-Party Libraries for
Arduino 1.0
Problem
You want to use a third-party library created for Arduino releases previous
to 1.0.

Solution
Most libraries should only require the change of a few lines to work under
Arduino 1.0. For example, any one or more of these header file includes:

#include "wiring.h"

 #include "WProgram.h"

 #include "WConstants.h"

 #include "pins_arduino.h"

http://oreilly.com/catalog/9780596154158

should be changed to a single include of:

#include "Arduino.h"

TIP
The filenames may be enclosed in either angle brackets or quotes.

Discussion
Older libraries that don’t compile under Arduino 1.0 will usually generate
one or more of these error messages:

source file: error: wiring.h: No such file or directory

source file: error: WProgram.h: No such file or directory

source file: error: WConstants.h: No such file or directory

source file: error: pins_arduino.h: No such file or directory

source file is the full path of the library file that needs to be updated.
There will be a list of other errors following this due to the indicated file not
being found in the 1.0 release, but these should disappear after you have
replaced the old header names with Arduino.h. The definitions in these files
are now included in Arduino.h and the solution is to replace includes for all
of the preceding files with a single include for Arduino.h.

If you want to run current versions of Arduino alongside earlier versions,
you can use a conditional define (see Recipe 17.6):

#if ARDUINO >= 100

#include "Arduino.h"

#else

// These are the filenames that are used in the original version of library

#include "wiring.h"

#include "pins_arduino.h"

#endif

Third-party libraries that use serial, Ethernet, or other functionality that has
changed syntax in Arduino 1.0 may require additional code changes.

Advanced Coding and Memory
Handling

17.0 Introduction
As you do more with your Arduino, your sketches need to become more
efficient. The techniques in this chapter can help you improve the
performance and reduce the code size of your sketches. If you need to make
your sketch run faster or use less RAM, the recipes here can help. The
recipes here are more technical than most of the other recipes in this book
because they cover things that are usually concealed by the friendly
Arduino wrapper.

The Arduino build process was designed to hide complex aspects of C and
C++, as well as the tools used to convert a sketch into the bytes that are
uploaded and run on an Arduino board. But if your project has performance
and resource requirements beyond the capability of the standard Arduino
environment, you should find the recipes here useful.

The Arduino board uses memory to store information. It has three kinds of
memory: program memory, random access memory (RAM), and EEPROM.
Each has different characteristics and uses. Many of the techniques in this
chapter cover what to do if you do not have enough of one kind of memory.

Program memory (also known as flash) is where the executable sketch code
is stored. The contents of program memory can only be changed by the
bootloader in the upload process initiated by the Arduino software running
on your computer. After the upload process is completed, the memory
cannot be changed until the next upload. There is far more program
memory on an Arduino board than RAM, so it can be beneficial to store
values that don’t change while the code runs (e.g., constants) in program
memory. The bootloader takes up some space in program memory. If all
other attempts to minimize the code to fit in program memory have failed,

the bootloader can be removed to free up space, but an additional hardware
programmer is then needed to get code onto the board.

If your code is larger than the program memory space available on the chip,
the upload will not work and the IDE will warn you that the sketch is too
big when you compile.

RAM is used by the code as it runs to store the values for the variables used
by your sketch (including variables in the libraries used by your sketch).
RAM is volatile, which means it can be changed by code in your sketch. It
also means anything stored in this memory is lost when power is switched
off. Arduino has much less RAM than program memory. If you run out of
RAM while your sketch runs on the board (as variables are created and
destroyed while the code runs) the board will misbehave (crash).

EEPROM (electrically erasable programmable read-only memory) is
memory that code running on Arduino can read and write, but it is
nonvolatile memory that retains values even when power is switched off.
EEPROM access is significantly slower than for RAM, so EEPROM is
usually used to store configuration or other data that is read at startup to
restore information from the previous session.

To understand these issues, it is helpful to understand how the Arduino IDE
prepares your code to go onto the chip and how you can inspect the results
it produces.

Preprocessor
Some of the recipes here use the preprocessor to achieve the desired result.
Preprocessing is a step in the first stage of the build process in which the
source code (your sketch) is prepared for compiling. Various find and
replace functions can be performed. Preprocessor commands are identified
by lines that start with #. You have already seen them in sketches that use a
library—#include tells the preprocessor to insert the code from the named
library file. Sometimes the preprocessor is the only way to achieve what is
needed, but its syntax is different from C and C++ code, and it can
introduce bugs that are subtle and hard to track down, so use it with care.

See Also
AVRfreaks is a website for software engineers that is a good source for
technical detail on the controller chips used by Arduino.

Technical details on the C preprocessor

The memory specifications for all of the official boards can be found on the
Arduino website.

17.1 Understanding the Arduino Build
Process
Problem
You want to see what is happening under the covers when you compile and
upload a sketch.

Solution
You can choose to display all the command-line activity that takes place
when compiling or uploading a sketch through the Preferences dialog.
Select File→Preferences (Linux, Windows) or Arduino→Preferences
(macOS) to display the dialog box to check or uncheck the boxes to enable
verbose output for compile or upload messages. You can also choose
whether to enable compiler warnings and how verbose you want those
warnings (None, Default, More, All).

Discussion
When you click Compile or Upload, a lot of activity happens that is not
usually displayed on screen. The command-line tools that the Arduino IDE
was built to hide are used to compile, link, and upload your code to the
board.

First your sketch file(s) are transformed into a file suitable for the compiler
(AVR-GCC) to process. All source files in the sketch folder that have the
default Arduino (.ino) file extension are joined together to make one file.

http://www.avrfreaks.net/
https://oreil.ly/kh_XU
https://oreil.ly/sWbi2

All files that end in .c or .cpp are compiled separately. Header files (with an
.h extension) are ignored unless they are explicitly included in the files that
are being joined.

#include "Arduino.h" (WProgram.h in previous releases) is added at the
top of the file to include the header file with all the Arduino-specific code
definitions, such as digitalWrite() and analogRead(). If you want to
examine the contents of that file, change to the directory where Arduino
was installed; from there, you can navigate to
hardware/arduino/avr/cores/arduino to find the header files

On the Mac, right-click the Arduino application icon and select Show
Package Contents from the drop-down menu. A folder will open; from the
folder, navigate to Contents/Java/. You’ll be able to find the
hardware/arduino/avr/cores/arduino folder there.

TIP
The Arduino directory structure may change in new releases, so check the documentation for the
release you are using.

To make the code valid C++, the prototypes of any functions declared in
your code are generated next and inserted.

Finally, the setting of the board menu is used to insert values (obtained from
the boards.txt file) that define various constants used for the controller chips
on the selected board.

This file is then compiled by AVR-GCC, which is included as part the
Arduino IDE installation. It is in the hardware/tools/avr/bin folder under
the Arduino installation (on macOS, the hardware directory is under the
Contents/Java/ folder within the Arduino app as described earlier).

The compiler produces a number of object files (files with an extension of
.o that will be combined by the link tool). These files are stored in your
temporary directory. In there, you’ll find directories such as
arduino_build_137218 that contain all the build artifacts. You can

determine your temporary directory on Windows by checking the value of
the TEMP environment variable: open a command prompt and run the
command echo %TEMP%. On macOS, open a Terminal shell and run the
command echo $TMPDIR. On Linux, you should be able to find build
artifacts in /tmp.

The object files are then linked together to make a hex file to upload to the
board. Avrdude, a utility for transferring files to the Arduino controller, is
used to upload to the board.

The tools used to implement the AVR build process can be found in the
hardware\tools\avr\bin\ directory.

Another useful tool for experienced programmers is avr-objdump, which
you can find in the hardware/tools/avr/bin folder under the Arduino install.
It lets you see how the compiler turns the sketch into code that the
controller chip runs. This tool produces a disassembly listing of your sketch
that shows the object code intermixed with the source code. It can also
display a memory map of all the variables used in your sketch. To use the
tool, compile the sketch and navigate to the Arduino build folder (which
will be a subdirectory of your temporary directory as described earlier). You
can also find this by enabling and viewing verbose compiler output and
looking for the directory name there. Navigate to the folder that contains the
file with the .elf file extension. The file used by avr-objdump is the one
with the extension .elf. For example, if you compile the Blink sketch you
could view the compiled output (the machine code) by executing the
following on the Windows command line (note the use of the PATH
command to add the Arduino bin folder to the head of your PATH for this
session only). You will need to change 706012 to the suffix of the
arduino_build folder for the sketch you just compiled:

cd %TEMP%

cd arduino_build_706012

PATH "\Program Files (x86)\Arduino\hardware\tools\avr\bin\";%PATH%

avr-objdump -S Blink.ino.elf

On Linux, it will be more like this:

cd /tmp/arduino_build_700798/

PATH=~/arduino-1.8.9/hardware/tools/avr/bin/:$PATH

avr-objdump -S Blink.ino.elf

And for macOS:

cd $TMPDIR

cd arduino_build_97987/

PATH=/Applications/Arduino.app/Contents/Java/hardware/tools/avr/bin/:$PATH

avr-objdump -S Blink.ino.elf

It is convenient to direct the output to a file that can be read in a text editor.
You can do this as follows:

avr-objdump -S Blink.ino.elf > blink.txt

You can add the -h option to add a list of section headers (helpful for
determining memory usage):

avr-objdump -S -h Blink.ino.elf > blink.txt

For non-AVR boards, such as ARM-based boards or ESP8266, the Arduino
core (a collection of tools, header files, and other files that support
compilation on a particular hardware architecture) are stored under your
home directory somewhere. On macOS, cores are stored in
~/Library/Arduino15/packages. On Windows, it’s
%LOCALAPPDATA%\Arduino15\packages. On Linux,
~/.arduino15/packages. For example, at the time of this writing, the
objdump file for SAMD boards is located in the arduino/tools/arm-none-
eabi-gcc/4.8.3-2014q1/arm-none-eabi/bin/ folder beneath the packages
folder:

PATH=~/.arduino15/packages/arduino/tools/arm-none-eabi-gcc/4.8.3-

2014q1/bin:$PATH

arm-none-eabi-objdump -S Blink.ino.elf

If you have many cores installed, including cores from Adafruit, SparkFun,
or the ESP8266 community, there may be several ARM toolchains in there.
The best way to determine which one goes with which core is to compile
your sketch verbosely and look for the full path to the tools. When you see
a command like arm-none-eabi-g++ -mcpu=cortex-m0plus or xtensa-
lx106-elf-gcc -CC -E -P -DVTABLES_IN_FLASH scroll by, make note of
the full path to the tool.

See Also
This information on the Arduino build process

17.2 Determining the Amount of Free and
Used RAM
Problem
You want to be sure you have not run out of RAM. A sketch will not run
correctly if there is insufficient memory, and this can be difficult to detect.

Solution
This recipe shows you how you can determine the amount of free memory
available to your sketch. This sketch contains a function called memoryFree
that reports the amount of available RAM on an AVR:

/*

 * Free memory sketch for AVR

 */

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.println(memoryFree()); // print the free memory

https://oreil.ly/viClX

 delay(3000);

}

// Variable created by the build process when compiling the sketch

extern int *__brkval; // Pointer to last address allocated on the heap (or 0)

// function to return the amount of free RAM

int memoryFree()

{

 int freeValue; // This will be the most recent object allocated on the stack

 if((int)__brkval == 0) // Heap is empty; use start of heap

 {

 freeValue = ((int)&freeValue) - ((int)__malloc_heap_start);

 }

 else // Heap is not empty; use last heap address

 {

 freeValue = ((int)&freeValue) - ((int)__brkval);

 }

 return freeValue;

}

Discussion
The memoryFree function first declares a variable, freeValue, which is
allocated on the stack because it’s local to this function. There are two
primary areas of managed memory: the stack and heap. The stack resides at
the end of free memory, and when your sketch calls functions, the stack
usage grows (downward). The stack memory is used for function calls and
storage for local variables. As your functions finish running, stack memory
is released, and so stack usage shrinks. The heap resides at the beginning of
free memory, and when your sketch (or a library) allocates memory (such as
when you create a String object), the heap usage grows (upward). The
stack grows toward the heap, and the heap grows toward the stack.

So, if you know the distance (in bytes) between the stack and heap, you
know how much free memory Arduino has. The address of freeValue
(&freeValue) is the address of the last byte of free memory (the start of the
stack). The system variable __brkval contains the address of the first byte
of free memory (aka the end of the heap), unless there is nothing currently
allocated on the heap. In that case, it’s 0 (null), and won’t be of any help to

us because there are a lot of other things in memory before the heap.
However, there’s another system variable, __malloc_heap_start, that
gives you the address of the start of the heap. If you know the heap is empty
(0), use __malloc_heap_start instead.

NOTE
You do not need to take the address of __brkval or __malloc_heap_start with the & like you do
with freeValue. That’s because __brkval and __malloc_heap_start contain numbers whose
job it is to contain an address, while freeValue is an integer value whose address we are
interested in. In case you are wondering where __malloc_heap_start and __brkval come from,
they are created by the compilation process, and are available as symbols to your sketch.
__malloc_heap_start is automatically available to all sketches, but __brkval requires an
extern declaration to access it.

For ARM, the sketch is a bit simpler. The general idea is the same, except
for ARM, you can use the sbrk function, which is a low-level function for
managing memory. If you call it with an argument of 0, it just returns the
starting address of free RAM. The distance in bytes between the address of
freeValue and the return value of sbrk(0) gives you the free RAM. sbrk
is declared as a char pointer, so the sketch has to cast it to an int pointer to
subtract it from the address of freeValue. The sketch uses
reinterpret_cast rather than a regular cast [(int *)] because
reinterpret_cast allows the use of conversions that may be considered
unsafe in some configurations:

/*

 * Free memory sketch for ARM

 */

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.println(memoryFree()); // print the free memory

 delay(3000);

}

// Variable created by the build process when compiling the sketch

extern "C" char *sbrk(int incr); // Call with 0 to get start address of free

ram

// function to return the amount of free RAM

int memoryFree()

{

 int freeValue; // This will be the most recent object allocated on the stack

 freeValue = &freeValue - reinterpret_cast<int*>(sbrk(0));

 return freeValue;

}

The number of bytes your code uses changes as the code runs. The
important thing is to ensure that you don’t consume more memory than you
have. Your stack and heap will grow as your program runs. If they crash
into each other, you’re out of memory! If you make heavy usage of the
heap, it will become fragmented, and there may be holes in it. The methods
shown in this recipe will not take these holes into account, so you may have
a little bit more memory than it reports.

Here are the main ways RAM memory is consumed:

When you initialize constants or define a preprocessor macro:

#define ERROR_MESSAGE "an error has occurred"

When you declare global variables:

char myMessage[] = "Hello World";

When you make a function call:

void myFunction(int value)

{

 int result;

 result = value * 2;

 return result;

}

If you create recursive functions (functions that call themselves), you
can end up with very high stack usage if your nesting level gets too deep
and/or you have a lot of local variables.

When you dynamically allocate memory:

String stringOne = "Arduino String";

The Arduino String class uses dynamic memory to allocate space for
strings. You can see this by adding the following line to the very top of the
code in the Solution:

String s = "\n";

and the following lines just before the delay in the loop code:

s = s + "Hello I am Arduino\n";

Serial.println(s); // print the string value

You will see the memory value reduce as the size of the string is increased
each time through the loop. If you run the sketch long enough, the memory
will run out—don’t endlessly try to increase the size of a string in anything
other than a test application.

Writing code like this that creates a constantly expanding value is a sure
way to run out of memory. You should also be careful not to create code
that dynamically creates different numbers of variables based on some
parameter while the code runs, as it will be very difficult to be sure you will
not exceed the memory capabilities of the board when the code runs.

Constants and global variables are often declared in libraries as well, so you
may not be aware of them, but they still use up RAM. The Serial library, for
example, has a 128-byte global array that it uses for incoming serial data.
This alone consumes one-eighth of the total memory of an old Arduino 168
chip.

See Also
This technical overview of memory usage

17.3 Storing and Retrieving Numeric Values
in Program Memory
Problem
You have a lot of constant numeric data and don’t want to allocate this to
RAM.

Solution
Store numeric variables in program memory (the flash memory used to
store Arduino programs).

This sketch adjusts a fading LED for the nonlinear sensitivity of human
vision. It stores the values to use in a table of 256 values in program
memory rather than RAM.

The sketch is based on Recipe 7.2; see Chapter 7 for a wiring diagram and
discussion on driving LEDs. Running this sketch results in a smooth change
in brightness with the LED on pin 5 compared to the LED on pin 3:

/*

 * ProgmemCurve sketch

 * uses table in program memory to convert linear to exponential output

 */

#include <avr/pgmspace.h> // needed for PROGMEM

// table of exponential values

// generated for values of i from 0 to 255 -> x=round(pow(2.0, i/32.0) - 1);

const byte table[]PROGMEM = {

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,

 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,

https://oreil.ly/IgnwF

2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,

3,

 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4,

5,

 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7,

7,

 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10,

10,

 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14,

15,

 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21,

21,

 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30,

30,

 31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42,

43,

 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60,

62,

 63, 64, 66, 67, 69, 70, 72, 73, 75, 77, 78, 80, 82, 84, 86,

88,

 90, 91, 94, 96, 98, 100, 102, 104, 107, 109, 111, 114, 116, 119, 122,

124,

 127, 130, 133, 136, 139, 142, 145, 148, 151, 155, 158, 161, 165, 169, 172,

176,

 180, 184, 188, 192, 196, 201, 205, 210, 214, 219, 224, 229, 234, 239, 244,

250

};

const int rawLedPin = 3; // this LED is fed with raw values

const int adjustedLedPin = 5; // this LED is driven from table

int brightness = 0;

int increment = 1;

void setup()

{

 // pins driven by analogWrite do not need to be declared as outputs

}

void loop()

{

 if (brightness > 254)

 {

 increment = -1; // count down after reaching 255

 }

 else if (brightness < 1)

 {

{

 increment = 1; // count up after dropping back down to 0

 }

 brightness = brightness + increment; // increment (or decrement sign is

minus)

 // write the brightness value to the LEDs

 analogWrite(rawLedPin, brightness); // this is the raw value

 int adjustedBrightness = pgm_read_byte(&table[brightness]); // adjusted

value

 analogWrite(adjustedLedPin, adjustedBrightness);

 delay(10); // 10 ms for each step change means 2.55 secs to fade up or down

}

Discussion
When you need to use a complex expression to calculate a range of values
that regularly repeat, it is often better to precalculate the values and include
them in a table of values (usually as an array) in the code. This saves the
time needed to calculate the values repeatedly when the code runs. The
disadvantage concerns the memory needed to place these values in RAM.
RAM is limited on Arduino and the much larger program memory space
can be used to store constant values. This is particularly helpful for sketches
that have large arrays of numbers.

At the top of the sketch, the table is defined with the following expression:

const byte table[]PROGMEM = {

 0, . . .

PROGMEM tells the compiler that the values are to be stored in program
memory rather than RAM. If you were to delete PROGMEM from the sketch
on an Arduino Uno, you’d see the global variable use balloon from 13 bytes
to 269 bytes (the sketch would not work, though, because pgm_read_byte
will not work correctly without PROGMEM there). The remainder of the
expression is similar to defining a conventional array (see Chapter 2).

The low-level definitions needed to use PROGMEM are contained in a file
named pgmspace.h and the sketch includes this as follows:

#include <avr/pgmspace.h>

Although “avr” is in the path to this header file, you can still include it on
32-bit architectures because it is included for backward compatibility with
AVR boards. The implementation is a bit simpler, and in fact PROGMEM is
defined empty on ARM-based (SAM, SAMD) boards. This is because the
ARM compiler will generally store data structures declared as const in
program memory. On ARM-based boards, you can confirm its location by
adding this code to setup():

Serial.begin(9600);

while(!Serial); // for Leonardo and 32-bit boards

Serial.print("Address of table: 0x");

Serial.println((int)&table, HEX);

If the value displayed is between 0x0000 and 0x3FFFF, then it is stored in
program memory! If you remove const from the declaration of table and
run the sketch, you’ll see that it is stored at a much higher address
(0x2000000 or higher).

To adjust the brightness to make the fade look uniform, this recipe adds the
following lines to the LED output code used in Recipe 7.2:

int adjustedBrightness = pgm_read_byte(&table[brightness]);

 analogWrite(adjustedLedPin, adjustedBrightness);

The variable adjustedBrightness is set from a value read from program
memory. The expression pgm_read_byte(&table[brightness]); means
to return the address of the entry in the table array at the index position
given by brightness.

See Also
Adafruit Industries’ Memories of an Arduino contains a lot of useful
insights and techniques for working with Arduino memory.

https://oreil.ly/1ANoi

See Recipe 17.4 for the technique introduced in Arduino 1.0 to store strings
in flash memory.

17.4 Storing and Retrieving Strings in
Program Memory
Problem
You have lots of strings and they are consuming too much RAM. You want
to move string constants, such as menu prompts or debugging statements,
out of RAM and into program memory.

Solution
This sketch creates a string in program memory and prints its value to the
Serial Monitor using the F("text") expression. The technique for printing
the amount of free RAM is described in Recipe 17.2. This sketch combines
both the ARM and AVR methods. If you are using something other than an
ARM or AVR board, this sketch probably won’t compile correctly:

/*

 * Write strings using Program memory (Flash)

 */

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.println(memoryFree()); // print the free memory

 Serial.println(F("Arduino")); // print the string

 delay(1000);

}

#ifdef __arm__

// Variable created by the build process when compiling the sketch

extern "C" char *sbrk(int incr); // Call with 0 to get start address of free

ram

#else

extern int *__brkval; // Pointer to last address allocated on the heap (or 0)

#endif

// function to return the amount of free RAM

int memoryFree()

{

 int freeValue; // This will be the most recent object allocated on the stack

#ifdef __arm__

 freeValue = &freeValue - reinterpret_cast<int*>(sbrk(0));

#else

 if((int)__brkval == 0) // Heap is empty; use start of heap

 {

 freeValue = ((int)&freeValue) - ((int)__malloc_heap_start);

 }

 else // Heap is not empty; use last heap address

 {

 freeValue = ((int)&freeValue) - ((int)__brkval);

 }

#endif

 return freeValue;

}

Discussion
Strings are particularly hungry when it comes to RAM. Each character uses
a byte, so it is easy to consume large chunks of RAM if you have lots of
words in strings in your sketch. Inserting your text in the F("text")
expression stores the text in the much larger flash memory instead of RAM.

If you remove the F from before the string, you’ll see the amount of free
memory is lower than if you use it, at least on AVR. Depending on how the
ARM compiler optimizes things, it may put strings in flash without the F
expression.

See Also
See Recipe 15.13 for an example of flash memory used to store web page
strings.

17.5 Using #define and const Instead of
Integers
Problem
You want to minimize RAM usage by telling the compiler that the value is
constant and can be optimized.

Solution
Use const to declare values that are constant throughout the sketch.

For example, instead of:

int ledPin = 2;

use:

const int ledPin = 2;

Discussion
We often want to use a constant value in different areas of code. Just writing
the number is a really bad idea. If you later want to change the value used,
it’s difficult to work out which numbers scattered throughout the code also
need to be changed. It is best to use named references.

Here are three different ways to define a value that is a constant:

int ledPin = 2; // a variable, but this wastes RAM

const int ledPin = 2; // a const does not use RAM

#define ledPin LED_BUILTIN // with a define, the preprocessor replaces

 // ledPin with the value of LED_BUILTIN

pinMode(ledPin, OUTPUT);

Although the first two expressions look similar, the term const tells the
compiler not to treat ledPin as an ordinary variable. Unlike the ordinary

int, no RAM is reserved to hold the value for the const, as it is guaranteed
not to change. The compiler will produce exactly the same code as if you
had written:

pinMode(2, OUTPUT);

That said, if your sketch uses ledPin as though it were a constant (such as
if you never modify it), the compiler is very likely to notice this and
optimize it away, producing the preceding code even if you forgot to add
const.

You will sometimes see #define used to define constants in older Arduino
code, but const is a better choice than #define. This is because a const
variable has a type, which enables the compiler to verify and report if the
variable is being used in ways not appropriate for that type. The compiler
will also respect C rules for the scope of a const variable. A #define value
will affect all the code in the sketch, which may be more than you intended.
Another benefit of const is that it uses familiar syntax—#define does not
use the equals sign, and no semicolon is used at the end. One exception to
this is if you need to perform conditional compilation of code, where the
compiler ignores or includes code based on the values of one or more
#defines (see Recipe 17.6).

See Also
See Recipe 17.0 for more on the preprocessor.

17.6 Using Conditional Compilations
Problem
You want to have different versions of your code that can be selectively
compiled. For example, you may need code to work differently when
debugging or when running with different boards.

Solution
You can use the conditional statements aimed at the preprocessor to control
how your sketch is built.

This example, using the sketch from Recipe 5.6, displays some debug
statements only if DEBUG is defined:

/*

 Pot_Debug sketch

 blink an LED at a rate set by the position of a potentiometer

 Uses Serial port for debug if DEBUG is defined

 */

const int potPin = 0; // select the input pin for the potentiometer

const int ledPin = 13; // select the pin for the LED

int val = 0; // variable to store the value coming from the sensor

#define DEBUG

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT

}

void loop() {

 val = analogRead(potPin); // read the voltage on the pot

 digitalWrite(ledPin, HIGH); // turn the ledPin on

 delay(val); // blink rate set by pot value

 digitalWrite(ledPin, LOW); // turn the ledPin off

 delay(val); // turn LED off for same period

#if defined DEBUG

 Serial.println(val);

#endif

}

Discussion
This recipe uses the preprocessor used at the beginning of the compile
process to change what code is compiled. The sketch tests if DEBUG is
defined, and if so, the file incorporates the debugging output. Expressions

that begin with the # symbol are processed before the code is compiled—
see this chapter’s introduction for more on the preprocessor.

You can have a conditional compile based on the controller chip selected in
the IDE. For example, the following code will produce different code when
compiled for a Mega board that reads the additional analog pins that it has:

/*

 * ConditionalCompile sketch

 * This sketch recognizes the controller chip using conditional defines

 */

int numberOfSensors;

int val = 0; // variable to store the value coming from the

sensor

void setup()

{

 Serial.begin(9600);

#if defined(__AVR_ATmega2560__) // defined when selecting Mega in the IDE

 numberOfSensors = 16; // the number of analog inputs on the Mega

 #pragma message ("Using 16 sensors")

#else // if not Mega then assume a standard board

 numberOfSensors = 6; // analog inputs on a standard Arduino board

 #pragma message ("Using 6 sensors")

#endif

 Serial.print("The number of sensors is ");

 Serial.println(numberOfSensors);

}

void loop() {

 for(int sensor = 0; sensor < numberOfSensors; sensor++)

 {

 val = analogRead(sensor); // read the sensor value

 Serial.print(sensor); Serial.print(": ");

 Serial.println(val); // display the value

 }

 Serial.println();

 delay(1000); // delay a second between readings

}

The #pragma directive will display a message in the output area at the
bottom of the IDE:

C:\Sketches\conditional.ino:15:40: note: #pragma message: Using 16 sensors

 #pragma message ("Using 16 sensors")

 ^

See Also
Technical details on the C preprocessor

https://oreil.ly/kh_XU

Using the Controller Chip
Hardware

18.0 Introduction
The Arduino platform simplifies programming by providing easy-to-use
function calls to hide complex, low-level hardware functions. But some
applications need to bypass the friendly access functions to get directly at
hardware, either because that’s the only way to get the needed functionality or
because higher performance is required. This chapter shows how to access and
use hardware functions that are not fully exposed through the Arduino
programming environment.

NOTE
Changing register values can change the behavior of some Arduino functions (e.g., millis). The low-
level capabilities described in this chapter require care, attention, and testing if you want your code to
function correctly.

There are four key hardware features that you need to understand before
getting deeper into the hardware. Registers are memory locations in the
microcontroller that can be used to alter its behavior. When you work with the
other hardware features, you will often be manipulating registers to configure
them. Interrupts are signals generated by the microcontroller, generally in
response to an external event, allowing Arduino sketches to respond
immediately when something happens. Timers can generate a signal after a
predetermined delay, or repeatedly generate a signal based on a duration you
specify. As with interrupts, you can take an action in your sketch in response to
a timer. You’ve already seen how to work with analog and digital pins, but the
recipes in this chapter will show you how to work with them at much faster
speeds.

Registers
Registers are variables that refer to hardware memory locations. They are used
by the chip to configure hardware functions or for storing the results of
hardware operations. The contents of registers can be read and written by your
sketch. Changing register values will change the way the hardware operates, or
the state of something (such as the output of a pin). Some registers represent a
numerical value (the number a timer will count to). Registers can control or
report on hardware status; for example, the state of a pin or if an interrupt has
occurred. Registers are referenced in code using their names—these are
documented in the datasheet for the microcontrollers. Setting a register to a
wrong value usually results in a sketch functioning incorrectly, so carefully
check the documentation to ensure that you are using registers correctly.

Interrupts
Interrupts are signals that enable the controller chip to stop the normal flow of
a sketch and handle a task that requires immediate attention before continuing
with what it was doing. Arduino core software uses interrupts to handle
incoming data from the serial port, to maintain the time for the delay and
millis functions, and to trigger the attachInterrupt function. Libraries,
such as Wire and Servo, use interrupts when an event occurs, so the code
doesn’t have to constantly check to see if the event has happened. This
constant checking, called polling, can complicate the logic of your sketch.
Interrupts can be a reliable way to detect signals of very short duration. Recipe
18.2 explains how to use interrupts to determine if a digital pin has changed
state.

Two or more interrupts may occur before the handling of the first interrupt is
completed; for example, if two switches are pressed at the same time and each
generates a different interrupt. The interrupt handler for the first switch must
be completed before the second interrupt can get started. Interrupts should be
brief, because an interrupt routine that takes too much time can cause other
interrupt handlers to be delayed or to miss events.

TIP
Arduino services one interrupt at a time. It suspends pending interrupts while it deals with an interrupt
that has happened. Code to handle interrupts (called the interrupt handler, or interrupt service routine)
should be brief to prevent undue delays to pending interrupts. An interrupt routine that takes too much
time can cause other interrupt handlers to miss events. Activities that take a relatively long time, such
as blinking an LED or even serial printing, should be avoided in an interrupt handler. If you need to
perform such an activity, you can set a global flag in the interrupt handler, and use the flag to tell your
code to perform the action in the main loop.

Timers
The Arduino Uno (and compatible boards based on the ATmega328) has three
hardware timers for managing time-based tasks (the Mega has six). The timers
are used in a number of Arduino functions:

Timer0

Used for millis and delay; also analogWrite on pins 5 and 6

Timer1

analogWrite functions on pins 9 and 10; also driving servos using the
Servo library

Timer2

analogWrite functions on pins 3 and 11

NOTE
The Servo library uses the same timer as analogWrite on pins 9 and 10, so you can’t use
analogWrite with these pins when using the Servo library.

The Mega has three additional 16-bit timers and uses different pin numbers
with analogWrite:

Timer0

analogWrite functions on pins 4 and 13

Timer1

analogWrite functions on pins 11 and 12

Timer2

analogWrite functions on pins 9 and 10

Timer3

analogWrite functions on pins 2, 3, and 5

Timer4

analogWrite functions on pins 6, 7, and 8

Timer5

analogWrite functions on pins 45 and 46

NOTE
The megaAVR-based boards such as the Arduino WiFi Rev2 and the Arduino Nano Every use a
different timer system than the ATmega-based boards like the Uno and Mega. This application note
from Microchip explains how timers are implemented on the megaAVR. ARM-based Arduino boards
use an entirely different approach to handling timers based on two facilities: Timer Counter (TC) and
Timer Counter for Control Applications (TCC). The following application notes cover each of those
for the SAMD chips: Timer Counter (TC) Driver and Timer Counter for Control Applications (TCC)
Driver. Although this library is not intended (or supported) for use by anyone outside Adafruit, they
have published their Adafruit_ZeroTimer library on GitHub, which includes wrapper code for Timer
Control modules 3, 4, and 5 on both the SAMD21 (ARM Cortex-M0 core) and SAMD51 (Arm
Cortex-M4 core) platforms.

Timers are counters that count pulses from a time source, called a timebase.
The timer hardware consists of 8-bit or 16-bit digital counters that can be
programmed to determine the mode the timer uses to count. The most common
mode is to count pulses from the timebase on the Arduino board, usually 16
MHz derived from a crystal; 16 MHz pulses repeat every 62.5 nanoseconds,
and this is too fast for many timing applications, so the timebase rate is
reduced by a divider called a prescaler. Dividing the timebase by 8, for
example, increases the duration of each count to half a microsecond. For
applications in which this is still too fast, other prescale values can be used
(see Table 18-1).

https://oreil.ly/7H4WW
https://oreil.ly/FTDOT
https://oreil.ly/RTXwQ
https://oreil.ly/ccQXc

Timer operation is controlled by values held in registers that can be read and
written by Arduino code. The values in these registers set the timer frequency
(the number of system timebase pulses between each count) and the method of
counting (up, down, up and down, or using an external signal).

Here is an overview of the timer registers (n is the timer number):

Timer Counter Control Register A (TCCRnA)
Determines the operating mode

Timer Counter Control Register B (TCCRnB)
Determines the prescale value

Timer Counter Register (TCNTn)
Contains the timer count

Output Compare Register A (OCRnA)
Interrupt can be triggered on this count

Output Compare Register B (OCRnB)
Interrupt can be triggered on this count

Timer/Counter Interrupt Mask Register (TIMSKn)
Sets the conditions for triggering an interrupt

Timer/Counter 0 Interrupt Flag Register (TIFRn)
Indicates if the trigger condition has occurred

Table 18-1 is an overview of the bit values used to set the timer precision.
Details of the functions of the registers are explained in the recipes where they
are used.

Timer prescale values (16 MHz clock)

Prescale
factor

CSx2, CSx1,
CSx0

Precision Time to
overflow

8-bit timer 16-bit
timer

1 B001 62.5 ns 16 µs 4.096 ms

Prescale
factor

CSx2, CSx1,
CSx0

Precision Time to
overflow

8-bit timer 16-bit
timer

8 B010 500 ns 128 µs 32.768 ms

64 B011 4 µs 1,024 µs 262.144 ms

256 B100 16 µs 4,096 µs 1048.576
ms

1,024 B101 64 µs 16,384 µs 4194.304
ms

B110 External clock, falling
edge

B111 External clock, rising
edge

All timers are initialized for a prescale of 64.

Precision in nanoseconds is equal to the CPU period (time for one CPU cycle)
multiplied by the prescale.

Analog and Digital Pins
Chapter 5 described the standard Arduino functions to read and write (to/from)
digital and analog pins. This chapter explains how you can control pins faster
than using the Arduino read and write functions and make changes to analog
methods to improve performance.

Some of the code in this chapter is more difficult to understand than the other
recipes in this book, as it is moving beyond Arduino syntax and closer to the
underlying hardware. These recipes work directly with the tersely named
registers in the chip and use bit shifting and masking to manipulate bits in
them. The benefit from this complexity is enhanced performance and
functionality.

See Also
Overview of hardware resources

The Timer1 and Timer3 libraries

Tutorial on timers and PWM

The Microchip ATmega328 datasheets

Microchip application note on how to set up and use timers

Wikipedia article on interrupts

18.1 Storing Data in Permanent EEPROM
Memory
Problem
You want to store values that will be retained even when power is switched off.

Solution
Use the EEPROM library to read and write values in EEPROM memory. This
sketch blinks an LED using values read from EEPROM and allows the values
to be changed using the Serial Monitor:

/*

 * EEPROM sketch based on Blink without Delay

 * uses EEPROM to store blink values

 */

#include <EEPROM.h>

// these values are saved in EEPROM

const byte EEPROM_ID = 0x99; // used to identify if valid data in EEPROM

byte ledPin = LED_BUILTIN; // the LED pin

int interval = 1000; // interval at which to blink (milliseconds)

// variables that do not need to be saved

int ledState = LOW; // ledState used to set the LED

long previousMillis = 0; // will store last time LED was updated

//constants used to identify EEPROM addresses

const int ID_ADDR = 0; // the EEPROM address used to store the ID

https://oreil.ly/lqHdZ
https://oreil.ly/r8kPe
https://oreil.ly/Q0hIS
https://oreil.ly/oiTWN
https://oreil.ly/vGUYT
https://oreil.ly/AEs0V
https://oreil.ly/BIVfo

const int PIN_ADDR = 1; // the EEPROM address used to store the pin

const int INTERVAL_ADDR = 2; // the EEPROM address used to store the interval

void setup()

{

 Serial.begin(9600);

 byte id = EEPROM.read(ID_ADDR); // read the first byte from the EEPROM

 if(id == EEPROM_ID)

 {

 // here if the id value read matches the value saved when writing eeprom

 Serial.println("Using data from EEPROM");

 ledPin = EEPROM.read(PIN_ADDR);

 byte hiByte = EEPROM.read(INTERVAL_ADDR);

 byte lowByte = EEPROM.read(INTERVAL_ADDR+1);

 interval = word(hiByte, lowByte); // see word function in Recipe 3.15

 }

 else

 {

 // here if the ID is not found, so write the default data

 Serial.println("Writing default data to EEPROM");

 EEPROM.write(ID_ADDR,EEPROM_ID); // write the ID to indicate valid data

 EEPROM.write(PIN_ADDR, ledPin); // save the pin in eeprom

 byte hiByte = highByte(interval);

 byte loByte = lowByte(interval);

 EEPROM.write(INTERVAL_ADDR, hiByte);

 EEPROM.write(INTERVAL_ADDR+1, loByte);

 }

 Serial.print("Setting pin to ");

 Serial.println(ledPin,DEC);

 Serial.print("Setting interval to ");

 Serial.println(interval);

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 // this is the same code as the BlinkWithoutDelay example sketch

 if (millis() - previousMillis > interval)

 {

 previousMillis = millis(); // save the last time you blinked the LED

 // if the LED is off turn it on and vice versa:

 if (ledState == LOW)

 ledState = HIGH;

 else

 ledState = LOW;

 digitalWrite(ledPin, ledState); // set LED using value of ledState

 }

 processSerial();

}

// function to get duration or pin values from Serial Monitor

// value followed by i is interval, p is pin number

int value = 0;

void processSerial()

{

 if(Serial.available())

 {

 char ch = Serial.read();

 if(ch >= '0' && ch <= '9') // is this an ascii digit between 0 and 9?

 {

 value = (value * 10) + (ch - '0'); // yes, accumulate the value

 }

 else if (ch == 'i') // is this the interval

 {

 interval = value;

 Serial.print("Setting interval to ");

 Serial.println(interval);

 byte hiByte = highByte(interval);

 byte loByte = lowByte(interval);

 EEPROM.write(INTERVAL_ADDR, hiByte);

 EEPROM.write(INTERVAL_ADDR+1, loByte);

 value = 0; // reset to 0 ready for the next sequence of digits

 }

 else if (ch == 'p') // is this the pin number

 {

 ledPin = value;

 Serial.print("Setting pin to ");

 Serial.println(ledPin,DEC);

 pinMode(ledPin, OUTPUT);

 EEPROM.write(PIN_ADDR, ledPin); // save the pin in eeprom

 value = 0; // reset to 0 ready for the next sequence of digits

 }

 }

}

Open the Serial Monitor. As the sketch starts, it tells you whether it is using
values previously saved to EEPROM or defaults, if this is the first time the
sketch is started.

You can change values by typing a number followed by a letter to indicate the
action. A number followed by the letter i changes the blink interval; a number
followed by a p changes the pin number for the LED.

Discussion

Arduino contains EEPROM memory that will store values even when power is
switched off. There are 1,024 bytes of EEPROM on the Arduino Uno and 4K
bytes in a Mega. The Arduino Uno WiFi R2 and the Nano Every have only
256 bytes of EEPROM memory. Most ARM-based boards do not have
EEPROM memory.

The sketch uses the EEPROM library to read and write values in EEPROM
memory. Once the library is included in the sketch, an EEPROM object is
available that accesses the memory. The library provides methods to read,
write, and clear. EEPROM.clear() is not used in this sketch because it erases
all the EEPROM memory.

The EEPROM library requires you to specify the address in memory that you
want to read or write. This means you need to keep track of where each value
is written so that when you access the value it is from the correct address. To
write a value, you use EEPROM.write(address, value). The address is from
0 to 1,023 (on the Uno), and the value is a single byte. To read, you use
EEPROM.read(address). The byte content of that memory address is returned.

The sketch stores three values in EEPROM. The first value stored is an ID
value that is used only in setup to identify if the EEPROM has been
previously written with valid data. If the value stored matches the expected
value, the other variables are read from EEPROM and used in the sketch. If it
doesn’t match, this sketch has not been run on this board (otherwise, the ID
would have been written), so the default values are written, including the ID
value.

The sketch monitors the serial port, and new values received are written to
EEPROM. The sketch stores the ID value in EEPROM address 0, the pin
number in address 1, and the two bytes for the interval start in address 2. The
following line writes the pin number to EEPROM. The variable ledPin is a
byte, so it fits into a single EEPROM address:

EEPROM.write(PIN_ADDR, ledPin); // save the pin in eeprom

Because interval is an int, it requires two bytes of memory to store the value:

byte hiByte = highByte(interval);

byte loByte = lowByte(interval);

EEPROM.write(INTERVAL_ADDR, hiByte);

EEPROM.write(INTERVAL_ADDR+1, loByte);

The preceding code splits the value into two bytes that are stored in two
consecutive addresses. Any additional variables to be added to EEPROM
would need to be placed in addresses that follow these two bytes.

Here is the code used to rebuild the int variable from EEPROM:

ledPin = EEPROM.read(PIN_ADDR);

byte hiByte = EEPROM.read(INTERVAL_ADDR);

byte lowByte = EEPROM.read(INTERVAL_ADDR+1);

interval = word(hiByte, lowByte);

See Chapter 3 for more on using the word expression to create an integer from
two bytes.

For more complicated use of EEPROM, it is advisable to draw out a map of
what is being saved where, to ensure that no address is used by more than one
value, and that multibyte values don’t overwrite other information.

See Also
Recipe 3.14 provides more information on converting 16- and 32-bit values
into bytes.

18.2 Take Action Automatically When a Pin
State Changes
Problem
You want to perform some action when a digital pin changes value and you
don’t want to have to constantly check the pin state.

Solution
This sketch monitors pulses on pin 2 and stores the duration in an array. When
the array has been filled (32 pulses have been received), the duration of each

pulse is displayed on the Serial Monitor:

TIP
If you are using a board from the Arduino MKR family, change both the wiring and the code to use
digital pin 4.

/*

 * Interrupts sketch

 * see Recipe 10.1 for connection diagram

 */

const int pin = 2; // pin the receiver is connected to

const int numberOfEntries = 32; // set this number to any convenient value

volatile unsigned long microseconds;

volatile byte idx = 0;

volatile unsigned long results[numberOfEntries];

void setup()

{

 pinMode(pin, INPUT_PULLUP);

 Serial.begin(9600);

 // Use the pin's interrupt to monitor for changes

 attachInterrupt(digitalPinToInterrupt(pin), analyze, CHANGE);

 results[0]=0;

}

void loop()

{

 if(idx >= numberOfEntries)

 {

 Serial.println("Durations in Microseconds are:") ;

 for(byte i=0; i < numberOfEntries; i++)

 {

 Serial.print(i); Serial.print(": ");

 Serial.println(results[i]);

 }

 idx = 0; // start analyzing again

 }

 delay(1000);

}

void analyze()

{

 if(idx < numberOfEntries)

 {

 if(idx > 0)

 {

 results[idx] = micros() - microseconds;

 }

 idx = idx + 1;

 }

 microseconds = micros();

}

If you have an infrared receiver module, you can use the wiring in Recipe 10.1
to measure the pulse width from an infrared remote control. You could also use
the wiring in Recipe 6.12 to measure pulses from a rotary encoder or connect a
switch to pin 2 (see Recipe 5.1) to test with a pushbutton.

Discussion
In setup, the attachInterrupt(digitalPinToInterrupt(pin), analyze,
CHANGE); call enables the sketch to handle interrupts. The first argument in the
call specifies which interrupt to initialize. The actual interrupt for a given pin
varies from board to board, so you should use the digitalPinToInterrupt
function to determine it, rather than hardcoding the interrupt value in your
sketch.

The next parameter specifies what function to call (sometimes called an
interrupt handler) when the interrupt event happens; analyze in this sketch.

The final parameter specifies what should trigger the interrupt. CHANGE means
whenever the pin level changes (goes from low to high, or high to low). The
other options are:

HIGH

When the pin is high (Due, Zero, and MKR ARM boards only)

LOW

When the pin is low

RISING

When the pin goes from low to high

FALLING

When the pin goes from high to low

When reading code that uses interrupts, bear in mind that it may not be
obvious when values in the sketch change because the sketch does not directly
call the interrupt handler; it’s called when the interrupt conditions occur.

In this sketch, the main loop checks the index variable to see if all the entries
have been set by the interrupt handler. Nothing in loop changes the value of
index. index is changed inside the analyze function when the interrupt
condition occurs (pin 2 changing state). The index value is used to store the
time since the last state change into the next slot in the results array. The
time is calculated by subtracting the last time the state changed from the
current time in microseconds. The current time is then saved as the last time a
change happened. (Chapter 12 describes this method for obtaining elapsed
time using the millis function; here micros is used to get elapsed
microseconds instead of milliseconds.)

The variables that are changed in an interrupt function are declared as
volatile; this lets the compiler know that the values could change at any time
(by an interrupt handler). Without using the volatile keyword, the compiler
may store the values in registers that can be accidentally overwritten by an
interrupt handler. To prevent this, the volatile keyword tells the compiler to
store the values in RAM rather than registers.

Each time an interrupt is triggered, index is incremented and the current time
is saved. The time difference is calculated and saved in the array (except for
the first time the interrupt is triggered, when index is 0). When the maximum
number of entries has occurred, the inner block in loop runs, and it prints out
all the values to the serial port. The code stays in the while loop at the end of
the inner block, so you need to reset the board when you want to do another
run.

See Also
Recipe 6.12 has an example of external interrupts used to detect movement in a
rotary encoder.

18.3 Perform Periodic Actions
Problem
You want to do something at periodic intervals, and you don’t want to have
your code constantly checking if the interval has elapsed. You would like to
have a simple interface for setting the period.

Solution
The easiest way to use a timer is through a library. The uTimerLib library can
generate a pulse with a regular period. You can install it with the Library
Manager. This sketch flashes the built-in LED at a rate that can be set using the
Serial Monitor:

/*

 * Timer pulse with uTimerLib

 * pulse the onboard LED at a rate set from serial input

 */

#include "uTimerLib.h"

const int pulsePin = LED_BUILTIN;

int period = 100; // period in milliseconds

volatile bool output = HIGH; // the state of the pulse pin

void setup()

{

 pinMode(pulsePin, OUTPUT);

 Serial.begin(9600);

 TimerLib.setInterval_us(flash, period/2 * 1000L);

}

void loop()

{

 if(Serial.available())

 {

 int period = Serial.parseInt();

 if (period)

 {

 Serial.print("Setting period to "); Serial.println(period);

 TimerLib.setInterval_us(flash, period/2 * 1000L);

 }

 }

}

void flash()

{

 digitalWrite(pulsePin, output);

 output = !output; // invert the output

}

Discussion
Enter digits for the desired period in milliseconds using the Serial Monitor and
press Return/Enter to send it to the sketch. The sketch uses parseInt to read
the digits and divides the received value by 2 to calculate the duration of the on
and off states (the period is the sum of the on time and off time, so the smallest
value you can use is 2). Bear in mind that an LED flashing very quickly may
not appear to be flashing to the human eye. Because
TimerLib.setInterval_us specifies an interval in microseconds, we
multiply the period (specified in milliseconds) by 1,000.

NOTE
On ATmega-based boards such as the Uno, this library uses Timer2, so it will interfere with the
operation of analogWrite on pins 3 and 11 (pins 9 and 10 for the Arduino Mega). At the time of this
writing, uTimerLib does not work with the Arduino Uno WiFi Rev 2 or the Arduino Nano Every,
which are based on a Mega AVR chip that uses a different timer architecture. It does support several
32-bit platforms, including SAM (Arduino Due), SAMD21 (Zero and M0 boards from Adafruit and
SparkFun), ESP8266, and more.

This library enables you to use a timer by providing the timing interval and the
name of the function to call when the interval has elapsed:

TimerLib.setInterval_us(flash, period/2 * 1000L);

This sets up the timer. The first parameter is the function to call when the timer
gets to the end of that time (the function is named flash in this recipe). The
second parameter is the time for the timer to run in microseconds.

As in Recipe 18.2, the sketch code does not directly call the function to
perform the action. The LED is turned on and off in the flash function that is

called by the timer each time it gets to the end of its time setting. The code in
loop deals with any serial messages and changes the timer settings based on it.

Using a library to control timers is much easier than accessing the registers
directly. Here is an overview of the inner workings of this library on ATmega:
Timers work by constantly counting to a value, signaling that they have
reached the value, then starting again. Each timer has a prescaler that
determines the counting frequency. The prescaler divides the system timebase
by a factor such as 1, 8, 64, 256, or 1,024. The lower the prescale factor, the
higher the counting frequency and the quicker the timebase reaches its
maximum count. The combination of how fast to count, and what value to
count to, gives the time for the timer. Timer2 is an 8-bit timer; this means it
can count up to 255 before starting again from 0. (Timer1 and Timers 3, 4, and
5 on the Mega use 16 bits and can count up to 65,535.)

On AVR, for intervals over 4,095 microseconds, the library uses a prescale
factor of 64. On a 16 MHz Arduino board, each CPU cycle is 62.5
nanoseconds long, and when this is divided by the prescale factor of 64, each
count of the timer will be 4,000 nanoseconds (62.5 * 64 = 4,000, which is four
microseconds).

See Also
The uTimerLib GitHub repository

18.4 Setting Timer Pulse Width and Duration
Problem
You want Arduino to generate pulses with a duration and width that you
specify.

Solution
This sketch generates pulses within the frequency range of 1 MHz to 1 Hz
using Timer1 PWM on pin 9. The library it uses supports only Arduino Uno,
Mega, Leonardo, and a number of Teensy boards. See this Arduino page to
determine which pins are available for use with this library on your board.

https://oreil.ly/Gl-BL
https://oreil.ly/oQTjQ

/*

 * Pulse width duration sketch

 * Set period and width of pulses

 */

#include <TimerOne.h>

const int outPin = 9; // pin; use 3-4 on Teensy 3.x, 11-13 on Arduino Mega

long period = 40; // 40-microsecond period (25 KHz)

long width = 20; // 20-microsecond width (50% duty cycle)

void setup()

{

 Serial.begin(9600);

 pinMode(outPin, OUTPUT);

 Timer1.initialize(period); // initialize timer1, 10000 microseconds

 int dutyCycle = map(width, 0,period, 0,1023);

 Timer1.pwm(outPin, dutyCycle); // PWM on output pin

}

void loop()

{

}

Discussion
You set the pulse period to a value from 1 to 1 million microseconds by setting
the value of the period at the top of the sketch. You can set the pulse width to
any value in microseconds that is less than the period by setting the value of
width.

The sketch uses the Timer1 library.

Timer1 is a 16-bit timer (it counts from 0 to 65,535). On the Arduino Uno, it’s
the same timer used by analogWrite to control pins 9 and 10 (so you can’t use
this library and analogWrite on those pins at the same time). The sketch
generates a pulse on pin 9 with a period and pulse width given by the values of
the variables named period and pulseWidth.

OCR1A and OCR1B are constants that are defined in the code included by the
Arduino core software (OCR stands for Output Compare Register).

On AVR, the Timer1 library uses a variety of registers. Many different
hardware registers in the Arduino hardware are not usually needed by a sketch

https://oreil.ly/ULGGe

(the friendly Arduino commands hide the actual register names). But when you
need to access the hardware directly to get at functionality not provided by
Arduino commands, these registers need to be accessed. Full details on the
registers are in the Microchip datasheet for the chip. On ARM-based Teensy
boards, the high-level concepts are more or less the same, but ARM uses an
entirely different scheme for generating pulses.

ICR1 (Input Compare Register for Timer1) determines the period of the pulse.
This register contains a 16-bit value that is used as the maximum count for the
timer. When the timer count reaches this value it will be reset and start
counting again from 0. In the sketch in this recipe’s Solution, if each count
takes 1 microsecond and the ICR1 value is set to 1000, the duration of each
count cycle is 1,000 microseconds.

OCR1A (or OCR1B depending on which pin you want to use) is the Output
Compare Register for Timer1. When the timer count reaches this value (and
the timer is in PWM mode as it is here), the output pin will be set low—this
determines the pulse width. For example, if each count takes one microsecond
and the ICR1 value is set to 1000 and OCR1A is set to 100, the output pin will be
HIGH for 100 microseconds and LOW for 900 microseconds (the total period is
1,000 microseconds).

The duration of each count is determined by the Arduino controller timebase
frequency (typically 16 MHz) and the prescale value. The prescale is the value
that the timebase is divided by. For example, with a prescale of 64, the
timebase will be four microseconds.

You can initialize the Timer1 library with a period
(Timer1.initialize(period);). It is over this period that the pulse width is
expressed. You set the pulse width (indirectly) by using the Timer.pwm
function to set the duty cycle as a value between 0 and 1,023, which is exactly
how you work with analogWrite (see Recipe 7.2). The difference here is that
you’re able to use Timer1 to control the period. So, if you want 20-
microsecond pulses spaced evenly apart, a 40-microsecond period with a 50%
duty cycle will provide this. The sketch allows you to specify the period and
pulse width, and it uses the map function to calculate the value between 0 and

1,023 to pass to Timer1.pwm(). A 40-microsecond period is equivalent to 25
kHz (1,000,000/40).

See Also
See the “See Also” for links to datasheets and other references for timers.

18.5 Creating a Pulse Generator
Problem
You want to generate pulses from Arduino and control the characteristics from
the Serial Monitor.

Solution
This is an enhanced version of Recipe 18.4 that enables the frequency, period,
pulse width, and duty cycle to be set from the serial port:

/*

 * Configurable Pulse Generator sketch

 */

#include <TimerOne.h>

const char SET_PERIOD_HEADER = 'p';

const char SET_FREQUENCY_HEADER = 'f';

const char SET_PULSE_WIDTH_HEADER = 'w';

const char SET_DUTY_CYCLE_HEADER = 'c';

const int outPin = 9; // pin; use 3-4 on Teensy 3.x, 11-13 on Arduino Mega

long period = 40; // 40-microsecond period (25 KHz)

int duty = 512; // duty as a range from 0 to 1023, 512 is 50% duty cycle

void setup()

{

 Serial.begin(9600);

 pinMode(outPin, OUTPUT);

 Timer1.initialize(period); // initialize timer1, 1000 microseconds

 Timer1.pwm(outPin, duty); // PWM on output pin

}

void loop()

{

 processSerial();

}

void processSerial()

{

 static long val = 0;

 if (Serial.available())

 {

 val = Serial.parseInt(); // Find the first number

 if (val)

 {

 char ch = Serial.read();

 switch(ch)

 {

 case SET_PERIOD_HEADER:

 period = val;

 Serial.print("Setting period to ");

 Serial.println(period);

 Timer1.setPeriod(period);

 Timer1.pwm(outPin, duty);

 show();

 break;

 case SET_FREQUENCY_HEADER:

 if(val > 0)

 {

 Serial.print("Setting frequency to ");

 Serial.println(val);

 period = 1000000 / val;

 Timer1.setPeriod(period);

 Timer1.pwm(outPin, duty);

 }

 show();

 break;

 case SET_PULSE_WIDTH_HEADER:

 if(val < period && val > 0) {

 long width = val;

 Serial.print("Setting Pulse width to ");

 Serial.println(width);

 duty = map(width, 0,period, 0,1023);

 Timer1.pwm(outPin, duty);

 }

 else

 Serial.println("Pulse width too long for current period");

 show();

 break;

 case SET_DUTY_CYCLE_HEADER:

 if(val >0 && val < 100)

 {

 Serial.print("Setting Duty Cycle to ");

 Serial.println(val);

 duty = map(val, 0,99, 0,1023);

 Timer1.pwm(outPin, duty);

 show();

 }

 }

 }

 }

}

void show()

{

 Serial.print("The period is ");

 Serial.println(period);

 Serial.print("Duty cycle is ");

 Serial.print(map(duty, 0,1023, 0,99));

 Serial.println("%");

 Serial.println();

}

Discussion
This sketch is based on Recipe 18.4, with the addition of serial code to
interpret commands to receive and set the frequency, period, pulse width, and
duty cycle percent. Chapter 4 explains the technique used to accumulate the
variable val that is then used for the desired parameter, based on the command
letter.

You can add this function and invoke it from setup or show if you want to
print instructions to the serial port:

void instructions()

{

 Serial.println("Send values followed by one of the following tags:");

 Serial.println(" p - sets period in microseconds");

 Serial.println(" f - sets frequency in Hz");

 Serial.println(" w - sets pulse width in microseconds");

 Serial.println(" c - sets duty cycle in %");

 Serial.println("\n(duty cycle can have one decimal place)\n");

}

See Also
Recipe 18.4

See the “See Also” for links to datasheets and other references for timers.

18.6 Changing a Timer’s PWM Frequency
Problem
You need to increase or decrease the Pulse Width Modulation (PWM)
frequency used with analogWrite (see Chapter 7). For example, you are using
analogWrite to control a motor speed and there is an audible hum because the
PWM frequency is too high, or you are multiplexing LEDs and the light is
uneven because PWM frequency is too low.

Solution
You can adjust the PWM frequency by changing a register value. The register
values and associated frequencies are shown in Table 18-2. This solution will
work on ATmega-based boards such as the Arduino Uno, but not on ARM-
based boards.

Adjustment values for PWM

Timer0 (Uno pins 5 and 6, Mega pins 4 and
13)

TCCR0B value Prescale factor
(divisor)

Frequency

32 (1) 1 62500

33 (2) 8 7812.5

34 64 976.5625

35 256 244.140625

36 1,024 61.03515625

Timer1 (Uno pins 9 and 10, Mega pins 11 and
12)

TCCR1B prescale value Prescale factor
(divisor)

Frequency

Timer1 (Uno pins 9 and 10, Mega pins 11 and
12)

TCCR1B prescale value Prescale factor
(divisor)

Frequency

1 1 312500

2 8 3906.25

3 64 488.28125

4 256 122.0703125

5 1,024 30.517578125

Timer2 (Uno pins 11 and 3, Mega pins 9 and
10)

TCCR2B value Prescale factor
(divisor)

Frequency

1 1 312500

2 8 3906.25

3 64 488.28125

4 256 122.0703125

5 1,024 30.517578125

All frequencies are in hertz and assume a 16 MHz system timebase. The
default prescale factor of 64 is shown in bold.

This sketch enables you to select a timer frequency from the Serial Monitor.
Enter a digit from 1 to 7 using the value in the lefthand column of Table 18-2
and follow this with character a for Timer0, b for Timer1, and c for Timer2:

/*

 * Set PWM Frequency sketch.

 * Frequency is set via the serial port.

 * A digit from 1-7 followed by a, b, or c Timer1, 2, 3 adjusts frequency

 */

const byte mask = B11111000; // mask bits that are not prescale values

int prescale = 0;

void setup()

{

 Serial.begin(9600);

 analogWrite(3,128);

 analogWrite(5,128);

 analogWrite(6,128);

 analogWrite(9,128);

 analogWrite(10,128);

 analogWrite(11,128);

}

void loop()

{

 if (Serial.available())

 {

 char ch = Serial.read();

 if(ch >= '1' && ch <= '7') // is ch a valid digit?

 {

 prescale = ch - '0';

 }

 else if(ch == 'a' && prescale) // timer 0;

 {

 TCCR0B = (TCCR0B & mask) | prescale;

 }

 else if(ch == 'b' && prescale) // timer 1;

 {

 TCCR1B = (TCCR1B & mask) | prescale;

 }

 else if(ch == 'c' && prescale) // timer 2;

 {

 TCCR2B = (TCCR2B & mask) | prescale;

 }

 }

}

TIP
Avoid changing the frequency of Timer0 (used for analogWrite pins 5 and 6) because it will result in
incorrect timing using delay and millis.

Discussion
If you just have LEDs connected to the analog pins in this sketch, you will not
see any noticeable change to the brightness as you change the PWM speed.

You are changing the speed as they are turning on and off, not the ratio of the
on/off time. If this is unclear, see the introduction to Chapter 7 for more on
PWM.

You change the PWM frequency of a timer by setting the TCCRnB register,
where n is the register number. On a Mega board you also have TCCR3B,
TCCR4B, and TCCR5B for timers 3 through 5.

NOTE
All analog output (PWM) pins on a timer use the same frequency, so changing timer frequency will
affect all output pins for that timer.

See Also
See the “See Also” for links to datasheets and other references for timers.

Teensy 3.x boards support an analogWriteFrequency function that allows
you to specify PWM frequency in Hz. See this PJRC page.

18.7 Counting Pulses
Problem
You want to count the number of pulses occurring on a pin. You want this
count to be done completely in hardware without any software processing time
being consumed.

Solution
Use the pulse counter built into the Timer1 hardware. This technique works on
ATmega-based boards such as the Uno:

/*

 * HardwareCounting sketch

 *

 * uses pin 5 on 168/328

 */

https://oreil.ly/b_57C

const int hardwareCounterPin = 5; // input pin fixed to internal Timer

const int ledPin = LED_BUILTIN;

const int samplePeriod = 1000; // the sample period in milliseconds

unsigned int count;

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin,OUTPUT);

 // hardware counter setup (see ATmega datasheet for details)

 TCCR1A=0; // reset timer/counter control register A

}

void loop()

{

 digitalWrite(ledPin, LOW);

 delay(samplePeriod);

 digitalWrite(ledPin, HIGH);

 // start the counting

 bitSet(TCCR1B, CS12); // Counter Clock source is external pin

 bitSet(TCCR1B, CS11); // Clock on rising edge

 delay(samplePeriod);

 // stop the counting

 TCCR1B = 0;

 count = TCNT1;

 TCNT1 = 0; // reset the hardware counter

 if(count > 0)

 Serial.println(count);

}

Discussion
You can test this sketch by connecting the serial receive pin (pin 0) to the input
pin (pin 5 on a the Uno). Each character sent should show an increase in the
count—the specific increase depends on the number of pulses needed to
represent the ASCII value of the characters (bear in mind that serial characters
are sandwiched between start and stop pulses). Some interesting character
patterns are:

'u' = 01010101

'3' = 00110011

'~' = 01111110

'@' = 01000000

If you have two Arduino boards, you can run one of the pulse generator
sketches from previous recipes in this chapter and connect the pulse output
(pin 9) to the input. The pulse generator also uses Timer1 (the only 16-bit timer
on the Uno and other boards based on the ATmega328), so you can combine
the functionality using a single board.

NOTE
Hardware pulse counting uses a pin that is internally wired within the hardware and cannot be
changed. Use pin 5 on an Arduino Uno. The Mega uses Timer5 that is on pin 47; change TCCR1A to
TCCR5A and TCCR1B to TCCR5B.

The timer’s TCCR1B register controls the counting behavior, setting it so 0 stops
counting. The values used in the loop code enable count in the rising edge of
pulses on the input pin. TCNT1 is the Timer1 register declared in the Arduino
core code that accumulates the count value.

In loop, the current count is printed once per second. If no pulses are detected
on pin 5, the values will be 0.

See Also
The FreqCount library uses the method discussed in this recipe.

You can use an interrupt to take an action when a pin state changes. See Recipe
18.2.

See the “See Also” for links to datasheets and other references for timers.

18.8 Measuring Pulses More Accurately
Problem
You want to measure the period between pulses or the duration of the on or off
time of a pulse. You need this as accurate as possible, so you don’t want any
delay due to calling an interrupt handler (as in Recipe 18.2), as this will affect
the measurements.

https://oreil.ly/wBTES

Solution
Use the hardware pulse measuring capability built into the Timer1 hardware.
This solution uses AVR-specific facilities, and will only work on ATmega-
based boards like the Arduino Uno:

/*

 * InputCapture Sketch

 * uses timer hardware to measure pulses on pin 8 on 168/328

 */

/* some interesting ASCII bit patterns:

 u 01010101

 3 00110011

 ~ 01111110

 @ 01000000

*/

const int inputCapturePin = 8; // input pin fixed to internal Timer

const int ledPin = LED_BUILTIN;

const int prescale = 8; // prescale factor (each tick 0.5 us @16MHz)

const byte prescaleBits = B010; // see Table 18-1 or Datasheet

// calculate time per counter tick in ns

const long precision = (1000000/(F_CPU/1000.0)) * prescale;

const int numberOfEntries = 64; // the max number of pulses to measure

const int gateSamplePeriod = 1000; // the sample period in milliseconds

volatile byte index = 0; // index to the stored readings

volatile byte gate = 0; // 0 disables capture, 1 enables

volatile unsigned int results[numberOfEntries]; // note this is 16-bit value

/* ICR interrupt vector */

ISR(TIMER1_CAPT_vect)

{

 TCNT1 = 0; // reset the counter

 if(gate)

 {

 if(index != 0 || bitRead(TCCR1B ,ICES1) == true) // wait for rising edge

 { // falling edge was detected

 if(index < numberOfEntries)

 {

 results[index] = ICR1; // save the input capture value

 index++;

 }

 }

 }

 TCCR1B ^= _BV(ICES1); // toggle bit to trigger on the other edge

}

void setup() {

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(inputCapturePin, INPUT); // ICP pin (digital pin 8 on Arduino) as input

 TCCR1A = 0 ; // Normal counting mode

 TCCR1B = prescaleBits ; // set prescale bits

 TCCR1C = 0;

 bitSet(TCCR1B,ICES1); // init input capture

 bitSet(TIFR1,ICF1); // clear pending

 bitSet(TIMSK1,ICIE1); // enable

 Serial.println("pulses are sampled while LED is lit");

 Serial.print(precision); // report duration of each tick in microseconds

 Serial.println(" microseconds per tick");

}

// this loop prints the duration of pulses detected in the last second

void loop()

{

 digitalWrite(ledPin, LOW);

 delay(gateSamplePeriod);

 digitalWrite(ledPin, HIGH);

 index = 0;

 gate = 1; // enable sampling

 delay(gateSamplePeriod);

 gate = 0; // disable sampling

 if(index > 0)

 {

 Serial.println("Durations in Microseconds are:") ;

 for(byte i=0; i < index; i++)

 {

 long duration;

 duration = results[i] * precision; // pulse duration in nanoseconds

 if(duration > 0) {

 Serial.println(duration / 1000); // duration in microseconds

 results[i] = 0; // clear value for next reading

 }

 }

 index = 0;

 }

}

Discussion

This sketch uses a timer facility called Input Capture to measure the duration
of a pulse. Only 16-bit timers support this capability and this only works with
pin 8 on an Arduino Uno or compatible board.

TIP
Input Capture uses a pin that is internally wired within the hardware and cannot be changed. Use pin 8
on an Uno and pin 48 on a Mega (using Timer5 instead of Timer1).

Because Input Capture is implemented entirely in the controller chip hardware,
no time is wasted in interrupt handling, so this technique is more accurate for
very short pulses (less than tens of microseconds).

The sketch uses a gate variable that enables measurements (when nonzero)
every other second. The LED is illuminated to indicate that measurement is
active. The input capture interrupt handler stores the pulse durations for up to
64 pulse transitions.

The edge that triggers the timer measurement is determined by the ICES1 bit of
the TCCR1B timer register. The line:

TCCR1B ^= _BV(ICES1);

toggles the edge that triggers the handler so that the duration of both high and
low pulses is measured.

If the count goes higher than the maximum value for the timer, you can
monitor overflow to increment a variable to extend the counting range. The
following code increments a variable named overflow each time the counter
overflows:

volatile int overflows = 0;

/* Overflow interrupt vector */

ISR(TIMER1_OVF_vect) // here if no input pulse detected

{

 overflows++; // increment overflow count

}

Change the code in setup as follows:

TIMSK1 = _BV(ICIE1); // enable input capture interrupt for timer 1

 TIMSK1 |= _BV(TOIE1); // Add this line to enable overflow interrupt

See Also
See the “See Also” for links to datasheets and other references for timers.

18.9 Measuring Analog Values Quickly
Problem
You want to read an analog value as quickly as possible without decreasing the
accuracy.

Solution
You can increase the analogRead sampling rate by changing register values
that determine the sampling frequency. This sketch will work on ATmega-
based boards such as the Arduino Uno:

/*

 * Sampling rate sketch

 * Increases the sampling rate for analogRead

 */

const int sensorPin = 0; // pin the receiver is connected to

const int numberOfEntries = 100;

unsigned long microseconds;

unsigned long duration;

int results[numberOfEntries];

void setup()

{

 Serial.begin(9600);

 while(!Serial); // Needed for Leonardo

 // standard analogRead performance (prescale = 128)

 microseconds = micros();

 for(int i = 0; i < numberOfEntries; i++)

 {

 results[i] = analogRead(sensorPin);

 }

 duration = micros() - microseconds;

 Serial.print(numberOfEntries);

 Serial.print(" readings took ");

 Serial.println(duration);

 // running with high speed clock (set prescale to 16)

 bitClear(ADCSRA,ADPS0);

 bitClear(ADCSRA,ADPS1);

 bitSet(ADCSRA,ADPS2);

 microseconds = micros();

 for(int i = 0; i < numberOfEntries; i++)

 {

 results[i] = analogRead(sensorPin);

 }

 duration = micros() - microseconds;

 Serial.print(numberOfEntries);

 Serial.print(" readings took ");

 Serial.println(duration);

}

void loop()

{

}

Running the sketch on a 16 MHz Arduino will produce output similar to the
following:

100 readings took 11308

100 readings took 1704

Discussion
analogRead takes around 110 microseconds to complete a reading. This may
not be fast enough for rapidly changing values, such as capturing the higher
range of audio frequencies. The sketch measures the time in microseconds for
the standard analogRead and then adjusts the timebase used by the analog-to-
digital converter (ADC) to perform the conversion faster. With a 16 MHz
board, the timebase rate is increased from 125 kHz to 1 MHz. The actual
performance improvement is slightly less than eight times because there is
some overhead in the Arduino analogRead function that is not improved by

the timebase change. The reduction of time from 113 microseconds to 17
microseconds is a significant improvement.

The ADCSRA register is used to configure the ADC, and the bits set in the sketch
(ADPS0, ADPS1, and ADPS2) set the ADC clock divisor to 16.

See Also
Microchip has an application note that provides a detailed explanation of
performance aspects of the ADC.

On ARM-based Arduino boards such as the Zero and compatibles,
analogRead is quite a bit slower than on AVR. The AnalogReadFast library
can read about 5 times faster than the AVR’s analogRead and about 20 times
faster than a SAMD21-based board like the Arduino Zero. You can install it
from the Library Manager and you can find it on this GitHub page.

18.10 Reducing Battery Drain
Problem
You want to reduce the power used by your application by shutting down
Arduino until a period of time has elapsed or until an external event takes
place.

Solution
This Solution uses Adafruit’s SleepyDog library, which supports Uno, Mega,
Zero, Adafruit M0 boards, Leonardo, and (partial support) Teensy 3.X:

/*

 * Low power sketch

 * Reduce power usage with the Adafruit SleepyDog library

 */

#include <Adafruit_SleepyDog.h>

void setup()

{

 Serial.begin(9600);

 pinMode(LED_BUILTIN, OUTPUT);

}

https://oreil.ly/lrr3s
https://oreil.ly/sz7C9

void loop()

{

 digitalWrite(LED_BUILTIN, HIGH);

 int sleepTimeMillis1 = Watchdog.sleep(500);

 digitalWrite(LED_BUILTIN, LOW);

 int sleepTimeMillis2 = Watchdog.sleep(500);

// Try to restore USB connection on Leonardo and other boards

// with Native USB.

#if defined(USBCON) && !defined(USE_TINYUSB)

 USBDevice.attach();

#endif

 Serial.print("Slept for "); Serial.print(sleepTimeMillis1);

 Serial.print("ms and "); Serial.print(sleepTimeMillis2);

 Serial.println("ms");

 delay(100); // Give the serial buffer time to transmit

}

WARNING
If you use this on an M0-based board, such as the Arduino Zero or MKR series, you may not be able
to restore the USB connection to your board after the first time it powers down. If you need to re-flash
the board, you can quickly double-click the reset button to put it in a bootloader mode (the sketch will
not be running in this mode).

Discussion
The Arduino Uno would run down a 9-volt alkaline battery in a few weeks.
Significant power savings can be achieved if your application can suspend
operation for a period of time—Arduino hardware can be put to sleep for a
preset period of time, and this reduces the power consumption of the chip to
less than one one-hundredth of 1 percent (from around 15 mA to around 0.001
mA) during sleep.

The library used in this recipe provides easy access to the hardware sleep
function. The sleep time can range from 15 to 8,000 ms (eight seconds). To
sleep for longer periods, you can repeat the delay intervals until you get the
period you want:

unsigned long longDelay(long milliseconds)

{

 unsigned long sleptFor = 0;

 while(milliseconds > 0)

 {

 if(milliseconds > 8000)

 {

 milliseconds -= 8000;

 sleptFor += Watchdog.sleep(8000);

 }

 else

 {

 sleptFor += Watchdog.sleep(milliseconds);

 break;

 }

 }

 return sleptFor;

}

For each interval, the library will round the requested sleep period down to the
closest sleep time supported by the underlying hardware. So, for example, if
you were to request 8,600 ms on AVR, the first time through the loop, you’d
get 8,000, but on the second, you’d get 500 because 500 is a valid sleep period
on AVR followed by the next highest (1,000). See these .cpp files for the
specific implementations.

Sleep mode can reduce the power consumption of the controller chip, but if
you are looking to run for as long as possible on a battery, you should
minimize current drain through external components such as inefficient voltage
regulators, pull-up or pull-down resistors, LEDs, and other components that
draw current when the chip is in sleep mode.

See Also
The narcoleptic library can sleep for a period of time, and can also sleep until
the board receives input on a particular pin. However, it will only work with
AVR-based boards.

The Arduino Low Power library supports sleep modes on ARM SAMD-based
boards as well as NRF52-based boards such as the Nano 33 BLE and Nano 33
BLE Sense. You can install it from the Library Manager and find more
information at this Arduino page.

https://oreil.ly/taz_O
https://oreil.ly/Rrkp1
https://oreil.ly/e-nil

For an example of very low power operation, see this Lab3 page.

18.11 Setting Digital Pins Quickly
Problem
You need to set or clear digital pins much faster than enabled by the Arduino
digitalWrite command.

Solution
Arduino digitalWrite provides a safe and easy-to-use method of setting and
clearing pins, but it is more than 30 times slower than directly accessing the
controller hardware. You can set and clear pins by directly setting bits on the
hardware registers that are controlling digital pins.

This sketch uses direct hardware I/O to send Morse code (the word arduino) to
an AM radio tuned to approximately 1 MHz. The technique used here is 30
times faster than Arduino digitalWrite:

/*

 * Morse sketch

 *

 * Direct port I/O used to send AM radio carrier at 1MHz

 */

const int sendPin = 2;

const byte WPM = 12; // sending speed in words per minute

const long repeatCount = 1200000 / WPM; // count determines dot/dash duration

const byte dot = 1;

const byte dash = 3;

const byte gap = 3;

const byte wordGap = 7;byte letter = 0; // the letter to send

char *arduino = ".- .-. -.. ..- .. -. ---";

void setup()

{

 pinMode(sendPin, OUTPUT);

 Serial.begin(9600);

}

void loop()

https://oreil.ly/agdmy

p()

{

 sendMorse(arduino);

 delay(2000);

}

void sendMorse(char * string)

{

 letter = 0 ;

 while(string[letter]!= 0)

 {

 if(string[letter] == '.')

 {

 sendDot();

 }

 else if(string[letter] == '-')

 {

 sendDash();

 }

 else if(string[letter] == ' ')

 {

 sendGap();

 }

 else if(string[letter] == 0)

 {

 sendWordGap();

 }

 letter = letter+1;

 }

}

void sendDot()

{

 transmitCarrier(dot * repeatCount);

 sendGap();

}

void sendDash()

{

 transmitCarrier(dash * repeatCount);

 sendGap();

}

void sendGap()

{

 transmitNoCarrier(gap * repeatCount);

}

void sendWordGap()

{

 transmitNoCarrier(wordGap * repeatCount);

}

void transmitCarrier(long count)

{

 while(count--)

 {

 bitSet(PORTD, sendPin);

 bitSet(PORTD, sendPin);

 bitSet(PORTD, sendPin);

 bitSet(PORTD, sendPin);

 bitClear(PORTD, sendPin);

 }

}

void transmitNoCarrier(long count)

{

 while(count--)

 {

 bitClear(PORTD, sendPin);

 bitClear(PORTD, sendPin);

 bitClear(PORTD, sendPin);

 bitClear(PORTD, sendPin);

 bitClear(PORTD, sendPin);

 }

}

Connect one end of a piece of wire to pin 2 and place the other end near the
antenna of a medium wave AM radio tuned to 1 MHz (1,000 kHz).

Discussion
The sketch generates a 1 MHz signal to produce dot and dash sounds that can
be received by an AM radio tuned to this frequency. The frequency is
determined by the duration of the bitSet and bitClear commands that set the
pin HIGH and LOW to generate the radio signal. bitSet and bitClear are not
functions, they are macros. Macros substitute an expression for executable
code—in this case, code that changes a single bit in register PORTD given by
the value of sendPin.

Digital pins 0 through 7 are controlled by the register named PORTD. Each bit
in PORTD corresponds to a digital pin. Pins 8 through 13 are on register PORTB,
and pins 14 through 19 are on PORTA. The sketch uses the bitSet and

bitClear commands to set and clear bits on the port (see Recipe 3.12). Each
register supports up to eight bits (although not all bits correspond to Arduino
pins). If you want to use Arduino pin 13 instead of pin 2, you need to set and
clear PORTB as follows:

const int sendPin = 13;

bitSet(PORTB, sendPin - 8);

bitClear(PORTB, sendPin - 8);

You subtract 8 from the value of the pin because bit 0 of the PORTB register is
pin 8, bit 1 is pin 9, and so on, to bit 5 controlling pin 13.

Setting and clearing bits using bitSet is done in a single instruction of the
Arduino controller. On a 16 MHz Arduino, that is 62.5 nanoseconds. This is
around 30 times faster than using digitalWrite.

The transmit functions in the sketch actually need more time updating and
checking the count variable than it takes to set and clear the register bits,
which is why the transmitCarrier function has four bitSet commands and
only one bitClear command—the additional bitClear commands are not
needed because of the time it takes to update and check the count variable.

18.12 Uploading Sketches Using a
Programmer
Problem
You want to upload sketches to an AVR-based Arduino (such as the Uno)
using a programmer instead of the bootloader. Perhaps you want the shortest
upload time, or you don’t have a serial connection to your computer suitable
for bootloading, or you want to use the space normally reserved for the
bootloader to increase the program memory available to your sketch.

Solution
Connect an external in-system programmer (ISP) to the Arduino programming
ICSP (In-Circuit Serial Programming) connector. Programmers intended for

use with Arduino have a 6-pin cable that attaches to the 6-pin ICSP connector
as shown in Figure 18-1.

Ensure that pin 1 from the programmer (usually marked with different color
than the other wires) is connected to pin 1 on the ICSP connector. The
programmer may have a switch or jumper to enable it to power the Arduino
board; read the instructions for your programmer to ensure that the Arduino is
powered correctly.

Connecting a programmer to Arduino

Select your programmer from the Tools menu (AVRISP, AVRISPII,
USBtinyISP, Parallel programmer, or Arduino as ISP) and double-check that
you have the correct Arduino board selected. From the File menu, select
Upload Using Programmer to perform the upload.

Discussion
There are a number of different programmers available, including expensive
devices aimed at professional developers that offer various debugging options,
low-cost self-build kits, and utilizing an additional Arduino board to perform
this function. The programmer may be a native USB device, or appear as a
serial port. Check the documentation for your device to see what kind it is, and
whether you need to install drivers for it.

NOTE
The serial Rx and Tx LEDs on the Arduino will not flicker during upload because the programmer is
not using the hardware serial port.

Uploading using a programmer removes the bootloader code from the chip.
This frees up the space the bootloader occupies and gives a little more room
for your sketch code. WIth your ISP connected, select Tools→Burn Bootloader
to restore it.

See Also
Code to convert an Arduino into an ISP programmer can be found in the sketch
example named ArduinoISP. The comments in the sketch describe the
connections to use.

Recipe 18.13

Suitable hardware programmers include:

USBtinyISP

Microchip AVRISP mkII

18.13 Replacing the Arduino Bootloader
Problem
You want to replace the bootloader on an AVR-based board such as the
Arduino Uno. Perhaps you can’t get the board to upload programs and suspect
the bootloader is not working. Or you want to replace an old bootloader with
one with higher performance or different features.

Solution
Connect a programmer and select it as discussed in Recipe 18.12. Double-
check that you have the correct board selected and click Burn Bootloader from
the Tools menu.

https://oreil.ly/f-C0p
https://oreil.ly/TsYk9
https://oreil.ly/8J8Ym

A message will appear in the IDE saying “Burning bootloader to I/O board
(this may take a minute)…”. Programmers with status lights should indicate
that the bootloader is being written to the board. On the Uno, you should see
the built-in LED flash as the board is programmed (pin 13 happens to be
connected to one of the ICSP signal pins). If all goes well, you should get a
message saying “Done Loading Bootloader.”

Disconnect the programmer and try uploading code through the IDE to verify
it is working.

Discussion
The bootloader is a small program that runs on the chip and briefly checks
each time the chip powers up to see if the IDE is trying upload code to the
board. If so, the bootloader takes over and replaces the code on the chip with
new code being uploaded through the serial port. If the bootloader does not
detect a request to upload, it relinquishes control to the sketch code already on
the board.

If you have used a serial programmer, you will need to switch the serial port
back to the correct one for your Arduino board as described in Recipe 1.4.

See Also
Optiloader, maintained by Bill Westfield, is another way to update or install
the bootloader. It uses an Arduino connected as an ISP programmer, but all the
bootloaders are included in the Arduino sketch code. This means an Arduino
with Optiloader can program another chip automatically when power is applied
—no external computer needed. The code identifies the chip and loads the
correct bootloader onto it.

Optiboot is an upgrade to the Arduino bootloader that increases available
sketch size, improves sketch upload speeds, and supports a number of other
features. Typically, you do not install Optiboot directly to your board. Consult
Optiboot’s README file for a list of Optiboot-based Arduino cores you can
install with the Boards Manager and then flash using Tools→Burn Bootloader.

https://oreil.ly/47ZV5
https://oreil.ly/RMXZt

18.14 Move the Mouse Cursor on a PC or Mac
Problem
You want Arduino to interact with an application on your computer by moving
the mouse cursor. Perhaps you want to move the mouse position in response to
Arduino information. For example, suppose you have connected input devices
such as potentiometers or a Wii nunchuck (see Recipe 13.6) to your Arduino
and you want to control the position of the mouse cursor in a program running
on a PC.

Solution
ARM-based boards such as the Arduino Zero, Adafruit Metro M0 Express, and
SparkFun RedBoard Turbo, as well as ATmega32u4-based boards like the
Leonardo can appear like a USB mouse to your computer using the built-in
Mouse library. This will not work on the Uno or directly compatible boards.
Here is a sketch that moves the mouse cursor based on the position of two
potentiometers.

Wire up two potentiometers (see Recipe 5.6), one to analog input 4 (A4) and
the other to analog input 5 (A5). Connect a switch to digital pin 2 (as described
in Recipe 5.2) to act as the left mouse button, then run the sketch:

/*

 * Mouse Emulation sketch

 * Use the Mouse library to emulate a USB mouse device

 */

#include "Mouse.h"

const int buttonPin = 2; // left click

const int potXPin = A4; // analog pins for pots

const int potYPin = A5;

int last_x = 0;

int last_y = 0;

void setup()

{

 Serial.begin(9600);

 pinMode(buttonPin, INPUT_PULLUP);

 // Get initial potentiometer positions. Range is -127 to 127

 last_x = (512 - (int) analogRead(potXPin)) / 4;

 last_y = (512 - (int) analogRead(potYPin)) / 4;

 Mouse.begin();

}

void loop()

{

 // Get current positions.

 int x = (512 - (int) analogRead(potXPin)) / 4;

 int y = (512 - (int) analogRead(potYPin)) / 4;

 Serial.print("last_x: "); Serial.println(last_x);

 Serial.print("last_y: "); Serial.println(last_y);

 Serial.print("x: "); Serial.println(x);

 Serial.print("y: "); Serial.println(y);

 // calculate the movement distance based on the potentiometer state

 int xDistance = last_x - x;

 int yDistance = last_y - y;

 // Update last known positions of the potentiometer

 last_x = x;

 last_y = y;

 // if X or Y movement is greater than 3, move:

 if (abs(xDistance) > 3 || abs(yDistance) > 3)

 {

 Serial.print("x move: "); Serial.println(xDistance);

 Serial.print("y move: "); Serial.println(yDistance);

 Mouse.move(xDistance, yDistance, 0);

 }

 // if the mouse button is pressed:

 if (digitalRead(buttonPin) == LOW)

 {

 if (!Mouse.isPressed(MOUSE_LEFT))

 {

 Mouse.press(MOUSE_LEFT); // Click

 }

 }

 else

 {

 if (Mouse.isPressed(MOUSE_LEFT))

 {

 Mouse.release(MOUSE_LEFT); // Release

 }

 }

 Serial.println();

 delay(10);

}

Discussion
This technique for controlling applications running on your computer is easy to
implement and should work with any operating system that can supports USB
mice. If you need to invert the direction of movement on the x- or y-axis, you
can do this by changing the sign of xDistance and yDistance:

Mouse.move(-xDistance, -yDistance, 0);

WARNING
A runaway Mouse object has the ability to make it difficult to reprogram the board. On most ARM-
based boards, you can double-click the reset button to put it in a bootloader mode.

See Also
Reference for the Mouse library

The ArduinoJoystick library allows ATmega32u4-based boards to emulate a
USB joystick.

The MIDIUSB library allows ATmega32u4-based and ARM boards to emulate
a USB MIDI device.

The built-in Keyboard library allows ATmega32u4-based and ARM boards to
emulate a USB keyboard.

The HID library allows offers emulation of a variety of USB devices.

https://oreil.ly/eWRLE
https://oreil.ly/r6szG
https://oreil.ly/T9P2w
https://oreil.ly/EN4Mo
https://github.com/NicoHood/HID

Electronic Components

If you are just starting out with electronic components, you may want to
purchase a beginner’s starter kit that contains the basic components needed
for many of the recipes in this book. These usually include the most
common resistors, capacitors, transistors, diodes, LEDs, and switches.

Here are some popular choices:
Arduino Starter Kit
Getting Started with Arduino Kit
SparkFun Tinker Kit>
Adafruit MetroX Classic Kit
ARDX: The starter kit for Arduino

You can also purchase the individual components for your project, as shown
in Figure A-1. The following sections provide an overview of common
electronic components.

https://oreil.ly/oy3YA
https://oreil.ly/zhPCi
https://oreil.ly/akaI4
https://oreil.ly/jSRPU
https://oreil.ly/rwakd

Schematic representation of common components

Capacitor
Capacitors store an electrical charge for a short time and are used in digital
circuits to filter (smooth out) dips and spikes in electrical signals. The most
commonly used capacitor is the nonpolarized ceramic capacitor; for
example, a 100 nF disc capacitor used for decoupling (reducing noise
spikes). Electrolytic capacitors can generally store more charge than
ceramic caps and are used for higher-current circuits, such as power
supplies and motor circuits. Electrolytic capacitors are usually polarized,

and the negative leg (marked with a minus sign) must be connected to
ground (or to a point with lower voltage than the positive leg). Chapter 8
contains examples showing how capacitors are used in motor circuits.

Diode
Diodes permit current to flow in one direction and block it in the other
direction. Most diodes have a band (see Figure A-1) to indicate the cathode
(negative) end.

Diodes such as the 1N4148 can be used for low-current applications such as
the levels used on Arduino digital pins. The 1N4001 diode is a good choice
for higher currents (up to 1 amp).

Integrated Circuit
Integrated circuits contain electronic components packaged together in a
convenient chip. These can be complex, like the Arduino controller chip
that contains thousands of transistors, or as simple as the optical isolator
component used in Chapter 10 that contains just two semiconductors. Some
integrated circuits (such as the Arduino chip) are sensitive to static
electricity and should be handled with care.

Keypad
A keypad is a matrix of switches used to provide input for numeric digits.
See Chapter 5.

LED
An LED (light-emitting diode) is a diode that emits light when current
flows through the device. As they are diodes, LEDs only conduct electricity
in one direction. See Chapter 7.

Motor (DC)
Motors convert electrical energy into physical movement. Most small direct
current (DC) motors have a speed proportional to the voltage, and you can
reverse the direction they move by reversing the polarity of the voltage
across the motor. Most motors need more current than the Arduino pins
provide, and a component such as a transistor is required to drive the motor.
See Chapter 8.

Optocoupler
Optocouplers (also called optoisolators) provide electrical separation
between devices. This isolation allows devices that operate with different
voltage levels to work safely together. See Chapter 10.

Photocell (Photoresistor)
Photocells are variable resistors whose resistance changes with light. See
Chapter 6.

Piezo
A small ceramic transducer that produces sound when pulsed, a Piezo is
polarized and may have a red wire indicating the positive end and a black
wire indicating the side to be connected to ground. See Chapter 9.

Pot (Potentiometer)
A potentiometer (pot for short) is a variable resistor. The two outside
terminals act as a fixed resistor. A movable contact called a wiper (or slider)
moves across the resistor, producing a variable resistance between the
center terminal and the two sides. See Chapter 5.

Relay
A relay is an electronic switch—circuits are opened or closed in response to
a voltage on the relay coil, which is electrically isolated from the switch.
Most relay coils require more current than Arduino pins provide, so they
need a transistor to drive them. See Chapter 8.

Resistor
Resistors resist the flow of electrical current. A voltage flowing through a
resistor will limit the current proportional to the value of the resistor (see
Ohm’s law). The bands on a resistor indicate the resistor’s value. Chapter 7
contains information on selecting a resistor for use with LEDs.

Solenoid
A solenoid produces linear movement when powered. Solenoids have a
metallic core that is moved by a magnetic field created when passing
current through a coil. See Chapter 8.

Speaker
A speaker produces sound by moving a diaphragm (the speaker cone) to
create sound waves. The diaphragm is driven by sending an audio
frequency electrical signal to a coil of wire attached to the diaphragm. See
Chapter 9.

Stepper Motor
A stepper motor rotates a specific number of degrees in response to control
pulses. See Chapter 8.

Switch

A switch makes and breaks an electrical circuit. Many of the recipes in this
book use a type of pushbutton switch known as a tactile switch. Tactile
switches have two pairs of contacts that are connected together when the
button is pushed. The pairs are wired together, so you can use either one of
the pair. Switches that make contact when pressed are called Normally
Open (NO) switches. See Chapter 5.

Transistor
Transistors are used to switch on high currents or high voltages in digital
circuits. In analog circuits, transistors are used to amplify signals. A small
current through the transistor base results in a larger current flowing
through the collector and emitter.

For currents up to .5 amperes (500 mA) or so, the 2N2222 transistor is a
widely available choice. For currents up to 5 amperes, you can use the
TIP120 transistor.

See Chapters 7 and 8 for examples of transistors used with LEDs and
motors.

See Also
For more comprehensive coverage of basic electronics, see the list of books
in “What Was Left Out”.

Using Schematic Diagrams and
Datasheets

A schematic diagram, also called a circuit diagram, is the standard way of
describing the components and connections in an electronic circuit. It uses
iconic symbols to represent components, with lines representing the
connections between components.

Figure A-1 in Appendix A shows some of the most common components,
and the symbols used for them in circuit diagrams. Figure B-1 is a
schematic diagram from Recipe 8.8 that illustrates the symbols used in a
typical diagram.

Typical schematic diagram

A circuit diagram represents the connections of a circuit, but it is not a
drawing of the actual physical layout. Although you may initially find that
drawings and photos of the physical wiring can be easier to understand than
a schematic, in a complicated circuit it can be difficult to clearly see where
each wire gets connected. Circuit diagrams are like maps. They have

conventions that help you to orient yourself once you become familiar with
their style and symbols. For example, inputs are usually to the left, outputs
to the right; 0V or ground connections are usually shown at the bottom of
simple circuits, the power at the top.

Components such as the resistor and capacitor used here are not polarized—
they can be connected either way around. Transistors, diodes, and
integrated circuits are polarized, so it is important that you identify each
lead and connect it according to the diagram.

Figure B-2 shows how the wiring could look when connected using a
breadboard. This drawing was produced using a tool called Fritzing that
enables the drawing of electronic circuits.

Physical layout of the circuit shown in Figure B-1

Wiring a working breadboard from a circuit diagram is easy if you break the
task into individual steps. Figure B-3 shows how each step of breadboard

http://fritzing.org/

construction is related to a circuit diagram. The circuit shown is from
Recipe 1.6.

Transferring a schematic diagram to a breadboard

How to Read a Datasheet
Datasheets are produced by the manufacturers of components to summarize
the technical characteristics of a device. Datasheets contain definitive
information about the performance and usage of the device; for example,
the minimum voltage needed for the device to function and the maximum
voltage that it can reliably tolerate. Datasheets contain information on the
function of each pin and advice on how to use the device.

For more complicated devices, such as LCDs, the datasheet covers how to
initialize and interact with the device. Very complex devices, such as the
Arduino controller chip, require hundreds of pages to explain all the
capabilities of the device.

Datasheets are written for design engineers, and they usually contain much
more information than you need to get most devices working in an Arduino
project. Don’t be intimidated by the volume of technical information; you
will typically find the important information in the first couple of pages.
There will usually be a circuit diagram symbol labeled to show how the
connections on the device correspond to the symbols. This page will
typically have a general description of the device (or family of devices) and
the kinds of uses they are suitable for.

After this, there is usually a table of the electrical characteristics of the
device.

Look for information about the maximum voltage and the current the device
is designed to handle to check that it is in the range you need. For
components to connect directly to a standard Arduino board, devices need
to operate at +5 volts. To be powered directly from the pin of the Arduino,
they need to be able to operate with a current of 40 mA or less.

NOTE
Some components are designed to operate on 3.3 volts and can be damaged if connected to a 5V
Arduino board. Use these devices with a board designed to run from a 3.3V supply (e.g., the MKR
series, ARM Cortex-M0-based boards such as the Arduino Zero, and other ARM-based boards),
or use a logic-level converter such as the SparkFun BOB-08745. More information on logic-level
conversion is available here.

Choosing and Using Transistors for
Switching
The Arduino Uno output pins are designed to handle currents up to 40 mA
(milliamperes), which is only 1/25 of an amp. Other boards may be rated
even lower. For example, the Uno WiFi Rev 2 board is rated at 20 mA, the
Zero at 7 mA. You can use a transistor to switch larger currents. This
section provides guidance on transistor selection and use.

The most commonly used transistors with Arduino projects are bipolar
transistors. These can be of two types (named NPN and PNP) that
determine the direction of current flow. NPN is more common for Arduino
projects and is the type that is illustrated in the recipes in this book. For
currents up to .5 amperes (500 mA) or so, the 2N2222 transistor is a widely
available choice; the TIP120 transistor is a popular choice for currents up to
5 amperes.

Figure B-1 shows an example of a transistor connected to an Arduino pin
used to drive a motor. See Chapter 8 for some recipes that use transistors.

Transistor datasheets are usually packed with information for the design
engineer, and most of this is not relevant for choosing transistors for
Arduino applications. Table B-1 shows the most important parameters you
should look for (the values shown are for a typical general-purpose
transistor). Manufacturing tolerances result in varying performance from
different batches of the same part, so datasheets usually indicate the
minimum, typical, and maximum values for parameters that can vary from
part to part.

https://oreil.ly/waiXi

Here’s what to look for:

Collector-emitter voltage
Make sure the transistor is rated to operate at a voltage higher than the
voltage of the power supply for the circuit the transistor is controlling.
Choosing a transistor with a higher rating won’t cause any problems.

Collector current
This is the absolute maximum current the transistor is designed to
handle. It is a good practice to choose a transistor that is rated at least
25% higher than what you need.

DC current gain
This determines the amount of current needed to flow through the base
of the transistor to switch the output current. Dividing the output current
(the maximum current that will flow through the load the transistor is
switching) by the gain gives the amount of current that needs to flow
through the base. Use Ohm’s law (Resistance = Voltage / Current) to
calculate the value of the resistor connecting the Arduino pin to the
transistor base. For example, if the desired collector current is 1 amp
and the gain is 100, you need at least 0.01 amps (10 mA) through the
transistor base. For a 5-volt Arduino: 5 / .01 = 500 ohms (500 ohms is
not a standard resistor value so 470 ohms would be a good choice).

Collector-emitter saturation voltage
This is the voltage level on the collector when the transistor is fully
conducting. Although this is usually less than 1 volt, it can be
significant when calculating a series resistor for LEDs or for driving
high-current devices.

Example of key transistor datasheet specifications

Absolute maximum
ratings

Parameter Symbol Rating Units Comment

Absolute maximum
ratings

Parameter Symbol Rating Units Comment

Collector-emitter
voltage

Vceo 40 Volts The maximum voltage between the
collector and emitter

Collector current Ic 600 mA
or A

The maximum current that the transistor
is designed to handle

Electrical
characteristics

DC current gain Ic 90 @ 10
mA

 Gain with 10 mA current flowing

 Ic 50 @ 500
mA

Gain with 500 mA current flowing

Collector-emitter
saturation voltage

Vce

(sat)

0.3 @ 100
mA

1.0 @ 500
mA

Volts

Volts

Voltage drop across collector and emitter
at various currents

Building and Connecting the
Circuit

There are a variety of ways to connect components when you build a
circuit. The most common practice, especially during the prototyping phase,
is to use a solderless breadboard. As you build your circuit, you will need to
power it, and with power comes the need to manage power fluctuations.
This appendix explains the basics of breadboarding and offers some tips on
working with power supplies.

Using a Breadboard
A breadboard enables you to prototype circuits quickly, without having to
solder the connections. Figure C-1 shows an example of a breadboard.

Breadboard for prototyping circuits

Breadboards come in various sizes and configurations. The simplest kind is
just a grid of holes in a plastic block. Inside are strips of metal that provide
electrical connections between holes in the shorter rows. Pushing the legs of
two different components into the same row joins them together electrically.
A deep channel running down the middle indicates that there is a break in

connections there, meaning you can push a chip in with the legs at either
side of the channel without connecting them together.

Some breadboards have two strips of holes running along the long edges of
the board that are separated from the main grid. These have strips running
down the length of the board inside, and provide a way to connect a
common voltage. They are usually in pairs for +5 volts and ground. These
strips are referred to as rails and they enable you to connect power to many
components or points in the board.

While breadboards are great for prototyping, they have some limitations.
Because the connections are push-fit and temporary, they are not as reliable
as soldered connections. If you are having intermittent problems with a
circuit, it could be due to a poor connection on a breadboard.

Connecting and Using External Power
Supplies and Batteries
The Arduino can be powered from an external power source rather than
through the USB lead. You may need more current than the USB
connection can provide (the maximum USB current is 500 mA; some USB
hubs only supply 100 mA), or you may want to run the board without
connection to the computer after the sketch is uploaded.

The Arduino Uno board has a socket for connecting external power. This
can be an AC-powered power supply or a battery pack.

NOTE
These details relate to the Uno and Mega boards. Other Arduino and compatible boards may not
protect the board from reverse connections, or they may automatically switch to use external
power and may not accept higher voltages. If you are using a different board, check before you
connect power or you may damage the board.

If you are using an AC power supply, you need one that produces a DC
voltage between 7 and 12 volts. Choose a power supply that provides at

least as much current as you need (there is no problem in using a power
supply with a higher current than you need). Wall wart–style power supplies
come in two broad types: regulated and unregulated. A regulated power
supply has a circuit that maintains the specified voltage, and this is a good
choice to use with Arduino. An unregulated power supply will produce a
higher voltage when run at a lower current and can sometimes produce
twice the rated voltage when driving low-current devices such as Arduino.
Voltages higher than 12 volts can overheat the regulator on the Arduino,
and this can cause intermittent operation or even damage the board.

Battery voltage should also be in the range of 7 to 12 volts. Battery current
is rated in mAh (the amount of milliamperes the battery can supply in one
hour). A battery with a rating of 500 mAh (a typical alkaline 9V battery)
should last around 20 hours with an Arduino board drawing 25 mAh. If
your project draws 50 mA, the battery life will be halved, to around 10
hours. How much current your board uses depends mostly on the devices
(such as LEDs and other external components) that you use. Bear in mind
that the Uno board is designed to be easy to use and robust, but it is not
optimized for low power use with a battery. See Recipe 18.10 for advice on
reducing battery drain.

The positive (+) connection from the power supply should be connected to
the center pin of the Arduino power plug. If you connect it the wrong way
around on an Uno or Mega, the board will not break, but it will not work
until the connection is reversed. These boards automatically detect that an
external power supply is connected and use that to power the board. You
can still have the USB lead plugged in, so serial communication and code
uploading will still work.

Using Capacitors for Decoupling
Digital circuits switch signals on and off quickly, and this can cause
fluctuations in the power supply voltage that can disrupt proper operation of
the circuit. Properly designed digital circuits use decoupling capacitors to
filter these fluctuations. Decoupling capacitors should be connected across

the power pins of each IC in your circuit with the capacitor leads kept as
short as possible. A ceramic capacitor of 0.1 uF is a good choice for
decoupling—that value is not critical (20% tolerance is OK).

Using Snubber Diodes with Inductive Loads
Inductive loads are devices that have a coil of wire inside. This includes
motors, solenoids, and relays. The interruption of current flow in a coil of
wire generates a spike of electricity. This voltage can be higher than +5
volts and can damage sensitive electronic circuits such as Arduino pins.
Snubber diodes are used to prevent that by conducting the voltage spikes to
ground. Figure B-1 in Appendix B shows an example of a snubber diode
used to suppress voltage spikes when driving a motor.

Working with AC Line Voltages
When working with an AC line voltage from a wall socket, the first thing
you should consider is whether you can avoid working with it. Electricity at
this voltage is dangerous enough to kill you, not just your circuit, if it is
used incorrectly. It is also dangerous for people using whatever you have
made if the AC line voltage is not isolated properly.

Hacking controllers for devices that are manufactured to work with mains
voltage, or using devices designed to be used with microcontrollers to
control AC line voltages, is safer (and often easier) than working with
mains voltage itself. See Chapter 10 for recipes on controlling external
devices for examples of how to do this.

Tips on Troubleshooting
Software Problems

As you write and modify code, you will get code that doesn’t work for
some reason (this reason is usually referred to as a bug). There are two
broad areas of software problems: code that won’t compile and code that
compiles and uploads to the board but doesn’t behave as you want.

Code That Won’t Compile
Your code might fail to compile when you click the Verify (checkbox)
button or the Upload button (see Chapter 1). This is indicated by red error
messages in the black console area at the bottom of the Arduino software
window and a yellow highlight in the code if there is a specific point where
the compilation failed. Often the problem in the code is in the line
immediately before the highlighted line. The error messages in the console
window are generated by the command-line programs used to compile and
link the code (see Recipe 17.1 for details on the build process). This
message may be difficult to understand when you first start.

One of the most common errors made by people new to Arduino
programming is omission of the semicolon at the end of a line. This can
produce various different error messages, depending on the next line. For
example, this code fragment:

void loop()

{

 digitalWrite(ledPin, HIGH) // <- BUG: missing semicolon

 delay(1000);

}

produces the following error message:

In function 'void loop()':

 error: expected ';' before 'delay

A less obvious error message is:

expected ',' or ';' before 'void'

Although the cause is similar, a missing semicolon after a constant results
in the preceding error message, as in this fragment:

const int ledPin = LED_BUILTIN // <- BUG: missing semicolon after constant

void loop()

The combination of the error message and the line highlighting provides a
good starting point for closer examination of the area where the error has
occurred.

Another common error is misspelled words, resulting in the words not
being recognized. This includes incorrect capitalization—LedPin is
different from ledPin. This fragment:

const int ledPin = LED_BUILTIN;

digitalWrite(LedPin, HIGH); // <- BUG: the capitalization is different

results in the following error message:

note: suggested alternative: 'ledPin':

 error: 'LedPin' was not declared in this scope

The fix is to use exactly the same spelling and capitalization as the variable
declaration, as the suggestion indicates.

You must use the correct number and type of parameters for function calls
(see Recipe 2.10). The following fragment:

digitalWrite(ledPin); // <- BUG: this is missing the second parameter

generates this error message:

error: too few arguments to function 'void digitalWrite(uint8_t, uint8_t)'

 error: at this point in file

The cursor in the IDE will point to the line in the sketch that contains the
error.

Functions in sketches that are missing the return type will generate an error.
This fragment:

loop() // <- BUG: loop is missing the return type

{

}

produces this error:

expected constructor, destructor, or type conversion before ';' token

The error is fixed by adding the missing return type:

void loop() // <- return type precedes function name

{

}

Incorrectly formed comments, such as this fragment that is missing the
second “/”:

digitalWrite(ledPin, HIGH); / set the LED on (BUG: missing //)

result in this error:

error: expected primary-expression before '/' token

It is good to work on a small area of code, and regularly verify/compile to
check the code. You don’t need to upload to check that the sketch compiles
(just click the Verify button in the IDE). The earlier you become aware of a
problem, the easier it is to fix it, and the less impact it will have on other

code. It is much easier to fix code that has one problem than it is to fix a
large section of code that has multiple errors in it.

Code That Compiles but Does Not Work as
Expected
There is always a feeling of accomplishment when you get your sketch to
compile without errors, but correct syntax does not mean the code will do
what you expect.

This is usually a subtler problem to isolate. You are now in a world where
software and hardware are interacting. It is important to try to separate
problems in hardware from those in software. Carefully check the hardware
(see Appendix E) to make sure it is working correctly.

TROUBLESHOOTING INTERRELATED HARDWARE/SOFTWARE
PROBLEMS

Some problems are not due strictly to software or hardware errors, but to the interplay between
them.

The most common of these is connecting the circuit to one pin and in software reading or
writing a different pin. Hardware and software are both correct in isolation—but together they
don’t work. You can change either the hardware or the software to fix this: change the pin in
software or move the connection to the pin number declared in your sketch.

If you are sure the hardware is wired and working correctly, the first step in
debugging your sketch is to carefully read through your code to review the
logic you used. Pausing to think carefully about what you have written is
usually a faster and more productive way to fix problems than diving in and
adding debugging code. It can be difficult to see faulty reasoning in code
you have just written. Walking away from the computer not only helps
prevent repetitive strain injury, but it also refreshes your troubleshooting
abilities. On your return, you will be looking at the code afresh, and it is
very common for the cause of the error to jump out at you where you could
not see it before.

If this does not work, move on to the next technique: use the Serial Monitor
to watch how the values in your sketch are changed when the program runs
and whether conditional sections of code run. Chapter 4 explains how to use
Arduino serial print statements to display values on your computer.

To troubleshoot, you need to find out what is actually happening when the
code runs. Serial.print() lines in your sketch can display what part of
the code is running and the values of your variables. These statements are
temporary, so you should remove them once you have fixed your problem.
The following sketch reads an analog value and is based on the Solution
from Recipe 5.6. The sketch should change the blink rate based on the
setting of a variable resistor (see the Discussion for Recipe 5.6 for more
details on how this works). If the sketch does not function as expected, you
can see if the software is working correctly by using a serial.print()
statement to display the value read from the analog pin:

const int potPin = A0;

const int ledPin = LED_BUILTIN;

int val = 0;

void setup()

{

 Serial.begin(9600); // <- add this to initialize Serial

 pinMode(ledPin, OUTPUT);

}

void loop() {

 val = analogRead(potPin); // read the voltage on the pot

 Serial.println(val); // <- add this to display the reading

 digitalWrite(ledPin, HIGH);

 delay(val);

 digitalWrite(ledPin, LOW);

 delay(val);

}

If the value displayed on the Serial Monitor does not vary from 0 to 1,023
when the pot (variable resistor) is changed, you probably have a hardware
problem—the pot may be faulty or not wired correctly. If the value does
change but the LED does not blink, the LED may not be wired correctly.

Tips on Troubleshooting
Hardware Problems

Hardware problems can have more immediate serious ramifications than
software problems because incorrect wiring can damage components. The
most important tip is always disconnect power when making or changing
connections, and double-check your work before connecting power.

NOTE
Unplug Arduino from power while building and modifying circuits.

Applying power is the last thing you do to test a circuit, not the first.

For a complicated circuit, build it a bit at a time. Often a complicated circuit
consists of a number of separate circuit elements, each connected to a pin
on the Arduino. If this is the case, build one bit and test it, then the other
bits, one at a time. If you can, test each element using a known working
sketch such as one of the example sketches supplied with Arduino or on the
Arduino Playground. It usually takes much less time getting a complex
project working if you test each element separately.

For some of the techniques in this appendix, you will need a multimeter
(any inexpensive digital meter that can read volts, current, and resistance
should be suitable).

The most effective test is to carefully inspect the wiring and check that it
matches the circuit you are trying to build. Take particular care that power
connections are the correct way around and there are no short circuits, +5
volts accidentally connected to 0 volts, or legs of components touching
where they should not. If you are unsure how much current a device
connected to an Arduino pin will draw, test it with a multimeter before

connecting it to a pin. If the circuit draws more than 40 mA (20 mA on the
WiFi Rev2/Nano Every and 7 mA on most ARM-based boards), the pin on
the Arduino can get damaged. (See this video tutorial and PDF for details
on how to use a multimeter.)

You may be able to test output circuits (LEDs or motors) by connecting to
the positive power supply instead of the Arduino pin. If the device does not
function, it may be faulty or not wired correctly.

If the device tests OK, but when you connect to the pin and run the code
you don’t get the expected behavior, the pin might be damaged or the
problem is in software.

To test a digital output pin, hook up an LED with a resistor (see Chapter 7)
or connect a multimeter to read the voltage and run the Blink sketch on that
pin. If the LED does not flash, or doesn’t jump between 0 volts and 5 volts
(or 3.3 on a 3.3V board) on the multimeter, the output pin is probably
damaged.

Take care that your wiring does not accidentally connect the power line to
ground. If this happens on a board that is powered from USB, all the lights
will go out and the board will become unresponsive. The board has a
component, called a polyfuse, that protects the computer from excessive
current being drawn from the USB port. If you draw too much current, it
will “trip” and switch off power to the board. You can reset it by
unplugging the board from the USB hub (you may also need to restart your
computer). Before reconnecting the power, check your circuits to find and
fix the faulty wiring; otherwise, the polyfuse will trip again when you plug
it back in.

Still Stuck?
After trying everything you can think of, you still may not be able to get
your project to work. If you know someone who is using Arduino or similar
boards, you could ask them for help. But if you don’t, use the internet—
particularly the Arduino forum site. This is a place where people of all
experience levels can ask questions and share knowledge. Use the forum

https://oreil.ly/lUVo9
http://www.arduino.cc/

search box (it’s in the top-right corner) to try to find information relating to
your project. A related site is the Arduino Playground, a wiki for user-
contributed information about Arduino.

If a search doesn’t yield the information you need, you can post a question
to the Arduino forum. The forum is very active, and if you ask your
question clearly, you are likely to get a quick answer.

To ask your question well, identify which forum section the question should
go in and choose a title for your thread that reflects the specific problem
you want to solve. Post in only one place—most people who are likely to
answer will check all the sections that have new posts, and multiple posts
will irritate people and make it less likely that you will get help.

Explain your problem, and the steps you have taken to try to fix it. It’s
better to describe what happens than to explain why you think it is
happening. Include all relevant code, but try to produce a concise test
sketch that does not contain code that you know is not related to the
problem. If your problem relates to a device or component that is external
to the Arduino board, post a link to the datasheet. If the wiring is complex,
post a diagram or photo showing how you have connected things up.

Digital and Analog Pins

Tables F-1 and F-2 show the digital and analog pins for the Arduino Uno
board and the Mega board. The “Arduino” column is for the
ATmega168/328, and the “Mega” column is for the ATmega1280/2560.

The Port column lists the physical port used for the pin—see Recipe 18.11
for information on how to set a pin by writing directly to a port. The
introduction to Chapter 18 contains more details on timer usage. The table
shows:

USART RX is hardware serial receive

USART TX is hardware serial transmit

Ext Int is external interrupt (followed by the interrupt number)

PWM TnA/B is the Pulse Width Modulation (analogWrite) output on
timer n

MISO, MOSI, SCK, and SS are SPI control signals

SDA and SCL are I2C control signals

Analog and digital pin assignments common to popular Arduino boards

Arduino 168/328 Arduino Mega (pins 0–19)

Digital
pin

Port Analog
pin

Usage Port Analog
pin

Usage

0 PD
0

USART RX PE 0 USART0 RX, Pin Int
8

1 PD
1

USART TX PE 1 USART0 TX

2 PD
2

Ext Int 0 PE 4 PWM T3B, INT4

3 PD
3

PWM T2B, Ext
Int 1

PE 5 PWM T3C, INT5

Arduino 168/328 Arduino Mega (pins 0–19)

Digital
pin

Port Analog
pin

Usage Port Analog
pin

Usage

4 PD
4

PG
5

PWM T0B

5 PD
5

PWM T0B PE 3 PWM T3A

6 PD
6

PWM T0A PH
3

PWM T4A

7 PD
7

PH
4

PWM T4B

8 PB 0 Input capture PH
5

PWM T4C

9 PB 1 PWM T1A PH
6

PWM T2B

10 PB 2 PWM T1B, SS PB 4 PWM T2A, Pin Int 4

11 PB 3 PWM T2A, MOSI PB 5 PWM T1A, Pin Int 5

12 PB 4 SPI MISO PB 6 PWM T1B, Pin Int 6

13 PB 5 SPI SCK PB 7 PWM T0A, Pin Int 7

14 PC 0 0 PJ 1 USART3 TX, Pin Int
10

15 PC 1 1 PJ 0 USART3 RX, Pin Int
9

16 PC 2 2 PH
1

USART2 TX

17 PC 3 3 PH
0

USART2 RX

18 PC 4 4 I2C SDA PD
3

USART1 TX, Ext Int
3

19 PC 5 5 I2C SCL PD
2

USART1 RX, Ext Int
2

Assignments for additional Mega pins

Arduino Mega (pins 20–44) Arduino Mega (pins 45–69)

Digital
pin

Port Usage Digital
pin

Port Analog
pin

Usage

20 PD
1

I2C SDA, Ext Int 1 45 PL 4 PWM 5B

21 PD
0

I2C SCL, Ext Int 0 46 PL 3 PWM 5A

22 PA 0 Ext Memory addr bit
0

47 PL 2 T5 external
counter

23 PA 1 Ext Memory bit 1 48 PL 1 ICP T5

24 PA 2 Ext Memory bit 2 49 PL 0 ICP T4

25 PA 3 Ext Memory bit 3 50 PB 3 SPI MISO

26 PA 4 Ext Memory bit 4 51 PB 2 SPI MOSI

27 PA 5 Ext Memory bit 5 52 PB 1 SPI SCK

28 PA 6 Ext Memory bit 6 53 PB 0 SPI SS

29 PA 7 Ext Memory bit 7 54 PF 0 0

30 PC 7 Ext Memory bit 15 55 PF 1 1

31 PC 6 Ext Memory bit 14 56 PF 2 2

32 PC 5 Ext Memory bit 13 57 PF 3 3

33 PC 4 Ext Memory bit 12 58 PF 4 4

34 PC 3 Ext Memory bit 11 59 PF 5 5

35 PC 2 Ext Memory bit 10 60 PF 6 6

36 PC 1 Ext Memory bit 9 61 PF 7 7

37 PC 0 Ext Memory bit 8 62 PK
0

8 Pin Int 16

Arduino Mega (pins 20–44) Arduino Mega (pins 45–69)

Digital
pin

Port Usage Digital
pin

Port Analog
pin

Usage

38 PD
7

63 PK
1

9 Pin int 17

39 PG
2

ALE Ext Mem 64 PK
2

10 Pin Int 18

40 PG
1

RD Ext Mem 65 PK
3

11 Pin Int 19

41 PG
0

Wr Ext Mem 66 PK
4

12 Pin Int 20

42 PL 7 67 PK
5

13 Pin Int 21

43 PL 6 68 PK
6

14 Pin Int 22

44 PL 5 PWM 5C 69 PK
7

15 Pin Int 23

Table F-3 lists timer modes showing the pins used with popular Arduino
chips.

Timer modes

Timer Arduino 168/328 Mega

Timer 0 mode (8-bit) Fast PWM Fast PWM

Timer0A analogWrite pin Pin 6 Pin 13

Timer0B analogWrite pin Pin 5 Pin 4

Timer 1 (16-bit) Phase correct PWM Phase correct PWM

Timer1A analogWrite pin Pin 9 Pin 11

Timer1B analogWrite pin Pin 10 Pin 12

Timer 2 (8-bit) Phase correct PWM Phase correct PWM

Timer Arduino 168/328 Mega

Timer2A analogWrite pin Pin 11 Pin 10

Timer2B analogWrite pin Pin 3 Pin 9

Timer 3 (16-bit) N/A Phase correct PWM

Timer3A analogWrite pin Pin 5

Timer3B analogWrite pin Pin 2

Timer3C analogWrite pin Pin 3

Timer 4 (16-bit) N/A Phase correct PWM

Timer4A analogWrite pin Pin 6

Timer4B analogWrite pin Pin 7

Timer4C analogWrite pin Pin 8

Timer 5 (16-bit) N/A Phase correct PWM

Timer5A analogWrite pin Pin 46

Timer5B analogWrite pin Pin 45

Timer5C analogWrite pin Pin 44

Full details of these Arduino controller chips can be found in their
datasheets:

The datasheet for Uno-compatible boards (ATmega328)

The mega (ATmega2560) datasheet

https://oreil.ly/Y-12D
https://oreil.ly/uf2QD

ASCII and Extended Character
Sets

ASCII stands for American Standard Code for Information Interchange. It
is the most common way of representing letters and numbers on a computer.
Each character is represented by a number—for example, the letter A has
the numeric value 65, and the letter a has the numeric value 97 (lowercase
letters have a value that is 32 greater than their uppercase versions).

Values below 32 are called control codes—they were defined as nonprinting
characters to control early computer terminal devices. The most common
control codes for Arduino applications are listed in Table G-1.

Common ASCII control codes

Decimal Hex Escape code Description

0 0x0 '\0 ' Null character (used to terminate a C string)

9 0x9 '\t ' Tab

10 0xA '\n' New line

13 0xD '\r ' Carriage return

27 0x1B Escape

Table G-2 shows the decimal and hexadecimal values of the printable
ASCII characters.

ASCII table

Dec Hex Dec Hex Dec Hex

Space 32 20 @ 64 40 ` 96 60

Dec Hex Dec Hex Dec Hex

! 33 21 A 65 41 a 97 61

" 34 22 B 66 42 b 98 62

35 23 C 67 43 c 99 63

$ 36 24 D 68 44 d 100 64

% 37 25 E 69 45 e 101 65

& 38 26 F 70 46 f 102 66

' 39 27 G 71 47 g 103 67

(40 28 H 72 48 h 104 68

) 41 29 I 73 49 i 105 69

* 42 2A J 74 4A j 106 6A

+ 43 2B K 75 4B k 107 6B

, 44 2C L 76 4C l 108 6C

- 45 2D M 77 4D m 109 6D

. 46 2E N 78 4E n 110 6E

/ 47 2F O 79 4F o 111 6F

0 48 30 P 80 50 p 112 70

1 49 31 Q 81 51 q 113 71

2 50 32 R 82 52 r 114 72

3 51 33 S 83 53 s 115 73

4 52 34 T 84 54 t 116 74

5 53 35 U 85 55 u 117 75

6 54 36 V 86 56 v 118 76

7 55 37 W 87 57 w 119 77

Dec Hex Dec Hex Dec Hex

8 56 38 X 88 58 x 120 78

9 57 39 Y 89 59 y 121 79

: 58 3A Z 90 5A z 122 7A

; 59 3B [91 5B { 123 7B

< 60 3C \ 92 5C | 124 7C

= 61 3D] 93 5D } 125 7D

> 62 3E ^ 94 5E ~ 126 7E

? 63 3F _ 95 5F

Characters above 128 are non-English characters or special symbols and are
displayed in the Serial Monitor using the characters shown in Table G-3.

Extended characters

Dec Hex Dec Hex Dec Hex Dec Hex

€ 128 80 Space 160 A0 À 192 C0 à 224 E0

 129 81 ¡ 161 A1 Á 193 C1 á 225 E1

‚ 130 82 ¢ 162 A2 Â 194 C2 â 226 E2

ƒ 131 83 £ 163 A3 Ã 195 C3 ã 227 E3

„ 132 84 ¤ 164 A4 Ä 196 C4 ä 228 E4

… 133 85 ¥ 165 A5 Å 197 C5 å 229 E5

† 134 86 ¦ 166 A6 Æ 198 C6 æ 230 E6

‡ 135 87 § 167 A7 Ç 199 C7 ç 231 E7

ˆ 136 88 ¨ 168 A8 È 200 C8 è 232 E8

‰ 137 89 © 169 A9 É 201 C9 é 233 E9

Š 138 8A ª 170 AA Ê 202 CA ê 234 EA

Dec Hex Dec Hex Dec Hex Dec Hex

‹ 139 8B « 171 AB Ë 203 CB ë 235 EB

Œ 140 8C ¬ 172 AC Ì 204 CC ì 236 EC

 141 8D 173 AD Í 205 CD í 237 ED

Ž 142 8E ® 174 AE Î 206 CE î 238 EE

 143 8F ¯ 175 AF Ï 207 CF ï 239 EF

 144 90 ° 176 B0 Ð 208 D0 ð 240 F0

‘ 145 91 ± 177 B1 Ñ 209 D1 ñ 241 F1

’ 146 92 ² 178 B2 Ò 210 D2 ò 242 F2

“ 147 93 ³ 179 B3 Ó 211 D3 ó 243 F3

” 148 94 ´ 180 B4 Ô 212 D4 ô 244 F4

• 149 95 µ 181 B5 Õ 213 D5 õ 245 F5

– 150 96 ¶ 182 B6 Ö 214 D6 ö 246 F6

— 151 97 · 183 B7 × 215 D7 ÷ 247 F7

˜ 152 98 ¸ 184 B8 Ø 216 D8 ø 248 F8

™ 153 99 ¹ 185 B9 Ù 217 D9 ù 249 F9

š 154 9A º 186 BA Ú 218 DA ú 250 FA

› 155 9B » 187 BB Û 219 DB û 251 FB

œ 156 9C ¼ 188 BC Ü 220 DC ü 252 FC

 157 9D ½ 189 BD Ý 221 DD ý 253 FD

ž 158 9E ¾ 190 BE Þ 222 DE þ 254 FE

Ÿ 159 9F ¿ 191 BF ß 223 DF ÿ 255 FF

You can view the entire character set in the Serial Monitor using this sketch:

/*

 * display characters from 1 to 255

 */

void setup()

{

 Serial.begin(9600);

 while(!Serial); // For Leonardo and 32-bit boards

 for(int i=1; i < 256; i++)

 {

 Serial.write(i);

 Serial.print(", dec: ");

 Serial.print(i, DEC);

 Serial.print(", hex: ");

 Serial.println(i, HEX);

 }

}

void loop()

{

}

Note that some devices, such as LCD displays (see Chapter 11), may use
different symbols for the characters above 128, so check the datasheet for
your device to see the actual characters supported.

Index

Symbols

! (not) operator, Solution
!= (not equal to) operator, Solution
% (modulus) operator, Solution
& (ampersand)

bitwise And, Solution, Discussion
parameters as references, Discussion

&& (logical And) operator, Solution, Discussion
&= (binary-and mask) operator, Solution
* (multiplication) operator, Solution
*= (multiplication) compound operator, Solution
+ (addition) operator

numbers, Solution
strings, Discussion, Discussion

++ (increment) operator, Discussion
+= (addition) compound operator, Solution
- (subtraction) operator, Solution
-- (decrement) operator, Discussion
-= (subtraction) compound operator, Solution
/ (division) operator, Solution
/= (division) operator, Solution
0b prefix, Solution
7-segment display, Problem

multidigit, Problem, Problem, Solution

7-Segment LED Matrix Backpack (Adafruit), Solution, Solution, See Also
802.15.4 wireless communication, Problem
8×8 LED matrix (Adafruit), Discussion
; (semicolon)

in functions, Discussion, Discussion
importance of, Code That Won’t Compile

< (less than) operator, Solution
<< (bit-shift left) operator, Solution
<<= (shift left) compound operator, Solution
<= (less than or equal to) operator, Solution
= (assignment operator), Discussion
== (equal to) operator

numeric values, Solution, Discussion
strings, Discussion

> (greater than) operator, Solution, Discussion
>= (greater than or equal to) operator, Solution
>> (bit-shift right) operator, Solution
>>= (shift right) compound operator, Solution
^ (bitwise Exclusive Or) operator, Solution
{ } (curly brackets)

body of function, Discussion
code blocks, Discussion
loops, Solution

| (bitwise Or) operator, Solution
|= (binary-or mask) operator, Solution
|| (logical Or) operator, Solution
~ (bitwise negation) operator, Solution, Discussion
§ (unsaved sketch) symbol, Discussion

“Twinkle, Twinkle Little Star”, Solution, Solution

A

abs (absolute value) function, Solution
AC device remote control, Problem

relays for, Discussion

AC external power supply, Connecting and Using External Power Supplies
and Batteries

disconnect before changing circuit, Tips on Troubleshooting Hardware
Problems

AC line voltage, Working with AC Line Voltages
disconnect before changing circuit, Tips on Troubleshooting Hardware
Problems

accelerometers
about, Solution
acceleration display, Problem
gesture sensing, Discussion
gravity, Discussion, Discussion
gyroscope packaged with, Solution
interpreting data, Discussion
Nano 33 BLE Sense, Solution, Solution
reading, Discussion
resources, See Also, See Also
servo rotation control, Discussion
Wii nunchuck, Problem

actuator examples, Arduino Hardware
Adafruit Industries

7-Segment LED Matrix Backpack, Solution, Solution, See Also
8×8 LED matrix, Discussion

air quality sensor, Discussion
Airlift modules, Solution
breadboard, Introduction
Circuit Playground library, Solution
CP2104 Friend TTL to USB adapter, Serial Hardware
DS1307 Real Time Clock, See Also
Ethernet FeatherWing, Problem
Feather HUZZAH with ESP8266, Solution, Discussion
Featherwing add-on boards, Arduino Hardware
GFX library, Discussion, Discussion
GPS modules, See Also
graphics tutorial, Discussion
HalloWing, Solution
ImageReader library, Discussion
IoT Power Relay, Discussion
Itsy Bitsy M4 Express, Serial Hardware, Serial Hardware Behavior
keypad, Problem, See Also
LoRa radio modules, See Also
memory tutorial, See Also
Metro M0 Express, Arduino Hardware, Discussion, Solution, Serial
Hardware, Serial Hardware Behavior, Introduction, Analog Output
MetroX Classic Kit of electronic components, Electronic Components
Motor Shield, Solution, Discussion, See Also
MQTT library, Discussion
NeoPixel LEDs, Solution, Discussion, Discussion
OLED displays, Solution, See Also
OLED libraries, Discussion, Solution
PIR Sensor, Solution, Discussion

PN532 NFC reader, Solution, Discussion
programmer, See Also
PWM Servo Driver, Solution, See Also
RadioHead library, Solution
RF modules, Solution, See Also
RTC library, Discussion
SD card reader, Discussion
SleepyDog library, Solution, Discussion
ST7735 color LCD display, Solution, See Also, SPI
stepper motor tutorial, See Also
Time of Flight Distance Ranging Sensor, Solution
touch screen library, See Also
Trinket, Arduino Hardware, Arduino Hardware
URL, Arduino Hardware
voltage logic-level translator, Using 3.3-Volt Devices with 5-Volt Boards
waterproof temperature sensor, Discussion
Wave Shield, Introduction
WiFiNINA library, Solution

ADC (see analog-to-digital converter)
addition (+) operator

numbers, Solution
strings, Discussion, Discussion

addition (+=) compound operator, Solution
air quality sensor, Solution
Airlift modules (Adafruit), Solution
alarm for calling function, Problem

Alarm.delay function, Discussion
alarms versus timers, Discussion

once only, Discussion
system clock and, Discussion

Allen, Charlie, Discussion
almostEqual function, Discussion
Altman, Mitch, See Also
AM radio broadcast of Morse code, Solution
ampersand (&)

bitwise And, Solution, Discussion
parameters as references, Discussion

amplification
microphone, Discussion, Discussion
transistor explanation, Transistor

amplitude, Discussion
analog panel meter display, Problem

resistor value, Discussion

analog pins
about analog, Analog Output
analog signal simulation, Analog Output
analogRead setting to input, Discussion
analogWrite setting to output, Solution
Arduino board pin assignments, Digital and Analog Pins
Arduino Mega, Digital and Analog Pins
Arduino Uno, Introduction, Digital and Analog Pins
constants for logical names, Introduction
data from Arduino, Problem
as digital pins, Introduction
floating values, Introduction
interrupts for state changes, Problem

multiplexer chip, Solution
numbers of, Problem
potentiometer, Introduction, Problem
pulse width modulation, Analog Output, Problem
reading analog values, Problem
reading more than six, Problem
seeding random numbers, Discussion
UDP messages for sensor data, Discussion
voltage, Introduction, Introduction
web browser controlling, Problem
web browser for sensor values, Problem, Problem
XBees sharing data, Problem

analog sensors, Introduction
(see also sensors)

analog-to-digital converter (ADC)
analogRead sampling rate, Discussion
resource, See Also
seeding random numbers, Discussion
XBee capability, Discussion, Configuration

analogRead function
about, Introduction
Arduino reference, See Also
bar graphs, Problem, Discussion, Problem, Solution, Discussion
measuring voltage, Solution, Problem
millivolts from, Discussion
multiplexer inputs, Solution
reading potentiometer values, Solution
sampling rate via registers, Solution

scaling values, Problem
servo rotation control, Discussion
setting pin to input, Discussion
UDP messages for sensor data, Discussion

analogReadFast library, See Also
analogWrite function

about, Analog Output
high current with transistors, How to exceed 40 mA on an ATmega chip
LED brightness control, Discussion
panel meter display, Discussion
servos can’t use, Servos
setting pin to output, Solution
timers and, Timers, Discussion, Discussion
tone function timer not used, Problem
tone function timer used, Introduction
UDP messages for sensor data, Discussion

And operators
bitwise And (&), Solution, Discussion
logical And (&&), Solution, Discussion

angles
compass project, Problem
compass-following servo, Discussion
converting degrees to radians, Discussion
radians specified, Discussion
rotary encoders, Solution
servo rotational position, Problem
trigonometric functions, Problem

animation

color LCD yellow ball, Solution
LCD smile/frown, Solution
LED bar graph, Problem
LED chasing lights, Problem
LED Knight Rider-like effect, Solution
LED matrix, Problem
LED sound volume meter, Discussion
persistence of vision, Discussion, Discussion

anode of LED, LED specifications, Discussion
common anode, Solution, Solution, Discussion

Arduino
about, Preface, Introduction
analog and digital pin assignments, Digital and Analog Pins
analog pins, numbers of, Problem
battery drain reduced via sleeping, Problem
battery power supply, Solution
coding style resource, Discussion
communicating between boards, Problem
controller chip resource, See Also
document folder location, Solution, Solution
forum, Arduino Platform Release Notes, Introduction, Still Stuck?
hardware overview, Arduino Hardware-Arduino Hardware, Discussion
hardware overview resource, See Also
memory description, Introduction, See Also
music blog entries, Introduction
pointers discouraged, Discussion, Discussion
project hub online, Introduction
Raspberry Pi not as fast, Discussion

sensors built in, Problem
setting up board, Problem
shields, Arduino Hardware
tutorials online, Introduction
version used in book, Arduino Platform Release Notes

Arduino CLI, See Also
Arduino Create online editing, See Also

Chrome App, See Also

Arduino Due
about, Arduino Hardware
pin arrangements, Introduction
serial port pins used, Serial Hardware

Arduino environment (see integrated development environment (IDE))
Arduino forum, Arduino Platform Release Notes, Introduction, Still Stuck?
Arduino Leonardo

about, Arduino Hardware, Arduino Hardware, Discussion
LCD display, Discussion
serial port, Serial Hardware
serial port behavior, Serial Hardware Behavior, Serial Hardware
Behavior, Discussion
serial port pins used, Serial Hardware

Arduino LilyPad, Arduino Hardware
Arduino Mega

about, Arduino Hardware, Solution
analog pin quantity, Problem
datasheet, Digital and Analog Pins, Digital and Analog Pins
external power supply, Connecting and Using External Power Supplies
and Batteries

pin arrangements, Introduction
pin assignments, Digital and Analog Pins
pulse width modulation pins, Analog Output
serial port behavior, Serial Hardware Behavior
serial port hardware behavior, Serial Hardware Behavior
serial port pins used, Serial Hardware
serial ports, Serial Hardware, Discussion
servo capabilities, Discussion
sound capabilities, Problem
timer modes and pins used, Digital and Analog Pins, Digital and Analog
Pins

Arduino MKR
about, Arduino Hardware, Arduino Hardware
audio via DAC pin, Introduction
RTC capability, Discussion
Vidor 4000 rotary encoder reading, See Also
WiFi, using built-in, Solution

Arduino MKR 1010
about, Arduino Hardware, Discussion
adding to boards menu, Problem
serial port behavior, Serial Hardware Behavior
serial port pins used, Serial Hardware

Arduino Motor Shield, Discussion, See Also, Discussion
Arduino Nano

33 BLE Sense, Discussion, Solution, See Also, Solution
33 series, Arduino Hardware, Arduino Hardware, Serial Hardware, Serial
Hardware Behavior, Solution
Every, Serial Hardware, Serial Hardware Behavior

pulse width modulation pins, Analog Output
sensors built in, Solution
serial port hardware behavior, Serial Hardware Behavior
WiFi, using built-in, Solution

Arduino Playground, Discussion, Still Stuck?
Arduino Pro IDE, See Also

(see also integrated development environment (IDE))

Arduino Starter Kit of electronic components, Electronic Components
Arduino Uno

about, Arduino Hardware
current-carrying capabilities, Choosing and Using Transistors for
Switching
data types, Solution
datasheet, Digital and Analog Pins
external power supply socket, Connecting and Using External Power
Supplies and Batteries
interrupt support, Discussion, Discussion
LCD display, Discussion
musically complex sounds, Introduction
older shields with, Solution
pin arrangement, Introduction
pin assignments, Digital and Analog Pins
processor speed, Discussion
pulse width modulation pins, Analog Output
serial port, Serial Hardware, Discussion
serial port behavior, Serial Hardware Behavior, Discussion
serial port hardware behavior, Serial Hardware Behavior
serial port pins used, Serial Hardware

servo capabilities, Discussion
software emulation of serial port, Serial Hardware, Solution
timer modes and pins used, Digital and Analog Pins
WiFi, using built-in, Solution
XBee modules and, Solution

Arduino Zero
about, Arduino Hardware, Discussion
adding to boards menu, Discussion
audio output, Introduction
Blink sketch with photoresistor, Solution
data types, Solution
pulse width modulation pins, Analog Output
quick start guide, See Also
RTC capability, Discussion
serial port, Serial Hardware
serial port pins used, Serial Hardware

Arduino-compatible boards (see third-party Arduino-compatible boards)
Arduino.h, Discussion, Solution, Discussion
ArduinoJoystick library, See Also
Ardumoto motor shield (SparkFun), Discussion, Discussion, See Also
ArduTouch synthesizer kit, See Also
ARDX starter kit of electronic components (Seeed Studio), Electronic
Components
arguments (see parameters)
array of LEDs

LED matrix control, Problem, Problem, Problem
shift register to control, Problem

arrays

C language, Discussion
character string description, Choosing between Arduino Strings and C
character arrays
character string manipulation, Discussion, Discussion, Problem-Solution
character strings compared, Discussion, Problem
definition, Discussion
initializing, Discussion
program memory to store data, Problem
size of, Discussion, Discussion, Choosing between Arduino Strings and
C character arrays
in sketches, Problem-See Also
toCharArray function, Discussion

ASCII characters
about, ASCII and Extended Character Sets
casting int to char, Discussion
control codes, ASCII and Extended Character Sets
decimal and hex values of, ASCII and Extended Character Sets
extended characters, ASCII and Extended Character Sets
Serial Monitor displaying, ASCII and Extended Character Sets

assignment (=) operator, Discussion
AT (attention), Solution
ATmega 1280/2560 boards

analog and digital pin assignments, Digital and Analog Pins
as Arduino Mega, Digital and Analog Pins

(see also Arduino Mega)

datasheet, Digital and Analog Pins
timer modes and pins used, Digital and Analog Pins

ATmega 168/328 boards

analog and digital pin assignments, Digital and Analog Pins
datasheet, Digital and Analog Pins
timer modes and pins used, Digital and Analog Pins

ATmega328 boards
analog and digital pin assignments, Digital and Analog Pins
as Arduino Uno, Arduino Hardware

(see also Arduino Uno)

datasheet, Digital and Analog Pins
timer modes and pins used, Digital and Analog Pins

Atmel ECCX08 cryptographic chips, Discussion
atoi function, Discussion
atol function, Discussion
attribution for code in book, Using Code Examples
audio input

amplitude, Discussion
analogRead sampling rate, Discussion
DC offset, Discussion
sound detection, Problem
sound volume meter, Discussion

audio output
about, Introduction
audio file playback, Introduction, Introduction
audio shields, Introduction, See Also, See Also
beat of same frequency, Discussion
digital-to-analog converter, Discussion, Introduction, Introduction,
Solution
granular synthesis, Discussion, See Also
headphone use, Introduction

MIDI control, Problem
music project websites, Introduction
photoresistor connected to speaker, Discussion
playing simple melody, Problem
Pulse-Code Modulation, See Also
speaker connection, Introduction
synthesizer kit ArduTouch, See Also
synthesizer library Mozzi, Problem
synthesizer project, Problem
synthesizer shield, See Also
three tones or more, Discussion
tone production, Problem
tone production with switch, Solution
tones without PWM interference, Problem
tones without timer, Problem
two tone generation, Problem
volume control, Introduction

Audio-Sound Breakout (SparkFun), Introduction
AudioZero library, Introduction
Auduino audio synthesizer sketch, Solution

resources, See Also

avr-objdump disassembler tool, Discussion
Avrdude as Arduino upload utility, Discussion
AVRfreaks controller chip resource, See Also

B

backlight for LCDs, Solution, Solution
bar graph

LCD, Problem
LED, Problem, Discussion
LED via port expander board, Solution

Bare Bones Board (Modern Device), Arduino Hardware, Serial Hardware
barometric pressure sensing, Solution
batteries

as Arduino power supply, Solution
current drain and battery life, Discussion, Connecting and Using External
Power Supplies and Batteries
disconnect before changing circuit, Tips on Troubleshooting Hardware
Problems
low voltage indicator, Problem, Problem
reducing drain by sleeping, Problem
servo external power supply, Discussion, Solution
specifications, Connecting and Using External Power Supplies and
Batteries
very low power operation resource, See Also
voltage as percentage, Discussion

battery eliminator circuit (BEC), Discussion
baud rate, Introduction, Discussion, Discussion
beat of same frequency, Discussion
begin function

active “soft” serial port, Receiving data from multiple SoftwareSerial
ports
baud rate, Introduction, Discussion, Discussion
setup function containing, Discussion

beginner kits of electronic components, Electronic Components
beginner project, Problem-Discussion

(see also Blink sketch)

beginning with IDE, Problem-See Also
installing, Problem-See Also

binary data from Arduino, Problem-Discussion
binary format of serial communication

about, Message Protocols
data from Arduino, Problem, Discussion
UDP messages for sensor data, Discussion

binary representation of numbers, Solution
binary-and mask (&=) operator, Solution
binary-or mask (|=) operator, Solution
bipolar stepper motors

about, Stepper Motors
EasyDriver control, Problem
H-Bridge control of, Problem

bit function, Solution
bit-banging for USB, Arduino Hardware
bit-shift left (<<) operator, Solution
bit-shift right (>>) operator, Solution
bitClear function, Solution

Morse code via, Solution

bitmap images read from SD card, Solution
bitRead function, Solution
bitSet function, Solution

Morse code via, Solution

bitwise operators
about, Discussion
bitwise And (&), Solution, Discussion

bitwise Exclusive Or (^), Solution
bitwise negation (~), Solution, Discussion
bitwise Or (|), Solution
resources, See Also

bitWrite function, Solution
Black Magic Design equipment remote control URL, See Also
Blink sketch

disassembler tool avr-objdump, Discussion
function parameter, Solution
library created from, Solution
loading into IDE, Solution
long blink, Solution
photoresistor project, Problem
preinstalled on boards, Arduino Software and Sketches, Solution,
Discussion, Solution
sketch structure, Solution
uploading and running, Problem

Bluetooth
about, Introduction
communicating with, Problem
modules, Solution, See Also
pairing IDs, Discussion
PuTTY terminal program, Discussion
range, Discussion
resources, See Also

Bluetooth Low Energy (BLE)
Arduino boards, Solution
ArduinoBLE library, Solution

communicating with, Problem
ESP32 board, See Also

Boards Manager
about, Discussion
adding boards to boards menu, Problem
third-party board support files, Solution, Discussion
Zero class boards, Solution

boards menu, adding boards to, Problem
bool data type, Solution, Solution, Discussion
bootloader

about, Discussion
Optiboot upgrade to, See Also
program memory use, Introduction, Problem
programmer instead, Problem
replacing code, Problem
restoring code, Discussion, See Also
uploading, Introduction, Problem, Discussion, Discussion

Bray Terminal program, Discussion
breadboards

about, Introduction, Using a Breadboard
how to use, Using a Breadboard
motor shield heat sink, Discussion
prototyping circuits, Using a Breadboard
rails, Using a Breadboard
schematic diagrams and, Using Schematic Diagrams and Datasheets

break
loops, Discussion, Problem
switch branching, Discussion

breakout boards
7-segment display, Solution
multiple servos or LEDs, Solution

Bridge library, Solution
brightness of LEDs, Problem, Discussion, Solution, Problem, Solution
brokers for IoT data exchange, Solution

public brokers, Solution
publishing data to, Problem
subscribing to data, Problem

browser (see web browser)
brushed motors

about, Brushed and Brushless Motors
controlling via transistor, Problem
direction and speed, Problem, Problem
direction control, Problem
sensor control of, Problem
torque, Brushed and Brushless Motors
two motor direction and speed, Solution
two motor direction control, Discussion

brushless motors
speed control, Problem
torque, Brushed and Brushless Motors

build process
Arduino reference, See Also
compiling, Problem
disassembler tool avr-objdump, Discussion
preprocessor commands, Preprocessor
tools location, Discussion

buttons (see switches)
byte data type

definition, Solution, Solution
formatted output of, Discussion, Discussion, Discussion

byte, high or low extracted, Problem

C

C/C++ programming
Arduino coding style, Discussion
arrays, Discussion
character arrays, Choosing between Arduino Strings and C character
arrays, Problem
const versus #define, Discussion
convert number to string, Discussion
convert string to number, Problem-Discussion, Discussion
formatted output, Discussion
functions versus methods, Solution
library created using a class, Discussion
main function, Discussion
pointers discouraged, Discussion, Discussion
preprocessors, See Also
resources for, What Was Left Out, See Also, Discussion
string function resources, See Also, See Also
strings split at commas, Discussion
structures, Solution, Discussion
Unix time, Discussion

calibration
magnetometer, Solution

sensors, Discussion

callback functions, Solution
camera remote control, Problem, Problem

Canon Hack Development Kit, See Also
pan and tilt, Problem
voltage warning, Discussion

Canon Hack Development Kit, See Also
capacitors

about, Capacitor
bipolar stepper motor, Discussion
brushed motor and H-Bridge, Solution, Solution
brushed motor and transistor, Solution
brushed motors and photoresistor, Solution
decoupling capacitors, Discussion, Discussion, Using Capacitors for
Decoupling
not polarized, Using Schematic Diagrams and Datasheets
schematic diagrams, Solution
speaker connection, Introduction
vibration motor connection, Solution

capitalization importance, Code That Won’t Compile
carriage return, Introduction, Discussion

ASCII code, ASCII and Extended Character Sets

carriers, Arduino Hardware
cases of switch branching, Solution
casting

floating point to int, Discussion
int to char, Discussion

cathode of LED, LED specifications, Discussion

common cathode, Solution, Solution, Discussion

ceil function, Solution
Celsius (Centigrade) temperature display, Solution
char data type

definition, Solution, Solution
formatted output of, Discussion, Discussion
int casted to, Discussion

character strings in arrays
about, Discussion, Discussion
comparing, Discussion, Problem
manipulating, Problem-Solution
resources, See Also
String data type versus, Choosing between Arduino Strings and C
character arrays
toCharArray function, Discussion

charAt function, Discussion
Charlieplexing LEDs

about, Multiplexing, Discussion
matrix control, Problem

chasing lights LED sequence, Problem
Chrome App, See Also
circuit diagrams, Using Schematic Diagrams and Datasheets

(see also schematic diagrams)

Circuit Playground library (Adafruit), Solution
CircuitPython, Arduino Hardware, Arduino Hardware
clock in computer (see system clock)
clock project, Problem

clock set via computer clock, Discussion

clock set via serial port, Discussion
Network Time Protocol, Discussion, See Also
potentiometer to adjust time, Discussion
time formats, Discussion
time from internet time server, Problem
Unix time, Discussion, See Also

clock, real-time (see real-time clock)
code blocks, Discussion
code used in book

about, Code Style (About the Code), Solution
attribution for, Using Code Examples
download URL, Arduino Platform Release Notes
permission to use, Using Code Examples
questions or problems, Using Code Examples, How to Contact Us
troubleshooting, Arduino Platform Release Notes

Codebender for Chrome, See Also
color graphical displays

about, Solution
color LCD control, Problem
hardware versus software SPI, SPI
libraries, Discussion

comma-separated values (CSV)
data from Arduino, Solution
data from Arduino into file, Discussion
data to Arduino, Solution

common anode, Solution, Solution, Discussion
common cathode, Solution, Solution, Discussion
common ground, Discussion, Discussion

I2C devices, I2C, Discussion

communication protocols for serial communication, Message Protocols
compareTo function, Discussion
compass project, Problem

servo following, Discussion

compiling
activity display, Solution
AVR-GCC as IDE compiler, Discussion
beginning with IDE, Problem-See Also
build process, Problem, See Also
compiled code doesn’t run right, Code That Compiles but Does Not
Work as Expected
conditional statements controlling, Problem
constants, defining values as, Discussion
definition, Solution, Solution
disassembler tool avr-objdump, Discussion
error: sketch too big, Discussion, Introduction
errors in code, Discussion, Code That Won’t Compile
errors in older libraries, Discussion
failing to compile, Code That Won’t Compile
how to in IDE, Solution
libraries, older mixed with newer, Discussion
libraries, older third-party, Discussion
library functions, Discussion
object files, Discussion
#pragma message to compiler, Discussion
preprocessor commands, Preprocessor, Discussion, See Also
TEMP directory, Discussion

troubleshooting compile failure, Code That Won’t Compile
uploading compiled sketch, Problem
verifying sections of code, Code That Won’t Compile
volatile variables, Discussion
warning messages, Discussion

compound operators, Problem
concat function, Solution, Discussion
conditional branches, Problem

compile preprocessor commands, Problem

conditional define, Discussion
configuration

Boards Manager updates, Discussion
compiler activity display, Solution
compiler warning level, Discussion

constant current source
high-power LEDs, Discussion
resource, See Also

constants
build process, Discussion
capitalization importance, Code That Won’t Compile
converting between degrees and radians, Discussion
global “variables” as, Discussion
HIGH and LOW, Discussion, Discussion
LED_BUILTIN, Introduction, Introduction, Solution
library modification, Solution, Discussion, Discussion
pin logical names, Introduction
program memory holding, Introduction
RAM minimized via, Problem

RAM use by, Discussion
resource, See Also
true and false, Discussion, Discussion

constrain function
about, Solution
Blink photoresistor project, Discussion
LEDs, Discussion
map function bounds via, Discussion

continuous rotation servos
about, Servos
rotation precision of, Discussion
speed control, Problem
two servos controlled, Solution

control codes, ASCII, ASCII and Extended Character Sets
controller chip hardware (see interrupts; registers; timers)
conventions used in book, Conventions Used in This Book
CoolTerm terminal program, Discussion
Coordinated Universal Time (UTC), Discussion
cos function, Solution
countdown timer of switch press, Problem
Cousot, Stephane, Solution
CP2104 Friend TTL to USB adapter (Adafruit), Serial Hardware
createWriter function, Discussion
cryptographic functions, Discussion
curly brackets ({ })

body of function, Discussion
code blocks, Discussion
loops, Solution

current
AC external power supply, Connecting and Using External Power
Supplies and Batteries
Arduino boards, LED specifications, Maximum pin current
battery life and current drain, Discussion, Connecting and Using External
Power Supplies and Batteries
battery specifications, Connecting and Using External Power Supplies
and Batteries
constant current source, Discussion, See Also
datasheet information, How to Read a Datasheet
high current with parallel pins, How to exceed 40 mA on an ATmega
chip
high-current LEDs, Solution, Discussion, Solution
high-current output drivers, Discussion
LED power draw, Maximum pin current
polyfuse for excessive current, Tips on Troubleshooting Hardware
Problems
regulated versus unregulated power supplies, Connecting and Using
External Power Supplies and Batteries
resistance formula, Discussion
resistors for LEDs, Discussion
source versus sink, Discussion
stepper motors, Discussion
transistor explanation, Discussion, Transistor

(see also transistors)

transistor selection, Discussion, Choosing and Using Transistors for
Switching
USB connection, Connecting and Using External Power Supplies and
Batteries

cursor blink on LCDs, Problem
CuteCom terminal program, Discussion

D

DAC (see digital-to-analog converter)
data types

32-bit boards, Solution, Discussion
8-bit boards, Solution, Discussion

datasheets
about, How to Read a Datasheet
Arduino controller chips, Digital and Analog Pins
how to read, How to Read a Datasheet
LEDs, LED specifications
register names, Registers
resources on, How This Book Is Organized, Introduction
sensor output information, Introduction
transistors, Choosing and Using Transistors for Switching

date and time as filename, Solution, Discussion
DateFormat function, Discussion
DC offset of audio signal, Discussion
debouncing switches, Problem

Arduino example sketch, See Also
switchTime function for, Discussion

debugging
Arduino forum, Arduino Platform Release Notes, Introduction, Still
Stuck?
capitalization importance, Code That Won’t Compile
compile conditional statements, Problem

compile failure, Code That Won’t Compile
compiled code doesn’t run right, Code That Compiles but Does Not
Work as Expected
compiling small sections of code, Code That Won’t Compile
constants clarifying code, Discussion
GPS logging, Discussion
library created using C++ class, Discussion
Processing console sensor value display, Discussion
serial communications for, Introduction, Code That Compiles but Does
Not Work as Expected
Serial Monitor for, Code That Compiles but Does Not Work as Expected
troubleshooting hardware-software interplay, Code That Compiles but
Does Not Work as Expected

declination for magnetometer, Discussion
decoupling capacitors, Discussion, Discussion, Using Capacitors for
Decoupling
decrement (--) operator, Discussion

post- versus pre-decrement, Discussion

decrementing values, Problem
default label in switch branching, Discussion
degrees converted to radians, Discussion
delay function

Alarm.delay function for TimeAlarms, Discussion
Arduino reference, See Also
delayMicroseconds function, Discussion
interrupts affecting, Discussion
pausing sketch, Solution
range of, Discussion

timer alternative, Discussion

delayMicroseconds function, Discussion
DHCP (Dynamic Host Configuration Protocol) service

about, Introduction, Discussion
lease, Discussion, Solution
obtaining IP address automatically, Problem
WiFi, using built-in, Discussion

Digi International XBee radio modules
about, Problem
actuator activation, Problem
addresses, Discussion
analog-to-digital converter, Discussion, Configuration
Bluetooth module, See Also
communicating with, Problem
communicating with a specific XBee, Problem
configuration, Discussion, XBee configuration, Configuration
connecting to computer, Discussion
firmware updater, XBee configuration
level-shifting circuit, Discussion
sensor data between modules, Problem
troubleshooting, Problem
voltage regulator, Solution, Discussion
X-CTU application, XBee configuration, Configuration, Series 2 and
Series 3 XBees
“soft” serial connection, Receiving data from multiple SoftwareSerial
ports

digit display, 7-segment, Problem, Problem
digital camera remote control, Problem

Canon Hack Development Kit, See Also
pan and tilt, Problem
voltage warning, Discussion

Digital Loggers IoT Power Relay, Discussion
digital pins

3.3 volt boards, Arduino Hardware, Arduino Hardware, Discussion,
Solution, Discussion
analog pins as, Introduction
Arduino board pin assignments, Digital and Analog Pins
Arduino Mega, Digital and Analog Pins
Arduino Uno, Introduction, Digital and Analog Pins
constants for logical names, Introduction
current increase with parallel pins, How to exceed 40 mA on an ATmega
chip
data from Arduino, Problem
floating values, Introduction, Discussion
interrupts for state changes, Problem
LED connection, Introduction
port expander boards, Solution
Raspberry Pi connection, Solution
registers for clearing and setting, Solution
Serial1 object pins, Discussion
setting to input, Introduction
setting to output, Digital Output
setting to write versus read, Discussion
software emulation of serial port, Solution, Discussion, Solution,
Discussion
switch closing, Problem

troubleshooting, Tips on Troubleshooting Hardware Problems
tutorial, See Also
voltage, Introduction, Introduction
web browser controlling, Problem
XBees activating, Problem
XBees sharing data, Problem

digital-to-analog converter (DAC)
audio output from, Introduction, Introduction
audio synthesizer, Solution
AudioZero library, Introduction
Zero-class boards, Discussion

digitalRead function
about, Introduction, Introduction
Arduino reference, See Also
INPUT_PULLUP mode, Solution
pinMode setting, Discussion
pull-up resistors, Discussion
switch closing, Solution

digitalWrite function
about, Introduction, Digital Output
Arduino reference, See Also
high current with parallel pins, How to exceed 40 mA on an ATmega
chip
pinMode setting, Discussion
registers faster than, Solution

diodes
about, Diode
LEDs as, LED specifications, LED

polarized, Using Schematic Diagrams and Datasheets
snubber diodes, Discussion, Using Snubber Diodes with Inductive Loads
transistor protection by, Discussion, Discussion

direct current (DC) motors (see motors)
disassembler tool avr-objdump, Discussion
displays (see graphical displays; LCDs (liquid crystal displays))
distance measurement, Problem

precise, Problem
pulse width sensors for, Introduction
resources, See Also
sensor for audio synthesizer, Discussion
time of flight distance sensors, Solution

division (/) operator, Solution
bit-shifting instead, Discussion
remainder in integer division, Discussion, Problem

division (/=) compound operator, Solution
DNS (Domain Name System) service

about, Introduction, Discussion
IP address of, Solution, Discussion

do...while loop, Discussion
breaking out of, Discussion

Domain Name System (see DNS)
door knock sensor, Problem
double data type

32-bit boards, Solution, Discussion
definition, Solution, Solution
formatted output of, Discussion

DS1307 and DS1337 RTC chips, Problem

DS1307 Real Time Clock (Adafruit), See Also
DS1307RTC.h library, Solution
DS18B20 waterproof temperature sensor, Discussion

datasheet, See Also

duration (see timers)
duty cycle of LED, Discussion
Dynamic Host Configuration Protocol (see DHCP)
dynamic memory allocation of String data type, Choosing between Arduino
Strings and C character arrays, Discussion

E

EasyDriver control of bipolar stepper motor, Problem
Eclipse IoT public broker, Solution

publishing data to, Problem

EEPROM Arduino memory
about, Introduction, Introduction, Discussion
address to read or write, Discussion, Discussion
storing data in, Problem

EEPROM I2C external memory
24LC128 datasheet, See Also
cross-reference of devices, See Also
EEPROM library, Solution
reading from and writing to, Problem
shield for temperature display, See Also
write protection, Discussion

EEPROM library, Solution, Solution
Electret Microphone (SparkFun), Solution
electromagnetic relay control, Discussion

electronic component starter kits, Electronic Components
electronic speed controller (ESC)

about, Brushed and Brushless Motors
brushless motor speed control, Solution
center pin power not connected, Discussion, Discussion

electronics theory resources, What Was Left Out, Introduction, See Also
elements of arrays, Discussion

initializing, Discussion

embedded applications, Arduino Hardware
encoder (see rotary encoder)
endsWith function, Discussion
Epoch time, Discussion, See Also
equal to (==) operator

numeric values, Solution, Discussion
strings, Discussion

equals function (strings), Discussion
equalsIgnoreCase function, Discussion
errata, Arduino Platform Release Notes
error messages

compile errors, Discussion
compiling older libraries, Discussion
semicolon missing, Code That Won’t Compile
sketch too big, Discussion, Introduction
troubleshooting compile failure, Code That Won’t Compile
uploading, Discussion

ESC (see electronic speed controller)
Escape key terminating sketch, Discussion
ESP-01 WiFi board (Espressif Systems), Solution

ESP32 board, See Also
ESP8266 board for WiFi

about, Solution, Discussion
article on connecting, See Also
HTML from web server, Problem
International Space Station position, Solution
MQTT broker, publishing data to, Solution
MQTT broker, subscribing to, Problem
serving web pages, Problem, Problem, Problem
Twitter messages, Problem
web browser controlling pins, Problem
web browser controlling pins via forms, Problem
web browser for sensor values, Solution, Problem

ESP8266 Thing Dev Board (SparkFun), Solution, Discussion
Esplora library, Solution
Espressif Systems

ESP-01 WiFi board, Solution
ESP32 module, Solution
ESP8266 modules, Solution, Discussion
URL, Discussion

Ethernet FeatherWing (Adafruit), Problem
Ethernet library

about, Solution
Arduino reference, See Also
International Space Station position, Solution
IP address information, Discussion
JPEG images not supported, Discussion
local IP address, Problem

parseInt and parseFloat, Discussion
requesting information from Internet Archive, Solution

Ethernet networking
about, Introduction
DHCP with, Discussion
HTML from web server, Problem
MAC addresses, Introduction, Discussion
MQTT broker, publishing data to, Solution
MQTT broker, subscribing to, Problem
requesting information from Internet Archive, Solution
resources, Introduction
serving web pages, Problem, Problem, Problem
simple messages sent and received, Problem
SPI protocol for hardware, Discussion
time from time server, Problem
Twitter messages, Problem
UDP messages, Solution, Discussion
web browser controlling pins, Problem
web browser controlling pins via forms, Problem
web browser for sensor values, Solution, Problem
WiFi versus, Introduction

even or odd via modulus operator, Discussion
Example sketches in IDE, Discussion, Solution

attribution for code in book, Using Code Examples
Example sketch created, Discussion

Exclusive Or bitwise operator (^), Solution
external power supplies

AC power supply, Connecting and Using External Power Supplies and
Batteries
Arduino boards covered, Connecting and Using External Power Supplies
and Batteries
batteries as, Solution
connecting, Connecting and Using External Power Supplies and Batteries
decoupling capacitors, Discussion, Discussion
disconnect before changing circuit, Tips on Troubleshooting Hardware
Problems
grounding, Discussion, Stepper Motors
regulated versus unregulated, Connecting and Using External Power
Supplies and Batteries

F

Fahrenheit temperature display, Solution
false value, Solution, Solution
Faludi, Robert, Problem
Fast LED library, Discussion
Feather HUZZAH with ESP8266 (Adafruit), Solution, Discussion
file extension of sketches, Discussion, Discussion
file written with data, Discussion

file written with data, Problem

find function, Discussion
findUntil function, Discussion
Firmata library, See Also, Solution
fixed IP address (see static IP address)
flags

definition, Discussion
interrupt handlers setting, Interrupts

using bits for, Problem-Discussion

flash memory (see program memory)
floating point numbers

data type representing, Solution, Solution
formatted output of, Discussion
integers simulating, Discussion, Solution
math operations, Discussion
powers of numbers, Discussion
printing to serial port, Solution
rounding to integers, Problem
serial parseFloat, Discussion
in sketches, Problem
toFloat string function, Discussion
truncating to integer, Discussion

floor function, Solution
flush function, Arduino Serial Notes
Fluxamasynth Shield (Modern Device), See Also
footer of serial communication, Message Protocols
for loop, Problem

breaking out of, Problem

form factor, Arduino Hardware, Arduino Hardware
forms on web pages, Problem
forward voltage, LED specifications
FreqCount library, See Also
frequency in hertz, Introduction

beat of same frequency, Discussion

FrequencyTimer2 interrupt library, Discussion

Fritzing tool for drawing circuits, Using Schematic Diagrams and
Datasheets
FTDI

chip for USB, Arduino Hardware, Solution, Solution, Solution
USB TTL Adapter, Serial Hardware

functions
alarm to call, Problem
body of, Discussion
callback functions, Discussion
calling, Discussion, Code That Won’t Compile
declaring, Solution, Solution
function overloading, Solution
library functions, Discussion, Discussion
methods versus, Solution
names meaningful, Discussion
parameters, Solution, Code That Won’t Compile
passing references to variables, Solution
recursive, Discussion
resources, See Also
return type, Solution, Discussion
returning more than one value, Problem
serial communication, Arduino Serial Notes
sketch organization, Solution
stack memory, Discussion
switches assigned to, Discussion
timer to call, Discussion

G

Gammon, Nick, Introduction
gateway

about, Discussion
IP address, Introduction, Solution, Discussion
IP address blocked, Introduction

gesture sensing, Solution
accelerometers and, Discussion

getBytes function, Discussion
Getting Started with Arduino kit of electronic components, Electronic
Components
GFX library (Adafruit), Discussion, Discussion
Git version control system, Discussion
global variables

constant declaration, Discussion
definition, Solution
as function return values, Solution
interrupt handlers setting flags, Interrupts
RAM storage of, Discussion
static variables contrasted, Discussion
switch state storage, Discussion

glyphs for LCDs, Problem, Problem, Problem
GND as ground, Solution

(see also ground)

GNU screen terminal program, Discussion
GoPro camera via WiFi, See Also
GPS

creative applications, See Also
data loggers, See Also

listener devices, Solution
location determination, Problem
modules, See Also
NMEA sentences, Solution, Discussion
RS-232 voltage levels, Discussion
serial connection, Problem, Discussion
TinyGPS logging, Discussion
TinyGPS++ library, Solution
valid locations, Discussion

graphical displays
about, Introduction, See Also
color LCD control, Problem
color LCD SPI, SPI
color libraries, Discussion
color versus monochrome, Solution
LCD versus OLED, Solution
monochrome libraries, Discussion
monochrome OLED control, Problem
selecting, Problem

gravity on accelerometer, Discussion, Discussion
Wii nunchuck, Problem

greater than (>) operator, Solution, Discussion
greater than or equal to (>=) operator, Solution
Greiman, Bill, Discussion
ground

common ground, Discussion, Discussion
common ground for I2C, I2C, Discussion
defined as 0 volts, Solution

external power supply, Discussion, Stepper Motors
more than one pin, Solution
shorting to ground, Discussion

Grove NFC module (Seeed Studio), Discussion
GSM library, Solution
gyroscopes

about, Solution
accelerometer packaged with, Solution
Nano 33 BLE Sense, Solution, Solution
resources, See Also
rotation detection, Problem
servo rotation control, Discussion

H

H-Bridge
bipolar stepper motor, Problem
brushed motor direction, Solution
brushed motor direction and speed, Problem
brushed motors, two connected, Discussion
logic table, Discussion
shields, Discussion

Hagman, Brett, Solution
HalloWing (Adafruit), Solution
handlers, Discussion
hardware interrupts (see interrupts)
hardware troubleshooting, Code That Compiles but Does Not Work as
Expected, Tips on Troubleshooting Hardware Problems
Hart, Mikal, Solution

HC-SR04 ultrasonic sensor, Discussion
header files

in compile, Discussion
in library, Discussion
location of, Discussion

header of serial communication, Message Protocols, Discussion, Discussion
heap memory, Discussion
heartbeat animation, Solution
heat detection sensor, Solution
hertz for frequency, Introduction
HID library, Solution

USB device emulation reference, See Also

HIGH value
bool data type instead, Discussion
digitalRead function, Introduction
digitalWrite function, Introduction

highByte function, Solution
Hitachi HD44780 chip for LCDs, Introduction, Problem, See Also, See
Also
HT16K33 LED controller driver, Solution, Discussion

datasheet, See Also

HTML (Hypertext Markup Language)
about, Introduction
forms on web pages, Problem
resources, See Also
serving large amounts of data, Problem
web server response in, Problem

HTTP (Hypertext Transfer Protocol)

about, Introduction
protocols (1.0 versus 1.1), Discussion

humidity sensing, Solution

I

I2C protocol
3.3-volt devices, Using 3.3-Volt Devices with 5-Volt Boards
7-segment display, Solution
about, Introduction, Introduction, Introduction
addresses, I2C
Arduino board pin assignments, Digital and Analog Pins
background detail, I2C
common ground, I2C, Discussion
communicating between Arduino boards, Problem
EEPROM external memory, Problem
gyroscope/accelerometer package, Solution
master device, I2C
multiple I2C devices, Problem
pin connections, I2C
PN532 NFC readers, Discussion
port expander boards, Solution
pull-up resistors, Introduction, Discussion
real-time clock boards, Solution
slave Arduino boards, Problem
slave devices, I2C, I2C
SPI versus, Introduction, See Also
u8g2 graphical display library, Discussion
voltage logic-level translator, Using 3.3-Volt Devices with 5-Volt Boards

Wii nunchuck accelerometer, Problem
Wire library, I2C, See Also, Discussion, Discussion

I2S (Inter-IC Sound) interface, Introduction
IDE (see integrated development environment)
if branching, Problem

compile preprocessor commands, Problem

ImageReader library (Adafruit), Discussion
images in MIME encoding, Discussion
In-Circuit Serial Programming (ICSP) connector, Solution
in-system programmer (ISP), Solution

converting Arduino into, See Also

#include for strings, Solution
increment (++) operator, Discussion

post- versus pre-increment, Discussion

incrementing values, Problem
indexOf function, Discussion, Discussion
inductive loads and snubber diodes, Using Snubber Diodes with Inductive
Loads
inertial measurement unit (IMU)

MPU-9250 unit, Solution, Solution
Nano 33 BLE Sense, Solution

infrared (IR) remote control
about, Introduction
AC device control, Solution
camera shutter control, Problem
decoding remote signals, Problem
IR receiver modules, Solution
IRremote library, Introduction, See Also

pulse width measurement, Solution
responding to, Problem
Robot IR Remote, Solution
TV-B-Gone application, See Also

init function, Discussion
initVariant function, Discussion
Input Capture of timers, Discussion
INPUT mode and pull-down resistors, Solution
input pins

3.3 volt boards, Arduino Hardware, Arduino Hardware, Discussion,
Solution
port expander boards, Solution

inputs to functions, Solution
INPUT_PULLUP mode, Solution, Discussion

in project, Solution

int (integer) data type
absolute value, Discussion
bit count, Discussion, Discussion
casting to char, Discussion
comparing values, Solution
definition, Solution, Solution
floating-point simulation, Discussion, Solution
formatted output of, Discussion, Discussion
forming from high and low bytes, Problem, Discussion
high or low byte extraction, Problem
long values assigned to, Discussion, Discussion
math operators, Solution
powers of numbers, Discussion

remainder in division, Discussion, Problem
rounding floating point to, Problem
serial parseInt, Discussion, Discussion
toInt string function, Discussion
truncating floating point to, Discussion

integrated circuit packages
about, Integrated Circuit
I2C EEPROM, Problem
polarized, Using Schematic Diagrams and Datasheets
static electricity sensitivity, Integrated Circuit

integrated development environment (IDE)
#pragma message in compile, Discussion
about, Arduino Software and Sketches
adding boards to boards menu, Problem
Arduino Pro IDE, See Also
AVR-GCC as IDE compiler, Discussion
baud rate, Introduction
beginning work with sketches, Problem-See Also
build process, Problem
Codebender for Chrome, See Also
download URL, Solution
Example sketch created, Discussion
Example sketches, Discussion, Solution
installing, Problem-See Also
as Java-based, Solution
libraries list, Solution, Solution, Discussion
libraries, adding third-party, Problem
loading sketches, Solution

macro expressions, Discussion
overwriting example code, Discussion
Preferences for Boards Manager updates, Discussion
Preferences for compiler activity, Solution
Preferences for compiler warning level, Discussion
Raspberry Pi running, Solution
Serial Monitor, Solution, Introduction

(see also Serial Monitor)

syntax highlighting in libraries, Discussion
troubleshooting installation, Discussion
uploading compiled sketch, Problem

International Space Station position project, Solution
internet access

about, Introduction
automating web server requests, Introduction
client-agnostic server response parsing, Solution
data in XML format, Problem
DNS service, Introduction

(see also DNS)

HTTP, Introduction
information from router configuration, Solution, Discussion
Internet of Things data exchange, Problem
IP addresses, Introduction
key concepts, Introduction
MQTT broker, publishing data to, Problem
MQTT broker, subscribing to, Problem
requesting information from Internet Archive, Solution, Problem
serving web pages, Problem, Problem, Problem

simple messages sent and received, Problem
SSL server connection, Solution
time from time server, Problem
Twitter messages, Problem
Web APIs for, Introduction
web browser controlling pins, Problem
web browser controlling pins via forms, Problem
web browser reading pins, Problem, Problem
WiFi built into boards, using, Problem

Internet Archive
API, Discussion
IP address, Introduction
requesting information from, Solution, Problem

Internet of Things (IoT) projects
ESP8266 WiFi modules with USB, Discussion
exchanging data, Problem
Message Queue Telemetry Transport protocol, Solution
MQTT broker, publishing data to, Problem
MQTT broker, subscribing to, Problem

Internet Protocol (see IP)
interrupts

32-bit boards, Discussion
about, Introduction, Interrupts
Arduino board pin assignments, Digital and Analog Pins
Arduino reference, Discussion
delay affected by, Discussion
FrequencyTimer2 library, Discussion
interrupt handlers brief, Interrupts

LED refreshes, Discussion
pin state changes, Problem
polling, Interrupts
resource, See Also
rotary encoder, Problem
sound generation code, Discussion
Uno WiFi Rev 2 board, Discussion
volatile variables, Discussion

IoT (see Internet of Things)
IoT Power Relay (Digital Loggers), Discussion
IP (Internet Protocol), Introduction

(see also IP addresses; TCP/IP protocol)

IP addresses
about, Introduction, Discussion
blocking, Introduction
DHCP service, Introduction, Problem
DNS service, Introduction, Discussion
local IP addresses, Introduction, Problem
obtaining automatically, Problem
static IP address, Solution, Discussion

IR (see infrared (IR) remote control)
IRremote library, Introduction, See Also
ISM (Industrial, Scientific, and Medical) RF spectrum band, Solution
ISP (see in-system programmer)
itoa function, Discussion
Itsy Bitsy M4 Express (Adafruit)

serial port behavior, Serial Hardware Behavior
serial port pins used, Serial Hardware

J

Jaggars, Jesse, See Also
Jameco

breadboard, Introduction
LED matrix, Solution, Solution
multimeter, Introduction

JSON (JavaScript Object Notation) output, Discussion
International Space Station web service, Discussion

K

Keyboard library, Solution
HID library required, Solution
USB keyboard emulation reference, See Also

keyboard shortcuts
compiling, Solution
Sketch Editor window, Solution

Keypad library, Discussion
keypad project, Problem

about keypads, Keypad

keywords.txt for library syntax highlighting, Discussion
Knight, Peter, Solution
knock sensor, Problem

L

laser for time of flight distance sensors, Solution
lastIndexOf function, Discussion, Discussion
LCDs (liquid crystal displays)

about, Introduction

Arduino LCD Playground URL, See Also
Arduino LiquidCrystal reference, See Also
Arduino LiquidCrystal tutorial, See Also
as serial output device, Introduction
ASCII character set display, ASCII and Extended Character Sets
backlight, Solution, Solution
binary data display, Discussion
blinking display, Problem
color LCD control, Problem
color LCD SPI, SPI
contrast via potentiometer, Solution, Discussion
cursor blink, Problem
custom characters, Problem, Problem, Problem
data from Arduino to multiple serial devices, Problem
keypad with, Discussion
OLED versus, Solution
as serial output device, Discussion, Problem
symbol display, Problem
symbols larger than single character, Problem
symbols smaller than single character, Problem
text displays, Problem
text formatting, Problem
text scrolling, Problem

lease from DHCP server, Discussion, Solution
LEDs

7-segment display, Problem
7-segment display, multidigit, Problem, Problem, Solution
8×8 array, Problem

about, LED specifications, LED
as actuators, Arduino Hardware
Blink sketch preinstalled, Arduino Software and Sketches, Solution,
Discussion
Blink sketch with photoresistor, Solution
blinking 3 LEDs, Solution
blinking code example, Solution, Problem-Discussion, Solution, Solution
brightness control, Problem, Discussion, Solution, Problem, Solution
Charlieplexing, Multiplexing, Problem
color control, Problem, Problem
connecting, Problem
constant LED_BUILTIN, Introduction, Introduction, Solution
current, Maximum pin current
datasheets, LED specifications
digital pin connection, Introduction
as diodes, LED specifications, LED
distance measurement, Solution
duty cycle, Discussion
high-power LEDs, Problem, Discussion, Discussion, Solution
I2C device connections, Solution
infrared, Solution
interrupts for refreshes, Discussion
Leonardo upload, Discussion
low voltage indicator, Problem, Problem
matrix control, Problem, Problem, Problem, Problem
MIME encoding of LED images, Solution
mouse movement detection, Solution
multicolor, LED specifications, Problem

multiple LED color control, Problem
multiple LED sequencing, Problem, Problem, Problem
multiple LEDs, Discussion, Discussion
multiple LEDs via port expander board, Solution
multiple LEDs via PWM, Problem
multiplexing, Multiplexing, Problem, Problem, Problem
multiplexing and PWM adjustment, Problem, Discussion
optocouplers, Introduction
power indicator, Solution, Discussion
Raspberry Pi commanding Arduino, Solution
reading analog values, Solution
resistors to limit current, Discussion, Discussion, Discussion
schematic diagrams, Solution
sequencing multiple, Problem, Problem, Problem
switch lighting, Solution, Problem
upload flicker, Solution, Discussion

length function, Solution, Discussion
less than (<) operator, Solution
less than or equal to (<=) operator, Solution
libraries, working with

about, Introduction, Solution
adding third-party, Problem, Discussion
adding to current sketch, Solution, Discussion
Arduino included libraries list, Solution
Arduino libraries reference, Solution
available listed in IDE, Solution, Discussion
available third-party, Discussion
configuration of, Discussion

creating your own, Problem, See Also
creating your own using C++ class, Discussion
downloading third-party, Solution
header file, Discussion
modifying, Problem
preprocessor commands, Preprocessor

(see also library files)

prototypes, Discussion
syntax highlighting, Discussion
updating third-party libraries, Problem

library files
analogReadFast, See Also
Arduino.h, Discussion, Solution
ArduinoJoystick, See Also
AudioZero, Introduction
Bluetooth Low Energy, Solution
Bridge, Solution
Circuit Playground (Adafruit), Solution
DS1307RTC.h, Solution
EEPROM, Solution, Solution
Esplora, Solution
Ethernet (see Ethernet library)
Fast LED, Discussion
Firmata, See Also, Solution
FreqCount, See Also
FrequencyTimer2, Discussion
GFX (Adafruit), Discussion, Discussion
GSM, Solution

HID, Solution
ImageReader (Adafruit), Discussion
IRremote, Introduction, See Also
Keyboard, Solution, Solution, See Also
Keypad, Discussion
LiquidCrystal, See Also, Solution, Discussion
Low Power, See Also
Matrix, Solution
MD_MAX72XX, Solution
MIDIUSB, See Also
Mouse, Solution, Solution, See Also
Mozzi, Solution
MQTT (Adafruit), Discussion
narcoleptic, See Also
preprocessor commands, Preprocessor

(see also libraries, working with)

PubSubClient, Discussion
RadioHead, Solution
Robot Control, Solution
Robot IR Remote, Solution
Robot Motor, Solution
RTC (Adafruit), Discussion
SD, Solution
SdFat, Discussion
Serial (see Serial library)
Servo, Servos, Discussion, Discussion, Solution, Discussion, Timers
SoftwareSerial, Solution, Receiving data from multiple SoftwareSerial
ports, Receiving data from multiple SoftwareSerial ports, Solution

SpacebrewYun, Solution
SPI, Discussion
Sprite, Solution
Stepper, Solution, Discussion
Stream, Discussion, Discussion, Introduction, Problem
Streaming, Discussion
String (see String library)
Tasker, Discussion, Discussion
Temboo, Solution
TFT, Solution
Time, Solution, Discussion, See Also
TimeAlarms, Solution, Discussion
Timer1, See Also, Discussion
Timer3, See Also
TinyGPS++, Solution
touch screens (Adafruit), See Also
Twitter, See Also
u8g2, Discussion, Discussion
UDP, Solution, Solution
uTimerLib, Solution, See Also
WiFiNINA, Solution
Wire (see Wire library)

Library Manager
adding third-party libraries, Problem
modifying a library, Problem
sensor libraries, Introduction
updating IDE library list, Solution

light detection

brushed motor control via, Problem
changes in light levels, Problem
flicker of artificial light, Discussion
multimeter as light meter, Discussion
photoresistors for, Photocell (Photoresistor)

light, controlling output of, Controlling Light
(see also LCDs; LEDs)

light-dependent resistor (LDR) (see photoresistor)
light-emitting diodes (see LEDs)
line feed, Introduction, Discussion, ASCII and Extended Character Sets
Linux

Arduino document folder location, Solution, Solution
Bluetooth serial port, Discussion
command line for Git, Discussion
compiler TEMP directory, Discussion
disassembler tool avr-objdump, Discussion
FTDI drivers, Solution
header file location, Discussion, Discussion
IDE installer, Solution, Solution
online Arduino guides, See Also, See Also
Raspberry Pi, Problem
Raspberry Pi running, Discussion
third-party terminal programs, Discussion
uploading compiled sketch, Solution

liquid crystal displays (see LCDs)
LiquidCrystal library, See Also, Solution, Discussion
listen function, Receiving data from multiple SoftwareSerial ports
listener devices for GPS, Solution

Lite-On LTC-2623 display, Solution
local IP addresses

about, Introduction
obtaining automatically, Problem

logic-level converters
available converters, Using 3.3-Volt Devices with 5-Volt Boards, How to
Read a Datasheet
datasheet, How to Read a Datasheet
I2C devices, Using 3.3-Volt Devices with 5-Volt Boards
XBee modules, Discussion

logical And (&&) operator, Solution, Discussion
logical Or (||) operator, Solution
London weather XML data, Solution
long data type

as 32-bit, Problem
absolute value, Discussion
definition, Solution, Solution
floating-point simulation, Solution
formatted output of, Discussion
forming from high and low bytes, Problem
high or low byte extraction, Discussion
int variable assigned from, Discussion
words from, Discussion, Discussion

loops, Solution, Problem-Discussion
breaking out of, Discussion, Problem

LoRa networking technology, See Also
loudspeaker (see speaker)
Low Power library, See Also

LOW value
bool data type instead, Discussion
digitalRead function, Introduction
digitalWrite function, Introduction

lowByte function, Solution
ltoa function, Discussion

M

MAC (Media Access Control) addresses
detail on octets, Discussion
Ethernet, Introduction, Discussion
WiFi, Introduction, Discussion

Macintosh
Arduino document folder location, Solution, Solution
Bluetooth serial ports, Discussion
command line for Git, Discussion
compiler TEMP directory, Discussion
disassembler tool avr-objdump, Discussion
FTDI drivers, Solution
header file location, Discussion, Discussion
IDE installer, Solution, Solution
online Arduino guides, See Also, See Also
serial port selection, Discussion, Discussion
Sketch Editor window, Solution
third-party terminal programs, Discussion
uploading compiled sketch, Solution

macro expressions, Discussion
magnetometer

calibration, Solution
compass project, Solution
Nano 33 BLE Sense, Solution

main function, Discussion
map function

Arduino reference, See Also
Blink photoresistor project, Discussion
constraining bounds, Discussion
heart animation, Discussion
integer math of, Discussion
LED bar graph, Discussion
nonzero start to range, Discussion
scaling potentiometer range, Solution
sensor readings, Discussion
servo rotation range, Discussion

marquee scrolling LCD text, Problem
math operations

absolute value, Solution
bit setting and reading, Problem-Discussion
bit shifting, Problem
constraining value to range, Problem
floating point numbers, Discussion, Discussion
high and low bytes to int or long, Problem
high or low byte extraction, Problem
incrementing and decrementing, Problem
integers, Solution
math operators, Problem
maximum of values, Solution, Discussion

minimum of values, Solution, Discussion
overflowing variables with large values, Discussion
powers of numbers, Problem
powers of numbers, fractional, Discussion
precedence, Discussion
random number generation, Problem-Discussion
remainder in integer division, Discussion, Problem
rounding floating point to integer, Problem
square root, Problem
trigonometric functions, Problem

Matrix library, Solution
max function, Solution, Discussion
MAX72XX LED matrix, Solution, See Also
MaxBotix EZ1 ultrasonic sensor, Discussion
McCauley, Mike, Solution
MD_MAX72XX LED matrix library, Solution
mechanical relays (see relays)
Media Access Control (see MAC)
memory

about, Introduction
array bounds, Discussion, Choosing between Arduino Strings and C
character arrays, Discussion
character arrays, Choosing between Arduino Strings and C character
arrays
compile report, Solution
dynamic allocation of String data type, Choosing between Arduino
Strings and C character arrays, Discussion
EEPROM library, Introduction

EEPROM, built-in, Introduction, Problem
(see also EEPROM entries)

free memory available, Choosing between Arduino Strings and C
character arrays, Problem
heap, Discussion
library functions in compile, Discussion
library modification, Discussion
memory leak, Choosing between Arduino Strings and C character arrays,
Choosing between Arduino Strings and C character arrays
memory map tool, Discussion
nonvolatile, Introduction
program memory, Discussion, Introduction
program memory storing strings, Problem
program memory to store data, Problem, Introduction, Problem
RAM, Introduction
RAM minimized by constants, Problem
RAM, free and used, Problem
specification resource, See Also
sprintf function, Discussion
SRAM, Arduino Hardware, Discussion
stack, Discussion, Discussion
static allocation of character arrays, Choosing between Arduino Strings
and C character arrays
technical overview resource, See Also
tutorial, See Also
volatile, Introduction

Message Queue Telemetry Transport (MQTT) protocol, Solution
publishing data to broker, Problem

resources, See Also
subscribing to broker data, Problem

methods versus functions, Solution
Metro M0 Express (Adafruit)

about, Arduino Hardware, Discussion
Boards Manager, Solution
pin arrangement, Introduction
pulse width modulation pins, Analog Output
serial port, Serial Hardware
serial port behavior, Serial Hardware Behavior
serial port pins used, Serial Hardware

MetroX Classic Kit of electronic components (Adafruit), Electronic
Components
Microchip

ADC resource, See Also
ATmega328 datasheets, See Also
programmer, See Also
timers resource, See Also

microcontrollers
interrupts, Introduction
register names in datasheets, Registers
registers, Introduction, Registers
replaceable, Introduction
resources, See Also

microphone
amplification of, Discussion, Discussion
Nano 33 BLE Sense, Solution
sound detection, Solution

MicroPython, Arduino Hardware
MIDI control

about MIDI, Discussion
Arduino reference, See Also
five-pin DIN connectors, Discussion
MIDI instrument playing, Problem
MIDI message resource, See Also
MIDI shield (SparkFun), See Also
MIDIUSB library, See Also

MIDIUSB library, See Also
millis function

about, Discussion
Arduino reference, See Also
BlinkWithoutDelay example code, Discussion
switch press timing, Solution

millivolts from analogRead, Discussion
MIME (Multipurpose Internet Mail Extensions) encoding, Discussion

URL of online service, Discussion

min function, Solution, Discussion
Modern Device

Bare Bones Board, Arduino Hardware, Serial Hardware
Fluxamasynth Shield, See Also
USB BUB board, Serial Hardware

modulus (%) operator, Solution
voltage integer plus decimal, Solution

momentary tactile switches, Discussion
monochrome graphical displays

about, Solution

libraries, Discussion
OLED display control, Problem

Morse code broadcast, Solution
moserial terminal program, Discussion
Mosquitto public broker, Solution
motion detection, people or animals, Problem

(see also movement detection)

Motor Shield (Adafruit), Solution, Discussion, See Also
motors

about, Brushed and Brushless Motors, Motor (DC)
brushed control via sensor, Problem
brushed control via transistor, Problem
brushed direction, Problem
brushed direction and speed, Problem, Problem
brushed vs. brushless, Brushed and Brushless Motors
brushed, two motor connection, Discussion, Solution
brushless speed control, Problem
brushless vs. brushed, Brushed and Brushless Motors
continuous rotation servos vs., Servos

(see also servos)

motor shield heat sinks, Discussion
motor shields, Servos, Solution, Discussion
Pulse Width Modulation adjustment, Problem
Robot Motor library, Solution
snubber diodes, Discussion, Using Snubber Diodes with Inductive Loads
Stepper library, Solution, Discussion
stepper, about, Stepper Motors, Discussion, Stepper Motor
stepper, bipolar, Problem

stepper, bipolar and EasyDriver, Problem
stepper, unipolar and ULN2003, Problem
torque, Brushed and Brushless Motors
vibration motor, Solution

mouse
3.3 volt boards, Solution
as sensor, Introduction
connecting, Solution
coordinates sketch, Problem
mouse cursor control, Problem
movement detection, Problem

Mouse library, Solution
Arduino reference, See Also
HID library required, Solution

movement detection
people or animals, Problem
shake sensing, Discussion
tilt sensing, Solution
vibration sensing, Problem

Mozzi audio synthesis library, Solution
MP3 player shield (SparkFun), Introduction
MPU-9250 inertial measurement unit, Solution

acceleration display, Solution
magnetometer, Solution

MQTT (see Message Queue Telemetry Transport)
MQTT library (Adafruit), Discussion
multimeter

graphical display connections, Introduction

as light meter, Discussion
selecting, Introduction
stepper motor wiring, bipolar, Discussion
stepper motor wiring, unipolar, Discussion
troubleshooting hardware problems, Tips on Troubleshooting Hardware
Problems
tutorial, Tips on Troubleshooting Hardware Problems

multiplexer chip, Solution
about LED multiplexing, Multiplexing
HT16K33-based breakout boards, Solution
LED matrix, Problem, Problem
LED 7-segment displays, Problem
LEDs and PWM adjustment, Problem, Discussion
resources, See Also
truth table, Discussion

multiplication (*) operator, Solution
bit-shifting instead, Discussion

multiplication (*=) compound operator, Solution

N

narcoleptic library, See Also
NDEF tags, Discussion
Near-Field Communication (see NFC)
negative numbers

casting floating point to int, Discussion
displaying potentiometer range, Discussion
long assigned to int, Discussion

NeoPixel LEDs (Adafruit), Solution, Discussion

bar graph, Discussion
hue to RGB function, Discussion

Network Time Protocol (NTP) server
about NTP, Discussion, See Also
getting time from, Solution

networking
client-agnostic web server response parsing, Solution
controlling pins via web browser, Problem
data in XML format, Problem
Ethernet network connection, Problem
information from router configuration, Solution, Discussion
Internet of Things data exchange, Problem
key concepts, Introduction
MQTT broker, publishing data to, Problem
MQTT broker, subscribing to, Problem
requesting data via forms, Problem
requesting information from Internet Archive, Solution, Problem
resources, Introduction
serving web pages, Problem, Problem, Problem
simple messages sent and received, Problem
time from time server, Problem
Twitter messages, Problem
WiFi built into boards, using, Problem

newline character, Introduction, Discussion, ASCII and Extended Character
Sets
NFC/RFID tag reading, Problem

about NFC, Discussion
about tags, Discussion, Discussion

NFC Data Exchange Format (NDEF), Discussion, Discussion
tag messages, Discussion

NINA-W102 modules (u-blox), Solution
nine degrees of freedom (9DOF) sensor, Solution, Solution, Solution
NMEA sentences, Solution, Discussion

NMEA protocol article, See Also

nonvolatile memory, Introduction
nonzero start to range, Discussion
Normally Closed (NC) switches, Discussion
Normally Open (NO) switches, Discussion, Switch

keypads as, Discussion

not (!) operator, Solution
not equal to (!=) operator, Solution
NPN versus PNP transistors, Choosing and Using Transistors for Switching
NTP (see Network Time Protocol)
null character

ASCII control code, ASCII and Extended Character Sets
string termination, Discussion, Solution

numbers
7-segment display, Problem, Problem, Problem
binary representation of, Solution
comparing values, Solution
converting strings to, Discussion, Problem-Discussion
converting to strings, Problem-Discussion
formatted output of, Solution
LCD double-height display, Problem
serial parseInt and parseFloat, Discussion

NunChucky I2C Breakout (Solarbotics), Solution

nybbles, Discussion

O

odd or even via modulus operator, Discussion
Ohm’s law, Discussion
OLED (organic light-emitting diode) displays

Adafruit displays, Solution, See Also
Adafruit libraries, Discussion, Solution
LCD versus, Solution
monochrome graphics control, Problem

Onboard LED
Blink sketch, Solution, Discussion, Solution
Leonardo upload, Discussion

Open Weather service XML data, Solution
about Open Weather, Discussion

Open-Notify-API, Solution
Optiboot upgrade to bootloader, See Also
OptiLoader to update or install bootloader, See Also
optocouplers

about, Introduction, Integrated Circuit, Optocoupler
AC device remote control, Solution
camera shutter remote control, Solution

optoisolators (see optocouplers)
Or operators

bitwise Exclusive Or (^), Solution
bitwise Or (|), Solution
logical Or (||), Solution

output (see serial communication)

Output Compare Registers (OCR), Timers, Discussion
outputs from functions, Solution, Discussion
O’Leary, Nick, Discussion, Solution
O’Reilly Media

contact information, How to Contact Us
online, O’Reilly Online Learning, How to Contact Us

P

Parallax
PING))), Introduction, Solution
PIR Sensor, Solution, Discussion
USB XBee Adapter, Discussion

parameters, Solution
errors with number and type, Code That Won’t Compile
references for, Discussion

parentheses to alter precedence, Discussion
parseFloat function, Discussion, Discussion

time out, Discussion

parseInt function, Discussion, Discussion, Discussion
time out, Discussion

Passive Infrared (PIR) sensor project, Solution
about PIR sensors, Discussion

pausing sketch, Problem
PC (see Windows)
PCA9685 chip, Solution
PCF8574/A port expander board, Solution

address values, Discussion
current source versus sink, Discussion

data sheet, See Also

peek function, Arduino Serial Notes
percentage values

battery voltage, Discussion
potentiometer, Problem

permission to use book code, Using Code Examples
persistence of vision, Discussion, Discussion
photocells (see photoresistor projects)
photoresistor projects

about photoresistors, Photocell (Photoresistor)
audio synthesizer via, Discussion
Blink sketch, Solution
blinking code example, Problem-Discussion
brushed motor control, Solution
hazards of photoresistors, Solution, Solution
light level changes, Solution
phototransistor substitution, Solution, Solution
speaker connected to, Discussion
vibration motor control, Discussion

phototransistors
in optocouplers, Introduction, Discussion
for photoresistor, Solution, Solution

physical computing, Preface
Piezo buzzer, Introduction
Piezo speaker

about, Introduction, Solution, Piezo
connecting, Introduction, Solution, Discussion

Piezo vibration sensor, Solution

PING))) (Parallax), Introduction, Solution
pinMode function

Arduino reference, See Also
configuring for input, Introduction
configuring for output, Digital Output
configuring for write versus read, Discussion
definition, Introduction
INPUT_PULLUP, Solution
switching between input and output, Discussion

PIR (passive infrared) sensor project, Solution
about PIR sensors, Discussion

PIR Motion Sensor (Adafruit), Solution
PIR Motion Sensor (Parallax), Solution
PIR Motion Sensor (SparkFun), Solution
PIR Sensor (Adafruit), Discussion
PIR Sensor (Parallax), Discussion
PJRC Teensy boards

about, Arduino Hardware, Arduino Hardware
installer program, Discussion
MIDI, See Also
multiple LEDs, Discussion, See Also
musical applications, Introduction, See Also
processor speed, Discussion
PWM frequency in Hz, See Also
serial port behavior, Serial Hardware Behavior
serial port pins used, Serial Hardware, Serial Hardware
serial ports, Serial Hardware, Receiving data from multiple
SoftwareSerial ports

PN532 NFC readers, Solution, Discussion
tags supported, Solution

PNP versus NPN transistors, Choosing and Using Transistors for Switching
pointers discouraged, Discussion, Discussion
polarized versus unpolarized components, Using Schematic Diagrams and
Datasheets
polling interrupts, Interrupts
Pololu breakout board, Discussion, See Also
polyfuse for excessive current, Tips on Troubleshooting Hardware
Problems
port expander boards via I2C, Solution

address values, Discussion
current source versus sink, Discussion
PCF8574/A data sheet, See Also

ports for pins (see registers)
POSIX time, Discussion, See Also
post-increment and post-decrement, Discussion
potentiometer

3.3 volt boards and, Solution
about, Discussion, Pot (Potentiometer)
audio synthesizer project, Solution
choosing, Introduction
clock adjusted via, Discussion
connecting more than six, Problem
displaying values as percentages, Problem
LCD contrast, Solution, Discussion
LED color control, Solution
mouse cursor control, Solution

reading analog values, Problem
servo rotation control, Problem
XBees sharing data, Problem

pow (power) function, Solution
fractional powers, Discussion

power supply
3.3 volt boards, Arduino Hardware
3.3 volt boards and potentiometers, Solution
batteries for Arduino, Solution
battery drain reduced via sleeping, Problem
breadboard rails, Using a Breadboard
common ground with serial device, Discussion
decoupling capacitors, Discussion, Discussion, Using Capacitors for
Decoupling
disconnect before changing circuit, Tips on Troubleshooting Hardware
Problems
grounding external power supply, Discussion, Stepper Motors
high-current LEDs, Discussion, Discussion
power draw limits, Discussion
regulated versus unregulated, Connecting and Using External Power
Supplies and Batteries
servos, two or more, Discussion, Solution
shorting to ground, Discussion
very low power operation resource, See Also

powering up board, Problem
#pragma message in compile, Discussion
pre-increment and pre-decrement, Discussion
precedence, Discussion

Preferences
Boards Manager updates, Discussion
compiler activity display, Solution
compiler warning level, Discussion

preprocessor commands, Preprocessor
conditional statements in compile, Problem
const versus #define, Discussion
resources, See Also, See Also

prescaler
about, Timers, Discussion, Discussion
timer prescale values, Discussion

print function
behavior of, Arduino Serial Notes
combining lines of code, Discussion
decimal places, Discussion
displaying information from Arduino, Discussion
formatting output, Solution

printf function, Discussion
println function

carriage return and line feed, Discussion
combining lines of code, Discussion
decimal places, Discussion
displaying information from Arduino, Discussion
formatting output, Solution
Serial Monitor, Introduction

Processing console
about, Message Protocols
data from Arduino in binary format, Problem, Problem, Discussion

data from Arduino into file, Problem
data from Arduino of pin values, Problem
data to Arduino in binary format, Problem, Discussion
int size, Discussion
real-time data display, Discussion
resources, See Also
sensor value display, Discussion
serial port read, Solution, Discussion
setup function, Discussion
show sketch folder, Discussion
UDP messages for sensor data, Discussion
UDP messages sent and received, Solution

program memory
about, Discussion, Introduction
bootloader using, Introduction, Problem
compile report, Solution
data stored in, Problem, Introduction, Problem
programmer instead of bootloader, Problem
strings stored in, Problem

program variables (see variables)
programmer instead of bootloader, Problem

available programmers, See Also
converting Arduino into programmer, See Also
replacing bootloader code with, Solution

programming
arrays, Problem-See Also
bitwise operations, Problem-Discussion, Problem
capitalization importance, Code That Won’t Compile

comparing values, Solution-Discussion
complex expression as table of values, Discussion
conditional branches, Problem, Solution
constants clarifying code, Discussion
converting numbers to strings, Problem-Discussion
converting string to number, Problem
converting strings to numbers, Discussion, Problem-Discussion
floating-point numbers, Problem
functional block structure, Problem

(see also functions)

interrupt handlers brief, Interrupts
interrupt handling, Discussion
logical comparison operators, Solution
loops, Problem-Discussion
loops, breaking out of, Discussion, Problem
macro expressions, Discussion
math operations, Problem-Discussion

(see also math operations)

resources, What Was Left Out
returning more than one value, Problem-Discussion
semicolon importance, Code That Won’t Compile
sketch structure, Problem

(see also sketches)

strings (see strings)
troubleshooting code that doesn’t run right, Code That Compiles but
Does Not Work as Expected
troubleshooting compile failure, Code That Won’t Compile

troubleshooting hardware-software interplay, Code That Compiles but
Does Not Work as Expected
variables (see variables)

prototypes (functions)
build process, Discussion
function declaration as, Solution
in libraries, Discussion

prototyping circuits with breadboards, Using a Breadboard
PS/2 mouse as sensor, Introduction

3.3 volt boards, Solution
connecting, Solution
movement detection, Problem

PubSubClient library for MQTT brokers, Discussion
publishing data with, Solution

pull-down resistors
about, Introduction, Discussion
INPUT_PULLUP mode, Solution
pull-down resistors, Discussion
switch using, Solution

pull-up resistors
about, Introduction
Arduino internal, Solution, Introduction
Arduino internal in project, Solution
I2C devices, Introduction, Discussion
INPUT_PULLUP, Introduction
INPUT_PULLUP in project, Solution
switch using, Discussion

pulse generator, Problem

pulse duration, Problem, Problem
pulse width and duration, Problem

pulse width (PW) sensors
about, Introduction
distance measurement, Solution

Pulse Width Modulation (PWM)
analog panel meter display, Problem
analog signal simulation, Analog Output
audio synthesis library Mozzi, Discussion
audio tones without interference, Problem
frequency adjustment via register, Problem, Discussion
increasing analog outputs, Problem
pins for, Analog Output, Digital and Analog Pins
PWM Servo Driver (Adafruit), Solution, See Also
range maximum, See Also
servo rotation, Servos
servo rotation different, Servos

Pulse-Code Modulation, See Also
pulseIn duration function

Arduino reference, See Also
pulse duration, Solution

pulseIn function
about, Introduction
Arduino reference, See Also
distance measurement, Discussion

pushbutton, Switch
(see also switches)

PuTTY terminal program, Discussion, Discussion

PWM (see Pulse Width Modulation)
PWM Servo Driver (Adafruit), Solution, See Also
Python

programming environments, Arduino Hardware
Raspberry Pi commanding Arduino, Solution

Q

questions or problems, Using Code Examples, How to Contact Us

R

radians for angles, Discussion
radio communication, Solution

data sheets, See Also
Morse code broadcast, Solution

Radio Frequency Identification (RFID), Problem
RadioHead library, Solution
RAM

about, Introduction, Introduction
constants minimizing, Problem
determining free and used, Problem
SRAM, Arduino Hardware, Discussion

random access memory (see RAM)
random number generation, Problem-Discussion

randomSeed, Discussion

Raspberry Pi connection
Arduino faster, Discussion
Arduino IDE, Solution
commanding Arduino, Problem

operating systems supported, Discussion
resources, Discussion

read function
casting int to char, Discussion
data to Arduino, Solution

readBytes function, Discussion
readBytesUntil function, Discussion
Real Time Clock Module (SparkFun), See Also
real-time clock (RTC), Problem

Arduino boards with capability, Discussion
Arduino reference, Discussion
setSyncProvider function, Discussion
setting time, Discussion

RealTerm terminal program, Discussion
recipes in book, How This Book Is Organized
recursive functions, Discussion
RedBoard Turbo (SparkFun), Arduino Hardware, Discussion

Boards Manager, Solution
pulse width modulation pins, Analog Output
serial port pins used, Serial Hardware

references
ampersand (&) symbol, Discussion
parameters as, Discussion
passing references to variables, Solution

registers
about, Introduction, Registers
analogRead sampling rate, Solution
digital pin setting and clearing, Solution

names in microcontroller datasheets, Registers
names of timer registers, Timers
PWM adjustment via, Problem, Discussion
timer values, Timers
Timer1 library, Discussion

regulated versus unregulated power supplies, Connecting and Using
External Power Supplies and Batteries
relays

about, Solenoids and Relays, Problem, Relay
AC device control, Discussion
electromagnetic relay control, Discussion
snubber diodes, Using Snubber Diodes with Inductive Loads
solid state relays, Discussion
transistor selection, Discussion

remainder in integer division, Discussion, Problem
remote control

about infrared (IR) remotes, Introduction
about wireless remotes, Introduction
AC devices, Problem
camera shutter control, Problem
decoding IR signals, Problem
GoPro via WiFi, See Also
imitating IR signals, Problem
optocouplers, Introduction
responding to IR remotes, Problem
switches in remote controls, Discussion
TV-B-Gone application, See Also
video cameras, See Also

remove functions, Discussion
replace function, Discussion
reserve function, Discussion
Reset button

ESP8266 board WiFi, Solution
runaway Mouse object, Discussion
uploading, Discussion
USB connection after sleeping, Solution

resistive sensors, Discussion
resistors

about, Resistor
analog panel meter display, Discussion
Arduino internal pull-up resistor, Solution, Introduction
Arduino internal pull-up resistor project, Solution
formula for resistance, Discussion
LED current limiters, Discussion, Discussion, Discussion
measuring resistance with Arduino, Discussion
multimeter for resistance, Introduction
not polarized, Using Schematic Diagrams and Datasheets
photoresistor (see photoresistor)
pin floating prevented, Introduction
potentiometer, Introduction, Problem
potentiometer explained, Discussion
pull-down resistors, Solution, Introduction, Discussion
pull-up resistors, Introduction
switch without external, Problem
values for voltage dividers, Solution, Discussion, Discussion

resources (see URLs)

return type, Solution, Discussion
void, Solution, Discussion

reverse EMF, Discussion
RF spectrum and world region, Solution
RFID/NFC tag reading, Problem
RFM69HCW wireless module, Solution
RGB LED color control, Problem

smart RBG LEDs, Solution

Robot Control library, Solution
Robot IR Remote library, Solution
Robot Motor library, Solution
robots

continuous rotation servos, Problem
gyroscope control, Problem
moving toward light, Problem
Robot Control library, Solution
Robot IR Remote library, Solution
Robot Motor library, Solution
servo rotational position, Problem

root handler, Discussion
Root Mean Square (RMS) calculation, Discussion
root of sum of squares (RSS), Discussion
rotary encoder, Solution

interrupt-driven sketch, Problem
steps per revolution, Discussion

rotation sensing, Problem
gyroscope rotation, Problem

rounding floating point to integer, Problem

router
configuration utility, Solution, Discussion
IP address, Introduction, Discussion
local IP address, Introduction, Problem

RS-232 standard, Serial Hardware
GPS module voltage levels, Discussion

RTC (see real-time clock)
RTC library (Adafruit), Discussion
running code, Solution
running-average calculation, Discussion

S

saving sketches, Discussion, Solution-Discussion, Discussion
default name, Discussion

scaling range of values, Problem
scheduling functions, Problem

system clock and, Discussion

schematic diagrams
about, Using Schematic Diagrams and Datasheets
breadboards and, Using Schematic Diagrams and Datasheets
capacitors, Solution
Fritzing tool for drawing circuits, Using Schematic Diagrams and
Datasheets
inputs left, outputs right, Using Schematic Diagrams and Datasheets
LEDs, Solution
polarized versus unpolarized components, Using Schematic Diagrams
and Datasheets
schematic representation of common components, Electronic
Components

typical schematic diagram, Using Schematic Diagrams and Datasheets

scrolling LCD text, Problem
SD card reader

multiple SPI devices, Solution
readers available, Discussion
SD library, Solution

SD library, Solution
SdFat library, Discussion
Seeed Studio

ARDX starter kit of electronic components, Electronic Components
boards and accessories, Arduino Hardware
NFC reader, Solution, Discussion

semicolon (;)
in functions, Discussion, Discussion
importance of, Code That Won’t Compile

sensors
about, Introduction, Introduction
air quality, Solution
Arduino Nano 33 BLE Sense, Discussion, Solution, See Also
audio synthesizer via, Discussion
brushed motor control, Problem
calibrating for range, Discussion
check range of values returned, Discussion
common ground, Discussion
compass, Problem
conditional branches in code, Problem
datasheets for, Introduction
descriptions of types, Introduction, Discussion

distance measurement, Introduction, Problem, Problem, See Also
examples of, Arduino Hardware
GPS location determination, Problem
initialization, Discussion
LED bar graph, Solution
LED brightness via, Discussion
LED matrix control, Discussion
LED matrix heartbeat, Discussion
Library Manager for, Introduction
light detection, Problem
motion detection, people or animals, Problem
mouse as, Introduction
movement detection, Problem
power supply, Discussion
protocols, Introduction
radio communication of, Discussion
resistive sensors, Discussion
resources, See Also
RFID/NFC tag reading, Problem
rotation sensing, Problem, Problem
scaled values from, Discussion
servo rotation control, Discussion
sound detection, Problem
temperature measurement, Problem, See Also
tilt sensor project, Solution
UDP messages for, Discussion
vibration motor control, Discussion
vibration sensing, Problem

voltage limits, Introduction
web browser to view values, Problem, Problem
XBees sharing data, Problem

sequencing multiple LEDs, Problem, Problem, Problem
serial communication

0 and 1 voltages, Serial Hardware
about, Introduction
Bluetooth, Problem
Bluetooth Low Energy, Problem
comma-separated values, Solution, Discussion
data from Arduino, Problem
data from Arduino in binary format, Problem-Discussion, Problem,
Discussion
data from Arduino into file, Problem
data from Arduino of pin values, Problem
data from Arduino to multiple serial devices, Problem
data from Arduino with multiple fields, Problem-Discussion, Discussion
data to Arduino from multiple serial devices, Problem
data to Arduino in binary format, Problem, Discussion
data to Arduino with multiple fields, Problem, Discussion
debugging with, Introduction
displaying binary information, Problem
displaying information, Problem
displaying information formatted, Problem
displaying multiple text fields, Problem-Discussion
displaying text and objects via library, Solution
displaying values as percentages, Solution, Discussion
functions of importance, Arduino Serial Notes

hardware behavior, Serial Hardware Behavior
hardware on boards, Serial Hardware-Serial Hardware
header, Message Protocols, Discussion, Discussion
I2C between Arduino boards, Problem
JSON output, Discussion
MIDI control, Discussion
pins used, Serial Hardware, Digital and Analog Pins
Processing console, Message Protocols

(see also Processing console)

protocols, Message Protocols
Raspberry Pi commanding Arduino, Problem
RS-232 standard, Serial Hardware
sending data to Arduino, Problem
servo control via, Problem
software emulation of serial port, Serial Hardware, Emulate Serial
Hardware with Digital Pins, Solution, Discussion, Solution, Discussion
terminator, Introduction, Discussion
time set via, Discussion, Discussion
UDP messages for sensor data, Discussion
uploading as, Introduction

Serial LEDs upload flicker, Solution, Discussion
Serial library

begin function and baud rate, Introduction, Discussion, Discussion
data from Arduino to multiple devices, Solution
flush function, Arduino Serial Notes
global array memory use, Discussion
parseInt and parseFloat, Discussion
peek function, Arduino Serial Notes

print function, Discussion, Arduino Serial Notes, Discussion, Discussion
print function formatting, Solution
println function, Introduction, Discussion, Discussion, Discussion,
Discussion
println function formatting, Solution
read function, Solution
serial port software emulation, Emulate Serial Hardware with Digital
Pins
write function, Arduino Serial Notes, Discussion, Discussion

Serial Monitor
Arduino as I2C slave, Discussion
ASCII character set display, ASCII and Extended Character Sets
audio signal, Solution
baud rate, Introduction, Discussion
brushed motor direction and speed, Solution
data from Arduino, Problem, Problem
data to Arduino, Introduction, Problem
debugging with, Code That Compiles but Does Not Work as Expected
displaying ASCII character set, ASCII and Extended Character Sets
displaying information, Introduction, Problem
displaying information formatted, Problem
displaying multiple text fields, Problem-Discussion
displaying sensor data, Solution
displaying values as percentages, Solution, Discussion
displaying voltage, Problem
GPS logging TinyGPS, Discussion
println function, Introduction
pulse generator control, Problem

radio communication, Solution
serial parseInt and parseFloat, Discussion
starting, Solution, Serial Hardware Behavior
temperature display, Solution
terminator for serial communication, Introduction
third-party terminal programs, Discussion
time set via, Discussion, Discussion
variable values printed to, Discussion
web browser controlling pins, Problem
WiFi built into boards, Problem

Serial object, Discussion
Serial Peripheral Interface (see SPI protocol)
Serial Plotter

audio signal, Discussion
displaying graphic information from Arduino, Discussion
graphing serial data, Introduction
mouse position, Discussion
photoresistor resistance plotting, Discussion

serial port
active soft port, Receiving data from multiple SoftwareSerial ports
Arduino boards, Serial Hardware, Discussion
AT (attention), Solution
Bluetooth, Discussion
reset behavior of boards, Discussion
selecting in Processing, Discussion, Discussion
software emulation of, Serial Hardware, Emulate Serial Hardware with
Digital Pins, Solution, Discussion, Solution, Discussion

SoftwareSerial library, Receiving data from multiple SoftwareSerial
ports
Teensy board multiple ports, Serial Hardware, Receiving data from
multiple SoftwareSerial ports
uploading compiled sketch, Solution
as USB connector, Serial Hardware Behavior

serial sensors, Introduction
serial-to-USB port

alternative serial when in use, Problem, Problem
bit-banging for USB, Arduino Hardware

Serial.print function for debugging, Code That Compiles but Does Not
Work as Expected
Serial1 object

data from Arduino to multiple devices, Solution
LCD display for serial output, Discussion, Solution
pins tied to, Discussion
software emulation of serial port, Solution

serialEvent function
data to Arduino, Discussion
serialEventRun from main function, Discussion

Servo library
about, Solution, Discussion
analogWrite can’t be used, Servos, Timers
Arduino reference, Discussion
number of servos, Discussion
rotation range, Discussion
servo.attach parameters, Discussion

servos

about, Servos
compass-following, Discussion
continuous rotation servos, Servos, Problem
external power supply, Stepper Motors, Discussion, Solution
multiple servos, Discussion, Solution, Solution
numbers handled, Discussion
potentiometer controlling rotation, Problem
pulse width and rotation, Servos
PWM Servo Driver (Adafruit), Solution, See Also
rotation range, Discussion
rotational position control, Problem
serial port for control, Problem
Servo library, not analogWrite, Servos
shield header connection, Solution
software on computer controlling, Problem

setCharAt function, Discussion
setup function

baud rate, Discussion
definition, Solution
delay code, Serial Hardware Behavior
global “variables” as constants, Discussion
library pin configuration, Discussion
Processing console, Discussion
sensor initialization, Discussion

shake sensing, Discussion
shields

about, Arduino Hardware
audio shields, Introduction, See Also, See Also

Black Magic Design video equipment, See Also
Ethernet, Problem, Discussion, Discussion
H-Bridge shields, Discussion
motor shield heat sink, Discussion
motor shields, Servos, Solution, Discussion
PN532 NFC reader, Solution
sound capabilities, Introduction
temperature display, See Also
Uno with older shields, Solution
Uno-compatible boards, Discussion

shift left (<<=) compound operator, Solution
shift right (>>=) compound operator, Solution
Shirriff, Ken, Introduction, See Also
short int data type, Solution
shorting to ground, Discussion
signed variables, Discussion
sin function, Solution
sizeof operator, Discussion
Sketch Editor window

about, Solution
Blink sketch loaded into, Solution

sketches
about, Preface, Arduino Software and Sketches, Solution, Solution
Arduino CLI, See Also
beginner project, Problem-Discussion
beginning with IDE, Problem-See Also
build process, Discussion
compile error: too big, Discussion, Introduction

conditional branches, Solution
creating, Problem
Escape key terminating, Discussion
Example sketch created, Discussion
Example sketches in IDE, Discussion, Solution
interrupt handling, Discussion
Java for some boards, Solution
library added, Solution, Discussion, Solution
library created from, Solution, Problem
loading into IDE, Solution
pausing, Problem
RAM, free and used, Problem
saving in IDE, Discussion, Solution-Discussion, Discussion
structure of, Problem
structuring into functional blocks, Problem

(see also functions)

§ (unsaved sketch) symbol, Discussion

sleeping to reduce battery drain, Problem
libraries for, Solution, Discussion

SleepyDog library (Adafruit), Solution, Discussion
smart RBG LEDs, Solution
smartphone for graphical display, Solution
SMD (Surface Mount Device), Introduction
snprintf function, Discussion
snubber diodes, Discussion, Using Snubber Diodes with Inductive Loads
software emulation of serial port, Solution, Discussion, Solution

active port, Receiving data from multiple SoftwareSerial ports
Arduino boards, Serial Hardware

how to, Discussion
resource consumption, Discussion
software serial library for, Emulate Serial Hardware with Digital Pins

SoftwareSerial library, Solution
active soft port, Receiving data from multiple SoftwareSerial ports
software emulation of serial port, Solution, Receiving data from multiple
SoftwareSerial ports

Solarbotics NunChucky I2C Breakout, Solution
solderless breadboard (see breadboards)
solenoids

about, Solenoids and Relays, Problem, Solenoid
controlling, Problem
snubber diodes, Using Snubber Diodes with Inductive Loads
transistor selection, Discussion

solid state relays (SSR), Discussion
sound, Introduction

(see also audio input; audio output)
detecting, Solution
speed of, Discussion

SpacebrewYun library, Solution
SparkFun

air quality sensor, Discussion
Arduino-compatible accessories, Arduino Hardware
Ardumoto motor shield, Discussion, Discussion, See Also
audio modules, Introduction
Bluetooth tutorial, See Also
breadboard, Introduction
Electret Microphone, Solution

ESP8266 Thing Dev Board, Solution, Discussion
GPS modules, See Also
inertial measurement unit, Solution, See Also, See Also
IoT Power Relay, Discussion
LoRa radio modules, See Also
MIDI shield, See Also
pin arrangement, Introduction
PIR Motion Sensor, Solution
RadioHead library, Solution
Real Time Clock Module, See Also
RedBoard Turbo, Arduino Hardware, Discussion, Solution, Serial
Hardware, Analog Output
RedBoard Turbo serial port, Serial Hardware
RF modules, Solution, See Also
SD card reader, Discussion
Tinker Kit of electronic components, Electronic Components
vibration motor, Discussion
voltage logic-level translator, Using 3.3-Volt Devices with 5-Volt Boards,
How to Read a Datasheet
waterproof temperature sensor, Discussion
XBee Explorer USB, Discussion

speaker
about, Speaker
connecting, Introduction, Solution, Discussion
output as nonmusical, Introduction
photoresistor connection, Discussion
Piezo device as, Introduction

special character ASCII codes, ASCII and Extended Character Sets

SPI library, Solution, Discussion
SPI protocol

about, Introduction, Introduction, Introduction
Arduino board pin assignments, Digital and Analog Pins
Arduino reference, See Also
background detail, SPI
chip select (CS) line, SPI, Discussion
Ethernet hardware, Discussion
hardware SPI, SPI
I2C versus, Introduction, See Also
multiple SPI devices, Problem
pin connections, SPI
Seeed Studio NFC shield, Discussion
SPI library, Solution, Discussion
u8g2 graphical display library, Discussion

splash screen for Arduino software, Solution, Solution
split function, Discussion
sprintf function, Discussion
Sprite library, Solution
sqrt function, Solution
square root, Problem
square wave from speaker, Introduction
SRAM, Arduino Hardware, Discussion
SSID, Solution, Solution, Discussion
SSL server connection, Solution
stack memory, Discussion

recursive functions, Discussion

startsWith function, Discussion

static electricity sensitivity, Integrated Circuit
static IP address, Solution, Discussion
static variables

definition, Discussion
state storage via, Discussion, Discussion

Stepper library, Solution, Discussion
stepper motors

about, Stepper Motors, Stepper Motor
bipolar and EasyDriver, Problem
bipolar control via H-Bridge, Problem
bipolar vs. unipolar, Stepper Motors
current draw, Discussion
resources, See Also
Stepper library, Solution, Discussion
unipolar and ULN2003, Problem

strcat function, Solution
strcmp function, Solution
strcpy function, Solution
Stream library

stream parsing for web page data, Introduction, Problem
stream-parsing methods, Discussion, Discussion
time out, Discussion

Streaming library, Discussion
String library

character arrays versus, Choosing between Arduino Strings and C
character arrays
converting numbers to strings, Problem
data type representing, Solution

dynamic memory allocation, Choosing between Arduino Strings and C
character arrays, Choosing between Arduino Strings and C character
arrays, Discussion
manipulating strings, Problem-See Also
resources, See Also

strings
in arrays, Discussion
character arrays versus, Choosing between Arduino Strings and C
character arrays
character string manipulation, Problem-Solution
comparing, Discussion, Discussion, Problem
concatenating, Solution, Discussion, Solution, Discussion
converting numbers to, Problem-Discussion
converting to numbers, Discussion, Problem-Discussion
copying, Solution
data type representing, Solution
declaring, Solution
equals function, Discussion
length of, Solution, Discussion, Solution
manipulating, Problem-See Also
manipulating character strings, Problem-Solution
memory use of, Discussion
null character termination, Discussion, Solution
program memory storing, Problem
in sketches, Solution
splitting comma-separated text, Problem
substring functions, Discussion
toCharArray function, Discussion

strlen function, Solution
strncmp function, Discussion
strncpy function, Solution
struct

about, Discussion
binary data from Arduino, Discussion, Discussion
functions returning more than one value, Solution
wireless communication, Discussion

substring functions, Discussion
subtraction (-) operator, Solution
subtraction (-=) compound operator, Solution
swiping gesture

how to swipe, Solution
sensing, Solution

switch branching, Solution
break, Discussion
default label, Discussion

switches
about, Switch
conditional branches in code, Problem
debouncing, Problem, See Also, Discussion
detecting contacts closing, Problem
keypad project, Problem
momentary tactile, Discussion
mouse button emulation, Solution
multiplexers as, Discussion
Normally Open versus Normally Closed, Discussion
Normally Open vs. Normally Closed, Switch

pull-down resistor sketch, Solution
pull-up resistor sketch, Discussion
sensors acting as, Introduction, Discussion, Discussion
tactile switches, Switch
tilt sensor as, Solution
timing how long pressed, Problem, Problem
tone production, Solution
Twitter message, Solution
without external resistors, Problem

switchTime function, Discussion
debouncing a switch via, Discussion

symbol ASCII codes, ASCII and Extended Character Sets
symbols on LCDs, Problem
synchronous protocols, Introduction, Introduction
syntax highlighting in libraries, Discussion
synthesizer project, Problem

ArduTouch synthesizer kit, See Also

system clock
alarms/timers and, Discussion
clock project set via, Discussion

T

tab ASCII code, ASCII and Extended Character Sets
tactile switches, Switch
tags, NFC/RFID

about, Discussion, Discussion
active vs. passive, Discussion
messages, Discussion

NDEF tags, Discussion, Discussion
PN532 NFC readers, Solution

tan function, Solution
Tasker timer library, Discussion, Discussion
TCP (Transmission Control Protocol), Introduction, Solution
TCP/IP protocol, Introduction
Teensy boards (PJRC)

about, Arduino Hardware, Arduino Hardware
installer program, Discussion
MIDI, See Also
multiple LEDs, Discussion, See Also
musical applications, Introduction, See Also
processor speed, Discussion
PWM frequency in Hz, See Also
serial port behavior, Serial Hardware Behavior
serial port pins used, Serial Hardware, Serial Hardware
serial ports, Serial Hardware, Receiving data from multiple
SoftwareSerial ports

Temboo library, Solution
temperature sensing, Problem

Nano 33 BLE Sense, Solution
shield for temperature display, See Also

terminal programs, third-party, Discussion
terminator for serial communication, Introduction, Discussion
text

serial communication format, Message Protocols
as strings, Discussion

(see also strings)

TFT displays
bitmap images displayed, Solution
multiple SPI devices, Solution
resources, See Also

TFT library, Solution
theremin URL, Introduction

distance sensor in synthesizer project, Discussion
Wikipedia on theremin, See Also

ThingSpeak Twitter API key, Solution
ThingTweet documentation, Discussion
tutorial, See Also

third-party Arduino-compatible boards
Boards Manager for support files, Solution
Codebender IDE, See Also
initVariant function, Discussion
URLs for manufacturers, Arduino Hardware

third-party LED strips, Discussion
third-party libraries

how to add, Problem
list of available, Discussion
updating, Problem

third-party terminal programs, Discussion
tilt sensor project, Solution

about tilt sensors, Discussion

Time library, Solution, Discussion, See Also
time of day clock project, Problem

clock set via computer clock, Discussion
clock set via serial port, Discussion

Network Time Protocol, Discussion, See Also
potentiometer to adjust time, Discussion
time formats, Discussion
time from internet time server, Problem
Unix time, Discussion, See Also

time of flight distance sensors, Solution
time out in stream-parsing functions, Discussion
TimeAlarms library, Solution

adding alarm by modifying, Problem
Alarm.delay function, Discussion
Time library necessary, Discussion

timebase
analogRead sampling rate, Discussion
prescaler, Timers, Discussion, Discussion
as timer time source, Timers

Timer0
modes and pins used, Digital and Analog Pins
PWM adjustment values, Solution

Timer1
about, Timers, Discussion, Discussion
modes and pins used, Digital and Analog Pins
pulse counter, Solution
pulse measuring capability, Solution
pulse width and duration control, Solution
PWM adjustment values, Solution
resource, Solution

Timer1 library
period initialization, Discussion

registers, Discussion
URL, See Also, Discussion

Timer2
about, Timers, Discussion
modes and pins used, Digital and Analog Pins
PWM adjustment values, Solution
uTimerLib library and, Discussion

Timer3 library URL, See Also
Timer3 modes and pins used, Digital and Analog Pins
Timer4 modes and pins used, Digital and Analog Pins
Timer5 modes and pins used, Digital and Analog Pins
timers

about, Introduction, Timers, Timers, Discussion
actions at periodic intervals, Problem
alarms versus, Discussion
analogWrite function and, Timers, Discussion, Discussion
Arduino board capabilities, Timers
calling function, Discussion
calling function once only, Discussion
clock project, Problem
clock set via computer clock, Discussion
clock set via serial port, Discussion
Input Capture precision, Discussion
libraries simplify, Solution, Discussion
microsecond accuracy, Problem
millis function, Discussion
numbers of, Timers
pausing sketch, Problem

potentiometer to adjust clock, Discussion
prescale values, Discussion
prescaler, Timers, Discussion, Discussion
pulse counting via Timer1 counter, Problem
pulse duration, Problem, Problem, Problem
pulse period and duration, Problem
pulse width and duration, Problem
registers, Timers
switch press, Problem, Problem
system clock and, Discussion
Tasker library, Discussion
time formats, Discussion
timebase, Timers
timer modes and pins used, Digital and Analog Pins
tutorial, See Also
uTimerLib library, Solution

Tinker Kit of electronic components (SparkFun), Electronic Components
TinyGPS++ library, Solution
TMP36 heat detection sensor, Solution

about, Discussion
datasheet, See Also

toCharArray function, Discussion
toFloat function, Discussion
toInt function, Discussion
toLowerCase function, Discussion
tone function

about, Introduction
analogWrite function timer and, Introduction

playing simple melody, Solution
tone production, Solution
tone production with switch, Solution
two tone generation, Solution

torque, Brushed and Brushless Motors
total volatile organic compound concentration (TVOC), Solution
touch screens, See Also
toUpperCase function, Discussion
Transistor-Transistor Logic (TTL), Serial Hardware
transistors

about, Discussion, Transistor, Choosing and Using Transistors for
Switching
brushed motor control, Problem
collector current, Choosing and Using Transistors for Switching,
Choosing and Using Transistors for Switching
collector-emitter saturation voltage, Choosing and Using Transistors for
Switching, Choosing and Using Transistors for Switching
collector-emitter voltage, Choosing and Using Transistors for Switching,
Choosing and Using Transistors for Switching
datasheets, Choosing and Using Transistors for Switching
DC current gain, Choosing and Using Transistors for Switching,
Choosing and Using Transistors for Switching
diodes protecting, Discussion, Discussion
high current with analogWrite, How to exceed 40 mA on an ATmega
chip
high-power LEDs, Solution
in optocouplers, Introduction
NPN versus PNP, Choosing and Using Transistors for Switching
in optocouplers, Discussion

polarized, Using Schematic Diagrams and Datasheets
selecting, Discussion, Transistor, Choosing and Using Transistors for
Switching
solenoid control, Solution
vibration motor, Discussion
voltage drop, Discussion

Transmission Control Protocol (see TCP)
trigonometric functions, Problem
trim function, Discussion, Discussion
Trinket (Adafruit), Arduino Hardware, Arduino Hardware
troubleshooting

Arduino forum, Arduino Platform Release Notes, Introduction, Still
Stuck?
Arduino guide for, See Also
breadboard prototypes, Using a Breadboard
code examples, Arduino Platform Release Notes
compile failure, Code That Won’t Compile
compiled code doesn’t run right, Code That Compiles but Does Not
Work as Expected
hardware problems, Tips on Troubleshooting Hardware Problems
hardware-software interplay, Code That Compiles but Does Not Work as
Expected
IDE installation, Discussion
library added but not found, Discussion
lights out, board unresponsive, Tips on Troubleshooting Hardware
Problems
polyfuse tripping, Tips on Troubleshooting Hardware Problems
powering up board, Discussion

preprocessor syntax, Preprocessor
Serial Monitor unreadable text, Discussion
sketch too big, Discussion

TRS connector for camera shutter, Solution
true value, Solution, Solution
TTL level, Serial Hardware
TV-B-Gone remote control application, See Also
TVOC (total volatile organic compound concentration), Solution
Twitter messages, Problem

Twitter library, See Also

U

u-blox NINA-W102 modules, Solution
u8g2 graphical display library, Discussion, Discussion
UDP (User Datagram Protocol)

about, Solution, Discussion
library, See Also
sensor reading and setting, Discussion
simple messages sent and received, Problem
time from internet time server, Solution

UDP library, Solution, Solution
ULN2003A Darlington driver chip, Problem
ultrasonic distance sensor, Solution
unipolar stepper motors

about, Stepper Motors, Discussion
ULN2003A Darlington driver chip, Problem

universal asynchronous receiver-transmitter (UART), Discussion
Universal Serial Bus (see USB connector)

Unix time, Discussion, See Also
unpolarized versus polarized components, Using Schematic Diagrams and
Datasheets
unsigned int data type, Solution, Solution
unsigned long data type

definition, Solution
int variable assigned from, Discussion

unsigned short int data type, Solution
unsigned variables, Discussion
uploading

activity display, Solution
Arduino Create online editing, See Also
Arduino Leonardo after reset, Discussion
Avrdude as Arduino utility, Discussion
bootloader, Introduction, Problem, Discussion, Discussion
build process, Discussion
error message, Discussion
how to, Problem-Discussion
IDE overview, Arduino Software and Sketches
programmer instead of bootloader, Problem
Reset button, Discussion
as serial communications, Introduction

URLs
Adafruit Industries, Arduino Hardware
Arduino board description URLs page, Discussion
Arduino CLI, See Also
Arduino coding style, Discussion
Arduino controller chip resource, See Also

Arduino Create, See Also
Arduino forum, Arduino Platform Release Notes, Introduction, Still
Stuck?
Arduino getting-started guides, See Also, See Also
Arduino IDE download, Solution
Arduino libraries reference, Solution
Arduino Playground, Discussion
Arduino Pro IDE, See Also
Arduino project hub, Introduction
Arduino troubleshooting guide, See Also
Arduino tutorials, Introduction
Arduino Zero quick start guide, See Also
C language string functions, See Also, See Also
character strings, See Also
code used in book, Arduino Platform Release Notes
constant current drivers, See Also
cryptographic function library, Discussion
declination for magnetometer, Discussion
distance measurement sensors, See Also
electronics theory, What Was Left Out, Introduction
errata, Arduino Platform Release Notes
Fritzing tool for drawing circuits, Using Schematic Diagrams and
Datasheets
function declarations, See Also
Git version control system, Discussion
MIME encoding service, Discussion
Mozzi audio synthesis library, Solution
multimeter tutorial, Tips on Troubleshooting Hardware Problems

music projects, Introduction
Open Weather service, Discussion
O’Reilly Media online, O’Reilly Online Learning, How to Contact Us
pin arrangements on boards, Introduction
Processing console, Message Protocols, See Also
programming, What Was Left Out
public brokers for IoT, Solution
root handler, Discussion
String resources, See Also
Temboo, Solution
third-party Arduino-compatible boards, Arduino Hardware
third-party libraries available, Discussion
troubleshooting guide, See Also
troubleshooting IDE installation, Discussion
troubleshooting the examples, Arduino Platform Release Notes
Unix time currently, Discussion

USART TX/RX pin assignments, Digital and Analog Pins
USB BUB board (Modern Device), Serial Hardware
USB connector

alternative serial when in use, Problem, Problem
Arduino Uno vs. Leonardo, Arduino Hardware
bit-banging for USB, Arduino Hardware
boards containing, Arduino Hardware-Arduino Hardware
clones may need driver, Arduino Hardware
connecting Arduino board, Solution
current capabilities, Connecting and Using External Power Supplies and
Batteries
FTDI chip, Arduino Hardware

HID library reference on device emulation, See Also
MIDI devices, Discussion
polyfuse tripping with excessive current, Tips on Troubleshooting
Hardware Problems
Raspberry Pi connection, Solution
restoring after board shutdown, Solution
serial port as, Serial Hardware Behavior
TTL to USB adapters, Serial Hardware
XBee modules and pins, Solution

USB TTL Adapter (FTDI), Serial Hardware
USB XBee Adapter (Parallax), Discussion
User Datagram Protocol (see UDP)
user interface, forms on web pages, Problem
uTimerLib library, Solution, See Also

V

variable resistor, Introduction
variables

about, Problem
bit setting and reading, Problem-Discussion
capitalization importance, Code That Won’t Compile
comparing values, Solution-Discussion
constraining value to range, Problem
data types for 32-bit boards, Solution, Discussion
data types for 8-bit boards, Solution, Discussion
decrementing, Problem
global as function return values, Solution
global defined, Solution

global for state storage, Discussion
global RAM use, Discussion
high or low byte extraction, Solution
incrementing, Problem
memory map tool, Discussion
overflowing with large values, Discussion, Discussion
passing references to, Solution
RAM holding, Arduino Hardware, Introduction, Discussion
signed and unsigned, Discussion
stack memory, Discussion
static variables, Discussion, Discussion
values printed to Serial Monitor, Discussion
volatile, Discussion

velocity as volume in MIDI, Discussion
vibration motor, Problem
vibration sensing, Problem
video camera remote control, See Also
VL6180X Time of Flight Distance Ranging Sensor (Adafruit), Solution
void

definition, Solution, Solution
function name preceded by, Solution, Discussion

volatile memory, Introduction
volatile variables, Discussion
voltage

3.3 volt boards, Arduino Hardware, Arduino Hardware, Discussion,
Solution, Discussion
3.3 volt boards and potentiometer, Solution
3.3 volt I2C devices, Using 3.3-Volt Devices with 5-Volt Boards

3.3 volt serial devices, Solution, Solution
AC external power supply, Connecting and Using External Power
Supplies and Batteries
AC line voltage, working with, Working with AC Line Voltages
analog pins, Introduction
battery specifications, Connecting and Using External Power Supplies
and Batteries
battery voltage as percentage, Discussion
cautions, Introduction, Discussion, Tips on Troubleshooting Hardware
Problems
datasheet information, How to Read a Datasheet
digital pins, Introduction
forward voltage, LED specifications
ground as 0 volts, Solution
logic-level converters, Using 3.3-Volt Devices with 5-Volt Boards,
Discussion, How to Read a Datasheet
low voltage indicator, Problem, Problem
measuring voltage, Problem, Problem
multimeter, Introduction
multiplexer chip, Solution
optocouplers, Introduction
Piezo knock sensor, Discussion
pull-down resistors, Introduction
Raspberry Pi 3.3 volt, Discussion
regulated versus unregulated power supplies, Connecting and Using
External Power Supplies and Batteries
resistance formula, Discussion
sensors, Introduction

serial 0 and 1 voltages, Serial Hardware
spikes and snubber diodes, Using Snubber Diodes with Inductive Loads
transistor explanation, Transistor
XBee voltage regulator, Solution, Discussion

voltage dividers
3.3V and 5V coexistence, Serial Hardware, Solution, Solution,
Discussion
ESP8266-based boards, Solution
measuring voltage more than 5 volts, Problem
mouse with 3.3V boards, Solution
Raspberry Pi, Discussion
resistance measurement via, Discussion
resistor values for, Solution, Discussion, Discussion
sensors, Introduction

volume control, Introduction
velocity in MIDI, Discussion

W

wall wart–style AC power supplies, Connecting and Using External Power
Supplies and Batteries
warning messages from compiler

configuring, Discussion
variable overflow, Discussion

waterproof temperature sensor, Discussion
WAV file playback, Introduction
Wave Shield (Adafruit), Introduction
Weatherley, Rhys, Discussion
Web APIs, Introduction

web browser
controlling pins via, Problem
controlling pins via forms, Problem
HTML, Introduction
HTTP, Introduction
router configuration utility, Solution
sensor values viewed with, Problem, Problem

web pages
extracting data from, Problem
forms, Problem
HTML from web server, Problem
HTML, about, Introduction
serving, Problem, Problem, Problem
Stream parsing for extracting data, Introduction, Problem
ThingTweets page, Solution

web servers
about, Introduction
automating requests to, Introduction
brokers for IoT data exchange, Solution
data in XML format, Problem
ESP8266 chip for WiFi, Solution, Problem, Problem, Problem
extracting data from response, Problem
handlers, Discussion
HTML response, Problem
serving web pages, Problem, Problem, Problem
SSL server connection, Solution
time from time server, Problem
web browser controlling pins, Problem

web browser controlling pins via forms, Problem
Webduino web server, Discussion

Webduino web server, Discussion
Westfield, Bill, See Also
while loop, Solution

breaking out of, Discussion, Problem

WiFi
about, Introduction
built-in WiFi, using, Problem
ESP-01 WiFi board, Solution
Ethernet versus, Introduction
firmware upgrade, Discussion
GoPro camera remote control, See Also
MAC addresses, Introduction, Discussion
SSID, Solution, Solution, Discussion
WiFi library, Solution

WiFi library, Solution
WiFiNINA

Firmware Updater, Discussion
HTML from web server, Problem
library, Solution
library customized by Adafruit, Solution
MQTT broker, publishing data to, Solution
MQTT broker, subscribing to, Problem
serving web pages, Problem, Problem, Problem
Twitter messages, Problem
web browser controlling pins, Problem
web browser controlling pins via forms, Problem

web browser for sensor values, Problem, Problem

WiFiNINA library, Solution
Wii nunchuck accelerometer, Problem

creating your own library, Problem
NunChucky I2C Breakout, Solution

Windows
Arduino document folder location, Solution, Solution
Bluetooth serial ports, Discussion
command line for Git, Discussion
compiler TEMP directory, Discussion
disassembler tool avr-objdump, Discussion
FTDI drivers, Solution
header file location, Discussion, Discussion
IDE installer, Solution
online Arduino guides, See Also, See Also
Raspberry Pi running, Discussion
serial port selection, Discussion, Discussion
Sketch Editor window, Solution
third-party terminal programs, Discussion
uploading compiled sketch, Solution

wiper of potentiometer, Discussion, Pot (Potentiometer)
Wire library for I2C

about, I2C, Solution
Arduino reference, See Also
EEPROM external memory, Discussion
HT16K33, Discussion
legacy Wire code, I2C
predefined pins only, Discussion

Wii nunchuck accelerometer, Solution

wireless communication
about Bluetooth, Introduction
Bluetooth communication, Problem
LoRa networking technology, See Also
radio communication, Solution
radio communication data sheets, See Also
RadioHead library, Solution
range, Discussion
world region frequencies, Solution
XBee actuator activation, Problem
XBee module communication, Problem
XBee specific module communication, Problem
XBees sharing sensor data, Problem

wireless remote control
about, Introduction
AC device control, Solution
GoPro camera, See Also

wiring components together, Introduction, Discussion
disconnect power before, Tips on Troubleshooting Hardware Problems

word function, Solution
words

bit count of, Discussion, Discussion
from long data type, Discussion, Discussion

write function, Arduino Serial Notes
byte data type output, Discussion
int data type, Discussion
long data type, Discussion

X

X-CTU application
communicating between XBees, XBee configuration
configuring XBee, XBee configuration, Configuration, Series 2 and
Series 3 XBees
firmware updater for XBee, XBee configuration
URL, XBee configuration
XBees activating pins, Series 2 and Series 3 XBees

XBee Explorer USB (SparkFun), Discussion
XBee radio modules (Digi International)

about, Problem
actuator activation, Problem
addresses, Discussion
analog-to-digital converter, Discussion, Configuration
Bluetooth module, See Also
communicating with, Problem
communicating with a specific XBee, Problem
configuration, Discussion, XBee configuration, Configuration
connecting to computer, Discussion
firmware updater, XBee configuration
level-shifting circuit, Discussion
sensor data between modules, Problem
troubleshooting, Problem
voltage regulator, Solution, Discussion
X-CTU application, XBee configuration, Configuration, Series 2 and
Series 3 XBees
“soft” serial connection, Receiving data from multiple SoftwareSerial
ports

XML-formatted data, Problem

Z

ZigBee wireless communication, Problem
ZTerm terminal program, Discussion

About the Authors
Michael Margolis is a technologist in the field of real-time computing with
expertise in developing and delivering hardware and software for
interacting with the environment. He has more than 30 years of experience
at senior levels with Sony, Microsoft, and Lucent/Bell Labs. He has written
libraries and core software that are part of the official Arduino 1.0
distribution.

Brian Jepson is a content manager at LinkedIn Learning, where he
manages design and engineering courses. He is also the co-organizer of
Providence Geeks, a founding member of the National Maker Faire
planning and production team, and coproducer of the Providence Mini
Maker Faire. He shares and spreads knowledge of electronics and digital
fabrication through hands-on events and workshops, working closely with
AS220, a nonprofit community arts center, and with the Rhode Island
Computer Museum (both Rhode Island–based nonprofits).

Nick Weldin works at the Rix Centre based at the University of East
London, looking into technology that may help people with learning
difficulties to get involved in what is happening online and on the computer
in front of them. He is also senior technologist for Tinker It! working on
various technology projects, often related to Arduino, an open source
electronics prototyping platform based on flexible, easy-to-use hardware
and software. Other projects include work with Paddington Arts, Oily Cart
Theatre Company, and Deafinitely Theatre.

Colophon
The animal on the cover of Arduino Cookbook, Third Edition, is a toy
rabbit. Mechanical toys like this one move by means of springs, gears,
pulleys, levers, or other simple machines, powered by mechanical energy.
Such toys have a long history, with ancient examples known from Greece,
China, and the Arab world.

Mechanical toy making flourished in early modern Europe. In the late
1400s, German inventor Karel Grod demonstrated flying wind-up toys.
Prominent scientists of the day, including Leonardo da Vinci, René
Descartes, and Galileo Galilei, were noted for their work on mechanical
toys. Da Vinci’s famed mechanical lion, built in 1509 for Louis XII, walked
up to the king and tore open its chest to reveal a fleur-de-lis.

The art of mechanical toy making is considered to have reached its pinnacle
in the late eighteenth century, with the famed “automata” of the Swiss
watchmaker Pierre Jaquet-Droz and his son Henri-Louis. Their human
figures performed such lifelike actions as dipping a pen in an inkwell,
writing full sentences, drawing sketches, and blowing eraser dust from the
page. In the nineteenth century, European and American companies turned
out popular clockwork toys that remain collectible today.

Because these original toys, which had complicated works and elaborate
decorations, were costly and time-consuming to make, they were reserved
for the amusement of royalty or the entertainment of adults. Only since the
late nineteenth century, with the appearance of mass production and cheap
materials (tin, and later, plastic), have mechanical toys been considered
playthings for children. These inexpensive moving novelties were popular
for about a century, until battery-operated toys superseded them.

The cover illustration is by Karen Montgomery, based on a black and white
engraving from the Dover Pictorial Archive. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Who This Book Is For
	How This Book Is Organized
	What Was Left Out
	Code Style (About the Code)
	Arduino Platform Release Notes
	Notes on the Third Edition
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments for the Second Edition (Michael Margolis)
	Acknowledgments for the Third Edition (Brian Jepson)

	Getting Started
	1.0 Introduction
	1.1 Installing the Integrated Development Environment (IDE)
	1.2 Setting Up the Arduino Board
	1.3 Using the Integrated Development Environment to Prepare an Arduino Sketch
	1.4 Uploading and Running the Blink Sketch
	1.5 Creating and Saving a Sketch
	1.6 An Easy First Arduino Project
	1.7 Using Arduino with Boards Not Included in the Standard Distribution
	1.8 Using a 32-Bit Arduino (or Compatible)

	Arduino Programming
	2.0 Introduction
	2.1 A Typical Arduino Sketch
	2.2 Using Simple Primitive Types (Variables)
	2.3 Using Floating-Point Numbers
	2.4 Working with Groups of Values
	2.5 Using Arduino String Functionality
	2.6 Using C Character Strings
	2.7 Splitting Comma-Separated Text into Groups
	2.8 Converting a Number to a String
	2.9 Converting a String to a Number
	2.10 Structuring Your Code into Functional Blocks
	2.11 Returning More than One Value from a Function
	2.12 Taking Actions Based on Conditions
	2.13 Repeating a Sequence of Statements
	2.14 Repeating Statements with a Counter
	2.15 Breaking Out of Loops
	2.16 Taking a Variety of Actions Based on a Single Variable
	2.17 Comparing Character and Numeric Values
	2.18 Comparing Strings
	2.19 Performing Logical Comparisons
	2.20 Performing Bitwise Operations
	2.21 Combining Operations and Assignment

	Mathematical Operations
	3.0 Introduction
	3.1 Adding, Subtracting, Multiplying, and Dividing
	3.2 Incrementing and Decrementing Values
	3.3 Finding the Remainder After Dividing Two Values
	3.4 Determining the Absolute Value
	3.5 Constraining a Number to a Range of Values
	3.6 Finding the Minimum or Maximum of Some Values
	3.7 Raising a Number to a Power
	3.8 Taking the Square Root
	3.9 Rounding Floating-Point Numbers Up and Down
	3.10 Using Trigonometric Functions
	3.11 Generating Random Numbers
	3.12 Setting and Reading Bits
	3.13 Shifting Bits
	3.14 Extracting High and Low Bytes in an int or long
	3.15 Forming an int or long from High and Low Bytes

	Serial Communications
	4.0 Introduction
	4.1 Sending Information from Arduino to Your Computer
	4.2 Sending Formatted Text and Numeric Data from Arduino
	4.3 Receiving Serial Data in Arduino
	4.4 Sending Multiple Text Fields from Arduino in a Single Message
	4.5 Receiving Multiple Text Fields in a Single Message in Arduino
	4.6 Sending Binary Data from Arduino
	4.7 Receiving Binary Data from Arduino on a Computer
	4.8 Sending Binary Values from Processing to Arduino
	4.9 Sending the Values of Multiple Arduino Pins
	4.10 Logging Arduino Data to a File on Your Computer
	4.11 Sending Data to More than One Serial Device
	4.12 Receiving Serial Data from More than One Serial Device
	4.13 Using Arduino with the Raspberry Pi

	Simple Digital and Analog Input
	5.0 Introduction
	5.1 Using a Switch
	5.2 Using a Switch Without External Resistors
	5.3 Reliably Detect (Debounce) When a Switch Is Pressed
	5.4 Determining How Long a Switch Is Pressed
	5.5 Reading a Keypad
	5.6 Reading Analog Values
	5.7 Changing the Range of Values
	5.8 Reading More than Six Analog Inputs
	5.9 Measuring Voltages Up to 5V
	5.10 Responding to Changes in Voltage
	5.11 Measuring Voltages More than 5V (Voltage Dividers)

	Getting Input from Sensors
	6.0 Introduction
	6.1 You Want an Arduino with Many Built-in Sensors
	6.2 Detecting Movement
	6.3 Detecting Light
	6.4 Detecting Motion of Living Things
	6.5 Measuring Distance
	6.6 Measuring Distance Precisely
	6.7 Detecting Vibration
	6.8 Detecting Sound
	6.9 Measuring Temperature
	6.10 Reading RFID (NFC) Tags
	6.11 Tracking Rotary Movement
	6.12 Tracking Rotary Movement in a Busy Sketch with Interrupts
	6.13 Using a Mouse
	6.14 Getting Location from a GPS
	6.15 Detecting Rotation Using a Gyroscope
	6.16 Detecting Direction
	6.17 Reading Acceleration

	Visual Output
	7.0 Introduction
	7.1 Connecting and Using LEDs
	7.2 Adjusting the Brightness of an LED
	7.3 Driving High-Power LEDs
	7.4 Adjusting the Color of an LED
	7.5 Controlling Lots of Color LEDs
	7.6 Sequencing Multiple LEDs: Creating a Bar Graph
	7.7 Sequencing Multiple LEDs: Making a Chase Sequence
	7.8 Controlling an LED Matrix Using Multiplexing
	7.9 Displaying Images on an LED Matrix
	7.10 Controlling a Matrix of LEDs: Charlieplexing
	7.11 Driving a 7-Segment LED Display
	7.12 Driving Multidigit, 7-Segment LED Displays: Multiplexing
	7.13 Driving Multidigit, 7-Segment LED Displays with the Fewest Pins
	7.14 Controlling an Array of LEDs by Using MAX72xx Shift Registers
	7.15 Increasing the Number of Analog Outputs Using PWM Extender Chips
	7.16 Using an Analog Panel Meter as a Display

	Physical Output
	8.0 Introduction
	8.1 Controlling Rotational Position with a Servo
	8.2 Controlling Servo Rotation with a Potentiometer or Sensor
	8.3 Controlling the Speed of Continuous Rotation Servos
	8.4 Controlling Servos Using Computer Commands
	8.5 Driving a Brushless Motor (Using a Hobby Speed Controller)
	8.6 Controlling Solenoids and Relays
	8.7 Making an Object Vibrate
	8.8 Driving a Brushed Motor Using a Transistor
	8.9 Controlling the Direction of a Brushed Motor with an H-Bridge
	8.10 Controlling the Direction and Speed of a Brushed Motor with an H-Bridge
	8.11 Using Sensors to Control the Direction and Speed of Brushed Motors
	8.12 Driving a Bipolar Stepper Motor
	8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board)
	8.14 Driving a Unipolar Stepper Motor with the ULN2003A Driver Chip

	Audio Output
	9.0 Introduction
	9.1 Playing Tones
	9.2 Playing a Simple Melody
	9.3 Generating More than One Simultaneous Tone
	9.4 Generating Audio Tones Without Interfering with PWM
	9.5 Controlling MIDI
	9.6 Making an Audio Synthesizer
	9.7 Attain High-Quality Audio Synthesis

	Remotely Controlling External Devices
	10.0 Introduction
	10.1 Responding to an Infrared Remote Control
	10.2 Decoding Infrared Remote Control Signals
	10.3 Imitating Remote Control Signals
	10.4 Controlling a Digital Camera
	10.5 Controlling AC Devices by Hacking a Remote-Controlled Switch

	Using Displays
	11.0 Introduction
	11.1 Connecting and Using a Text LCD Display
	11.2 Formatting Text
	11.3 Turning the Cursor and Display On or Off
	11.4 Scrolling Text
	11.5 Displaying Special Symbols
	11.6 Creating Custom Characters
	11.7 Displaying Symbols Larger than a Single Character
	11.8 Displaying Pixels Smaller than a Single Character
	11.9 Selecting a Graphical LCD Display
	11.10 Control a Full-Color LCD Display
	11.11 Control a Monochrome OLED Display

	Using Time and Dates
	12.0 Introduction
	12.1 Using millis to Determine Duration
	12.2 Creating Pauses in Your Sketch
	12.3 More Precisely Measuring the Duration of a Pulse
	12.4 Using Arduino as a Clock
	12.5 Creating an Alarm to Periodically Call a Function
	12.6 Using a Real-Time Clock

	Communicating Using I2C and SPI
	13.0 Introduction
	13.1 Connecting Multiple I2C Devices
	13.2 Connecting Multiple SPI Devices
	13.3 Working with an I2C Integrated Circuit
	13.4 Increase I/O with an I2C Port Expander
	13.5 Communicating Between Two or More Arduino Boards
	13.6 Using the Wii Nunchuck Accelerometer

	Simple Wireless Communication
	14.0 Introduction
	14.1 Sending Messages Using Low-Cost Wireless Modules
	14.2 Connecting Arduino over a ZigBee or 802.15.4 Network
	14.3 Sending a Message to a Particular XBee
	14.4 Sending Sensor Data Between XBees
	14.5 Activating an Actuator Connected to an XBee
	14.6 Communicating with Classic Bluetooth Devices
	14.7 Communicating with Bluetooth Low Energy Devices

	WiFi and Ethernet
	15.0 Introduction
	15.1 Connecting to an Ethernet Network
	15.2 Obtaining Your IP Address Automatically
	15.3 Sending and Receiving Simple Messages (UDP)
	15.4 Use an Arduino with Built-in WiFi
	15.5 Connect to WiFi with Low-Cost Modules
	15.6 Extracting Data from a Web Response
	15.7 Requesting Data from a Web Server Using XML
	15.8 Setting Up an Arduino to Be a Web Server
	15.9 Handling Incoming Web Requests
	15.10 Handling Incoming Requests for Specific Pages
	15.11 Using HTML to Format Web Server Responses
	15.12 Requesting Web Data Using Forms (POST)
	15.13 Serving Web Pages Containing Large Amounts of Data
	15.14 Sending Twitter Messages
	15.15 Exchanging Data for the Internet of Things
	15.16 Publishing Data to an MQTT Broker
	15.17 Subscribing to Data on an MQTT Broker
	15.18 Getting the Time from an Internet Time Server

	Using, Modifying, and Creating Libraries
	16.0 Introduction
	16.1 Using the Built-in Libraries
	16.2 Installing Third-Party Libraries
	16.3 Modifying a Library
	16.4 Creating Your Own Library
	16.5 Creating a Library That Uses Other Libraries
	16.6 Updating Third-Party Libraries for Arduino 1.0

	Advanced Coding and Memory Handling
	17.0 Introduction
	17.1 Understanding the Arduino Build Process
	17.2 Determining the Amount of Free and Used RAM
	17.3 Storing and Retrieving Numeric Values in Program Memory
	17.4 Storing and Retrieving Strings in Program Memory
	17.5 Using #define and const Instead of Integers
	17.6 Using Conditional Compilations

	Using the Controller Chip Hardware
	18.0 Introduction
	18.1 Storing Data in Permanent EEPROM Memory
	18.2 Take Action Automatically When a Pin State Changes
	18.3 Perform Periodic Actions
	18.4 Setting Timer Pulse Width and Duration
	18.5 Creating a Pulse Generator
	18.6 Changing a Timer’s PWM Frequency
	18.7 Counting Pulses
	18.8 Measuring Pulses More Accurately
	18.9 Measuring Analog Values Quickly
	18.10 Reducing Battery Drain
	18.11 Setting Digital Pins Quickly
	18.12 Uploading Sketches Using a Programmer
	18.13 Replacing the Arduino Bootloader
	18.14 Move the Mouse Cursor on a PC or Mac

	Electronic Components
	Capacitor
	Diode
	Integrated Circuit
	Keypad
	LED
	Motor (DC)
	Optocoupler
	Photocell (Photoresistor)
	Piezo
	Pot (Potentiometer)
	Relay
	Resistor
	Solenoid
	Speaker
	Stepper Motor
	Switch
	Transistor
	See Also

	Using Schematic Diagrams and Datasheets
	How to Read a Datasheet
	Choosing and Using Transistors for Switching

	Building and Connecting the Circuit
	Using a Breadboard
	Connecting and Using External Power Supplies and Batteries
	Using Capacitors for Decoupling
	Using Snubber Diodes with Inductive Loads
	Working with AC Line Voltages

	Tips on Troubleshooting Software Problems
	Code That Won’t Compile
	Code That Compiles but Does Not Work as Expected

	Tips on Troubleshooting Hardware Problems
	Still Stuck?

	Digital and Analog Pins
	ASCII and Extended Character Sets
	Index

